
Step-by-Step into Argp
by Ben Asselstine

(c) Copyright 2010, 2015, 2019

Step-By-Step Into Argp

Preamble

This section describes the licensing of this book and it's associated parts.

This book is licensed under the terms of the GNU Free Documentation
License version 1.31 or any later version. The source code for the various
examples in this book are licensed under the GNU General Public License
version 3 or at your option any later version2. These licenses encourage
redistribution of this book; so feel free to share this book with a friend.

1 http://www.gnu.org/copyleft/fdl.html
2 http://www.gnu.org/licenses/gpl-3.0-standalone.html

2

Step-By-Step Into Argp

Introduction
Welcome to your step-by-step journey for learning Argp, the GNU System's own

command-line parsing facility. This book covers all aspects of Argp; from parsing
simple command-line options to mixing sets of options from libraries into your
own programs. The pace of this book is deliberately relaxed and focuses on
incremental learning by example for beginner programmers.

Argp (pronounced Argh-Pee) was created in 1995 by Miles Bader for the
GNU project3. Later on it was merged into the GNU C Standard Library;
the special library that all C programs on the computer use by default. From
the start Argp has shown itself to be an easy way to incorporate command-
line processing into programs, such that the programs look and behave in a
standard way. Argp is also available on non-GNU systems like FreeBSD,
Microsoft Windows as an external library.

This book focuses on making simple command-line programs that use Argp
for processing command-line options and arguments. The programs are text-
based and run within a shell (sometimes called a terminal). These programs
fall into a genre called CLI (command-line interface), or TUI (text user
interface), or KUI (keyboard user interface). The GNU system has
thousands of programs that fall into this genre, and this book will help you
create your own command-line based programs.

This book is for programmers who already know a little about the C
language and want to make more complicated command-line programs that
look and behave and a standard way.

Let's get started and experience the joy of command-line processing with
Argp.

3 Argp was created for the GNU Hurd, the GNU System's own kernel.

3

Step-By-Step Into Argp

Conventions in this Book
This section describes common features and terms in this book.

The term “GNU System” refers to the popular GNU+Linux systems available
from vendors such as Red Hat, and Ubuntu. The GNU project started in
1984 to create a completely free operating system.

The term “option” is often used a short form for “command-line option”.

When C code is displayed in the book, it takes the following form:
#include <stdio.h>
int
main (int argc, char **argv)
{
 printf (“hello world\n”);
}

All code examples are indented according to the GNU standard4. They
appear as if they were indented with the indent program.

Commands must be entered in the shell are depicted like this:
$ make step1

When the names of commands or functions, or command-line fragments
appear in the middle of sentences, they appear like this and that.

4 http://www.gnu.org/prep/standards/standards.html

4

Step-By-Step Into Argp

What you will need
This section describes what you will need to follow the steps in this book.

The following programs are required:
1. gcc
2. make
3. binutils (ar, ranlib)
4. GNU Readline library

An editor will also be needed to write your programs in. You are encouraged
to use GNU Emacs if you are familiar with it. Otherwise another text-based
editor is required, like vim or nano.

Additionally a web-browser is required to download the example programs
from: http://svn.sv.nongnu.org/viewvc/trunk/?root=argpbook. Cut and
pasting the example programs from a PDF can be annoying because
indentation is not retained. It is hoped that these example programs will be
a convenience to the reader.

5

http://svn.sv.nongnu.org/viewvc/trunk/?root=argpbook

Step-By-Step Into Argp

Command-line Options
This section explains what command-line options are and how they look and

behave on a GNU System.

Command-line options are a convenient way of instructing a program to act
in a particular way. Some systems call command-line options switches,
because they make your program switch behaviours. Like a train on a
railroad track, a railroad switch makes the train go in a new direction.
Command-line options are created to make your program go in new
directions.

Programs have different options because they can do different things, yet the
options are the same in important ways. Command-line options have a
standard way of looking and behaving.

There are two kinds of options; long ones and short ones. Argp supports
both kinds.

Short options have a hyphen followed by a letter. For example: “-f” as seen
in the rm command, or “-c” as seen in the wc command. Short options can be
ganged together into a set. Consequently, “ls -la” is equivalent to “ls -l -a”.

Long options have two hyphens followed by a word with no spaces. For
example: “--foo”. Long options can be very descriptive as seen in this ls long
option: “--dereference-command-line-symlink-to-dir”. Long options cannot be
ganged together, and they often have a corresponding short option
equivalent.

You are not required to type the whole long option name to make the
program understand it: you only need to type enough of the long option name
to uniquely identify it among other long options in the same program. To
illustrate this feature try running “ls --hel” instead of “ls --help”.

To make long options even easier to use, some shells (like the Bash shell)
have extensions that allow the tab-completion of long-options.

Users expect options like --help and --version to be available in your

6

Step-By-Step Into Argp

program. Argp provides a --help option to your program by default.

Command-line options are always optional to the operation of a program –
this is why they are called options. A mandatory option is an oxymoron.

A real-life example of --help can be found by running the “sum” program with
--help as an option.

This is the common look and feel of the --help option. When users see this
kind of help they feel comfortable with it because they've seen the common
layout in so many other programs. The help format always starts off with a
Usage line, followed by a short description of what the program does,
followed by short descriptions of what each of the program's options do.

The square brackets and the dot-dot-dots might be new to you: they are
inspired by BNF. The square brackets mean that the term is optional, and
the dot-dot-dot means that the term is repeatable. The usage line shows us
that the sum program takes many options or none at all, and also many files,
or no files at all.

The program offers the standard --help, and --version options as well as

7

Text 1: A program's customary --help display.

$ sum --help
Usage: sum [OPTION]... [FILE]...
Print checksum and block counts for each FILE.

 -r use BSD sum algorithm, use 1K blocks
 -s, --sysv use System V sum algorithm, use 512 bytes blocks
 --help display this help and exit
 --version output version information and exit

With no FILE, or when FILE is -, read standard input.

Report sum bugs to bug-coreutils@gnu.org
GNU coreutils home page: <http://www.gnu.org/software/coreutils/>
General help using GNU software: <http://www.gnu.org/gethelp/>
Report sum translation bugs to <http://translationproject.org/team/>

Step-By-Step Into Argp

other options that are particular to the program's behaviour. We can see
that -s is a short option that has a long option equivalent in --sysv. There is
also some extra information shown for obtaining help on the sum program on
the web.

Command-line options come in many shapes and sizes, and later on in this
book you will be shown how Argp can help you handle them so that your
program looks and behaves in the standard way with respect to command-
line options.

8

Step-By-Step Into Argp

Command-line Arguments
This section explains what command-line arguments are.

Most command-line programs take arguments as well as options. These
arguments can be filenames, as seen in the “cp” command.

In other programs command-line arguments can be usernames, or IP
addresses, or numbers, or anything else you can think of. Arguments can be
mandatory, like in the “cp” command, or they can be entirely optional, like in
the “ls” command. If a program doesn't get the correct number of command-
line arguments it will refuse to operate. Later on we'll see how Argp lets you
(the programmer) collect the arguments given to your program.

Sometimes an argument can look exactly like an option. For example, maybe
you have a directory called “--foo” and you want to remove it. Running
“rmdir --foo” will cause the rmdir program to report that it doesn't have a --
foo option. Because the argument is indistinguishable from the form of a
long option we need to give the program an extra hint that we're providing it
an argument and not an option. To provide that hint we use “--” to signify
that there aren't any more options on this command-line. Here is an
illustration of how to use the feature:

The use of “--” is the standard way to handling arguments that are

9

Text 3: Providing arguments that are indistinguishable from options.

$ mkdir --foo
mkdir: unrecognized option '--foo'
Try `mkdir --help' for more information.
$ mkdir -- --foo
$ ls
--foo
$ rmdir --foo
rmdir: unrecognized option '--foo'
Try `rmdir --help' for more information.
$ rmdir -- --foo

Text 2: Providing an option and two arguments to the cp command.

$ cp -v foo bar
`foo'->`bar'
$

Step-By-Step Into Argp

indistinguishable from long or short options. Argp provides this
functionality to your program by default.

Later on in this book, you will see how to process command-line arguments
in your Argp-enabled program.

10

Step-By-Step Into Argp

Arguments to Options
This section describes command-line options that have their own arguments.

Like programs, options can also take arguments. Arguments that belong to
options can be as varied as those belonging to a program. An option can
have a mandatory argument, an optional argument, or no argument at all.
This section is about options that have mandatory or optional arguments.

A practical example of an option that has an argument is in the “fold”
command. Let's take a look at what the fold program's --help shows:

Here we see the --width option that requires a number as an argument. It is
an error to provide the --width option without an argument, and the program
will fail to run if you do so. You can provide an argument to the --width
option in many different ways:

11

Text 4: Help that depicts an option that has a mandatory argument.

$ fold --help
Usage: fold [OPTION]... [FILE]...
Wrap input lines in each FILE (standard input by default), writing to
standard output.

Mandatory arguments to long options are mandatory for short options too.
 -b, --bytes count bytes rather than columns
 -s, --spaces break at spaces
 -w, --width=WIDTH use WIDTH columns instead of 80
 --help display this help and exit
 --version output version information and exit

Report fold bugs to bug-coreutils@gnu.org
GNU coreutils home page: <http://www.gnu.org/software/coreutils/>
General help using GNU software: <http://www.gnu.org/gethelp/>
Report fold translation bugs to <http://translationproject.org/team/>

Step-By-Step Into Argp

There are a few invalid ways to provide a mandatory argument to an option.
For example: these ways do not work:

The short option with an optional argument is a noteworthy case. They are
difficult to find in the wild; but one exists in the -j option of GNU Make:

The noteworthy aspect of this -j option (and all other short options with
optional arguments) is that it can be ganged together with -k but not when -k
follows -j! Consequently “make -kj” works fine but “make -jk” does not because
“k” is specified as the number of jobs, which is an invalid number of jobs. In
an earlier section we showed how an argument can be mistaken for an

12

Text 7: A short option with an optional argument.

 -j [N], --jobs[=N] Allow N jobs at once; infinite jobs with no arg.
 -k, --keep-going Keep going when some targets can't be made.

Text 6: Incorrect ways of providing mandatory arguments to options.

$ fold --width5
fold: unrecognized option '--width5'
Try `fold --help' for more information.
$ fold -w=5
fold: invalid number of columns: `=5'

Text 5: Correct ways of providing mandatory arguments to options.

$ echo "hello there" | fold -w3
hel
lo
the
re
$ echo "hello there" | fold -w 4
hell
o th
ere
$ echo "hello there" | fold --width 5
hello
 ther
e
$ echo "hello there" | fold --width=6
hello
there

Step-By-Step Into Argp

option, and we had to use “--” as a hint to fix the problem. In this is case we
have a ganged short option being mistaken for an option's argument. There
is no hint we can give the program to detect this situation, other than not
ganging the -j and -k together. Unlike short options, long options with
optional arguments require an equal sign separating the option name from
the argument value.

Later on in this book we'll find out how Argp lets you make and handle
options that have both mandatory or optional arguments, and how it does
some useful error-checking by default.

13

Step-By-Step Into Argp

Step Zero: Your First Argp Program
This section will show you how to write, compile and run the simplest Argp

program.

Let's get started. Cut and paste the following C code into a file called
step0.c:

The Argp facility uses the argp_parse function to initiate parsing. For now we
pass in argc, and argv so that Argp can know about the incoming command-
line. The other parameters enable other functionality and will be covered in
later sections. We include the “argp.h” file so that our program knows about
all things argp-ish.

Compile the program by typing the following into a shell:

Now you can run your first Argp-enabled program. Let's take a look at what
your new program can do!

14

Text 8: step0.c the simplest Argp-enabled program.

#include <stdio.h>
#include <argp.h>

int
main (int argc, char **argv)
{
 return argp_parse (0, argc, argv, 0, 0, 0);
}

Text 9: Compiling the step0 program.

$ make step0
cc step0.c -o step0

Text 10: Running the step0 program to see the help.

$./step0 --help
Usage: step0 [OPTION...]

 -?, --help Give this help list
 --usage Give a short usage message

Step-By-Step Into Argp

Fantastic! With very little effort our step0 program has that standard look
and feel of other command-line programs. We get a --help option for free,
and also another option called --usage. Let's try running the program with
that --usage option:

The usage option shows a very brief display of help which is useful for a
quick reminder of what options the program has. Let's see what else we can
do with our new program:

This example demonstrates the following things about Argp:
1. It does some automatic error reporting for our program. By default it

disallows any arguments at all.
2. We can type “--us” instead of “--usage” and it gives the same effect.
3. It does some automatic error reporting for options that are not

supported by our program.
4. It exits after parsing --usage (and --help).
5. It honours the “--” convention of denoting the end of options on a

command-line.

It's a useless program, but it does a lot more than you'd expect because it's
Argp-enabled. Why is this program called step0? C Programmers often have
to start counting at zero, so the convention was adopted for the various steps
(programs) in this book. In the next step we'll add our own option to the

15

Text 12: Having fun with the step0 program.

$./step0 foo
step0: Too many arguments
Try `step0 --help' or `step0 --usage' for more information.
$./step0 --us
Usage: step0 [-?] [--help] [--usage]
$./step0 --foo
./step0: unrecognized option '--foo'
Try `step0 --help' or `step0 --usage' for more information.
$./step0 --usage --help
Usage: step0 [-?] [--help] [--usage]
$./step0 --
$

Text 11: Running the step0 program to see the usage.

$./step0 --usage
Usage: step0 [-?] [--help] [--usage]

Step-By-Step Into Argp

program.

16

Step-By-Step Into Argp

Step One
In this section the most frequently used elements of the Argp syntax are

demonstrated. We cover the argp struct, the argp_option struct, and the parser
function.

Let's add a -d option to our program that will show a period on the screen.
Cut and paste the following C code into your editor and save it as step1.c.
The highlighted regions represent new code from the previous step.

The most important data type in Argp is the struct argp data type. Here we
can see that it contains:

1. All of our options (just one option for now),
2. A pointer to a function that Argp will call on our behalf to assist in

parsing our -d option (parse_opt).
And then we pass a pointer to our struct argp as the first parameter to the
argp_parse function, to let Argp know about our shiny new -d option.

17

Text 13: step1.c : an Argp-enabled program with one option.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg,
 struct argp_state *state)
{
 switch (key)
 {
 case 'd': printf (".\n"); break;
 }
 return 0;
}

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { 0, 'd', 0, 0, "Show a dot on the screen"},
 { 0 }
 };
 struct argp argp = { options, parse_opt };
 return argp_parse (&argp, argc, argv, 0, 0, 0);
}

Step-By-Step Into Argp

Our options array contains a single entry, followed by an empty terminating
record. The record that describes our -d option has a lot of zeroes on it, (each
zero meaning the field is unused,) and for now we only use the 2nd field, and
5th fields. The 'd' means it's a “-d” short option we're creating, and the 5th
field contains the description of the option to be shown in the --help. The
other fields of struct argp_option do other things and will be revealed in later
sections.

The parse_opt function can be a source of consternation for beginner
programmers because there is no visible call to it. The function seems to
hang out in space unconnected to any other function. We can see the
parse_opt function name being given to the struct argp, but it's not visibly
being called anywhere in the program. That's because Argp is calling our
parse_opt function on our behalf as it goes about processing the argc and argv
that we pass to argp_parse. If you were to look at the argp sources (and you
can if you need to see the connection), you would see that it calls parse_opt
repeatedly, over and over until it's done processing the command line. Argp
is not just calling parse_opt for our -d option, it is calling parse_opt for every
option and argument on the command line.

18

Drawing 1: Your program calls argp, which calls your callback function on your behalf.

Your Program

ARGP

Your Callback function

Step-By-Step Into Argp

Callback functions are a frequently used mechanism in C programs. Our
parse_opt function is a callback function for Argp. Argp decides what the
signature will be for it's callback function, and as programmers we diligently
implement a function with that signature. In this case the parse_opt function
signature has three parameters:

1. The option's unique key, which can be the short option 'd'. Other non-
character keys exist and we'll demonstrate them in later sections.

2. The value of the option's argument, as a string. Our option doesn't
take an argument so we ignore this parameter in the callback function.

3. A variable that keeps Argp's state as we repeatedly iterate the callback
function. Although it is not used in this program, it will be used in
later programs.

And finally the callback function returns zero when everything is okay, and
non-zero will stop Argp and cause the argp_parse function to return that non-
zero error value.

When the function name is assigned to the struct argp, it is actually
assigning the pointer to the where the function exists in memory. This is
similar to how the name of an array is a pointer to the array's first element.

Our parse_opt function checks the key to see if Argp is currently processing
the “-d” option or not, and when it finds that it is, it simply displays a period
on the screen, followed by a newline. If -d is specified many times on the
command-line, the callback function will be called same number of times
with 'd' as the value of the key parameter.

Let's compile the program:

And now run it in the shell to see the help:

19

Text 14: Compiling the step1 program.

$ make step1
cc step1.c -o step1

Step-By-Step Into Argp

But does our program work? Let's give it a spin with the -d option.

Hooray! It works.

Real-life Example: Even though this is a very simple program it is far from useless.
The short option without an argument appears in a myriad of programs on your
system! Look at the “-f” option in the “rm” command. Or look at the “-l” option
to the “ls” command. It's everywhere, and now you know the basics of how to
make your own program offer a similar option with Argp.

In the next step we'll add a mandatory argument to the -d option.

20

Text 15: Running the step1 program to see the help.

$./step1 --help
Usage: step1 [OPTION...]

 -d Show a dot on the screen
 -?, --help Give this help list
 --usage Give a short usage message
$

Text 16: Having fun with the step1 program.

$./step1 -d
.
$./step1 -ddd -d
.
.
.
.
$

Step-By-Step Into Argp

Step Two
In this section the argument member of the argp_option struct will be

described, and the arg parameter to the callback function will be demonstrated.

Let's add an argument to our -d option, such that it can produce many dots
instead of just one. Cut and paste the following C code into your editor and
save a file called step2.c. The highlighted regions are the parts of the code
that have changed from the previous step.

We are now using the 3rd field in the struct argp_option. It denotes that there
is an argument to this -d option, and that the argument shall be called “NUM”
in the --help and --usage displays. If we were to change this value back to 0

21

Text 17: step2.c : an Argp-enabled program with an option that has a mandatory argument.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg,
 struct argp_state *state)
{
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 for (i = 0; i < atoi (arg); i++)
 printf (".");
 printf ("\n");
 break;
 }
 }
 return 0;
}

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { 0, 'd', "NUM", 0, "Show some dots on the screen"},
 { 0 }
 };
 struct argp argp = { options, parse_opt, 0, 0 };
 return argp_parse (&argp, argc, argv, 0, 0, 0);
}

Step-By-Step Into Argp

(or NULL), the -d option would cease to accept a mandatory argument.

In the parse_opt callback function we are using the arg parameter. It's
coming to us (the programmer) as a string, and the value of arg is
guaranteed not to be NULL because Argp won't let -d be called without an
argument. A better program would have more validity checks on the
contents of arg (a malicious user could give random text to our -d option), but
for illustrative purposes the validity checking will be omitted.

The arg variable points to memory that we didn't allocate, and trying to free
it would be a very bad idea. You can expect the memory that the arg value
points to remain accessible for the duration of the program's execution. The
memory that the arg parameter points to won't go away after the callback
function completes. In our case we only need to access the value of arg while
executing the callback function.

Let's take our new program out for a spin. Compile it, display the program's
help, and try out the new and improved -d option:

We can see that Argp is doing some error-checking for us, and that it is
automatically building the help and usage displays to include the new

22

Text 18: Compiling step2.c and take it for a spin.

$ make step2
cc step2.c -o step2
$./step2 --help
Usage: step2 [OPTION...]

 -d NUM Show some dots on the screen
 -?, --help Give this help list
 --usage Give a short usage message
$./step2 -d1 -d2 -d 3
.
..
...
$./step2 -d
./step2: option requires an argument -- 'd'
Try `step2 --help' or `step2 --usage' for more information.
$./step2 --usage
Usage: step2 [-?] [-d NUM] [--help] [--usage]
$

Step-By-Step Into Argp

argument to -d.

Real-life example: The mandatory argument to a short option frequently appears
in many programs on your system. Look at the “-n” option to the “head” program
(the option takes the number of topmost lines to show in a file.) We have already
seen the “-w” option to the “fold” program. Argp makes it trivial to add short
options with mandatory arguments to your program.

In the next step we will make our program accept a long option.

23

Step-By-Step Into Argp

Step Three
In this section the 1st field of the argp_option struct is used to make the

program accept a long option.

Let's make our -d option have a long option equivalent called --dot. Cut and
paste the following C code into your editor and save a file called step3.c. The
highlighted regions are the parts of the code that have changed from the
previous step.

With this one small change, our program now accepts the --dot long option.
The 1st field of the struct argp_option controls the name of the long option.

24

Text 19: step3.c : an Argp-enabled program with a long option that has a mandatory argument.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg,
 struct argp_state *state)
{
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 for (i = 0; i < atoi (arg); i++)
 printf (".");
 printf ("\n");
 break;
 }
 }
 return 0;
}

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "dot", 'd', "NUM", 0, "Show some dots on the screen"},
 { 0 }
 };
 struct argp argp = { options, parse_opt, 0, 0 };
 return argp_parse (&argp, argc, argv, 0, 0, 0);
}

Step-By-Step Into Argp

Bad things will happen if you put spaces (or newlines, or tabs, or non-
printables) in your option names, so don't do that.

Let's try it out:

Here we can see that the help display now includes the --dot option, and it is
handled in the standard way of long options. We can see that Argp provides
some long option error checking for free (without the programmer having to
do anything). We can also see that our program accepts the --do long option.
This is a demonstration of how users can take shortcuts with long options.
The --do option works because there are no other long options that start with
“do”. If there were two options that started with “do”, and we tried to use a --
do shortcut, the program would refuse to run and show you an error about
the ambiguous option name. This all happens in Argp, you don't have to do

25

Text 20: Compiling and running the step3 program.

$ make step3
cc step3.c -o step3
$./step3 --help
Usage: step3 [OPTION...]

 -d, --dot=NUM Show some dots on the screen
 -?, --help Give this help list
 --usage Give a short usage message

Mandatory or optional arguments to long options are also mandatory or
optional
for any corresponding short options.
$./step3 --dot 1 --dot=2 -d3
.
..
...
$./step3 --dot3
./step3: unrecognized option '--dot3'
Try `step3 --help' or `step3 --usage' for more information.
$./step3 --dot
./step3: option '--dot' requires an argument
Try `step3 --help' or `step3 --usage' for more information.
$./step3 --do 12
............
$./step3 --usage
Usage: step3 [-?] [-d NUM] [--dot=NUM] [--help] [--usage]
$

Step-By-Step Into Argp

anything extra to have this functionality in your program.

There is a rather wordy notice at the bottom of the help display. What the
notice means is that “NUM” is also an argument to the short -d option. Argp
put the notice there because the help formatted in this way they can give the
impression to some people that -d doesn't take an argument. Experienced
users find the wordy notice to be redundant and you can turn it off by adding
the text “no-dup-args-note” to the ARGP_HELP_FMT environment variable in your
shell:

Although it can be nice to disable this notice for experienced users, this
notice is still useful to new users. That's why Argp has it turned on by
default, and has this notice translated into a myriad of different spoken
languages.

Real-life example: The --lines option in the “head” program is a long option
equivalent to the -n short option. It is easier understand the program by reading
the list of long options, and they are easier to remember. And to top it off, long
options are more intuitive to use. Now you too can make your own descriptive
long options that have short option equivalents.

In the next step we'll be making our program accept a long option with an
optional argument.

26

Text 21: Turning off the long options/short options argument notice in the bash shell.

$ export ARGP_HELP_FMT="no-dup-args-note"
$./step3 --help
Usage: step3 [OPTION...]

 -d, --dot=NUM Show some dots on the screen
 -?, --help Give this help list
 --usage Give a short usage message

Step-By-Step Into Argp

Step Four
In this section we'll be using the 4th field of the argp_option struct to make an

option accept an optional argument.

Let's make the NUM argument to our --dot option be optional. Cut and paste
the following C code into your editor and save a file called step4.c. The
highlighted regions are the parts of the code that have changed from the
previous step.

The 4th field of the struct argp_option is a set of flags that change how our
option works. The OPTION_ARG_OPTIONAL flag is just one of many flags that this
bitwise field accepts. The other flags will be revealed in later sections.

27

Text 22: step4.c : an Argp-enabled program with a long option that has an optional argument.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 unsigned int dots = 0;
 if (arg == NULL)
 dots = 1;
 else
 dots = atoi (arg);
 for (i = 0; i < dots; i++)
 printf (".");
 printf ("\n");
 break;
 }
 }
 return 0;
}

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "dot", 'd', "NUM", OPTION_ARG_OPTIONAL, "Show some dots on the screen"},
 { 0 }
 };
 struct argp argp = { options, parse_opt, 0, 0 };
 return argp_parse (&argp, argc, argv, 0, 0, 0);
}

Step-By-Step Into Argp

The arg parameter to our callback function parse_opt can now come to us as
NULL which means that the -d or --dot option was specified on the
command-line without an argument. When arg comes to us as non-NULL it
points to the argument that was given just like in the previous step.

Let's take the step4 program for a spin:

 Here we can see that the help and usage displays now show an optional
argument to our --dot option. We can also see the program can accept
arguments to the --dot option and that it also functions well without an
argument given to it. The final two cases don't run as you might expect.
Can you figure out why?

1. In the first case, it appears that the argument of “3” is not recognized,
and only one dot gets displayed. Why did this happen? Long options
with optional arguments require an = sign between the option and the
argument value. The “3” ends up being an argument to the program,
but Argp doesn't complain about that case because we're expected to
handle arguments if we have a callback function. Arguments to
programs will be handled in a later section.

28

Text 23: Comping and running the step4 program.

$ make step4
cc step4.c -o step4
$./step4 --help
Usage: step4 [OPTION...]

 -d, --dot[=NUM] Show some dots on the screen
 -?, --help Give this help list
 --usage Give a short usage message
$./step4 --usage
Usage: step4 [-?] [-d[NUM]] [--dot[=NUM]] [--help] [--usage]
$./step4 -d --dot=3 --dot
.
...
.
$./step4 --dot 3
.
$./step4 -dd

$

Step-By-Step Into Argp

2. In the second case, it appears that short option was successfully ganged
together with another short option. After all, no error message was
given. Short options with optional arguments cannot be ganged
together. The second “d” is actually the argument given to the -d
option. The call to “atoi” converts “d” to 0, which causes the routine to
display no dots at all, and then a newline.

Real-life Example: Try having a look at the “--backup[=CONTROL]” option of the
“cp” program if you want to see a long option with an optional argument. It's
easy to make your options accept an optional argument.

Exercise: Can you write a program that uses strtoul instead of atoi to check the
arg string for validity?

In the next step option aliases will be demonstrated.

29

Step-By-Step Into Argp

Step Five
In this section another option flag for the 4th field of the argp_option struct will

be demonstrated: the OPTION_ALIAS flag.

Here's the step5 program. You know what to do!

We've added a single line to our program, and it will give us a long option --
period that is equivalent to --dot. The OPTION_ALIAS flag causes the option to
inherit all fields from the previous option except for the long option name
(the 1st field), and the key (the 2nd field). You can have as many aliases as you
like. Some of the other fields have been filled out with dummy values to

30

Text 24: step5.c : an Argp-enabled program with an aliased long option.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 unsigned int dots = 0;
 if (arg == NULL)
 dots = 1;
 else
 dots = atoi (arg);
 for (i = 0; i < dots; i++)
 printf (".");
 printf ("\n");
 break;
 }
 }
 return 0;
}

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "dot", 'd', "NUM", OPTION_ARG_OPTIONAL, "Show some dots on the screen"},
 { "period", 0, "FOO", OPTION_ALIAS, "Bar" },
 { 0 }
 };
 struct argp argp = { options, parse_opt, 0, 0 };
 return argp_parse (&argp, argc, argv, 0, 0, 0);
}

Step-By-Step Into Argp

illustrate that they are in fact ignored by Argp.

Let's see how our new --period option works.

We can see that the “FOO” and “Bar” strings are correctly ignored and do not
appear in the help display. The new --period long option appears beside the
--dot option because it is completely equivalent to it. Argp does the grunt
work of arranging the help and usage displays to accommodate our new
option alias so that you don't have to.

Real-life example: The “rm” program has an option alias with the -R short option.
The -r short option and the --recursive long option are equivalents to it. This
illustrates that sometimes it is useful for short options to be aliases. In this case
the -R option is probably provided for compatibility purposes.

In the next step we're going to add a new long option that makes the callback
function call the callback function.

31

Text 25: Compiling and running the step5 program.

$ make step5
cc step5.c -o step5
$./step5 --help
Usage: step5 [OPTION...]

 -d, --dot[=NUM], --period[=NUM]
 Show some dots on the screen
 -?, --help Give this help list
 --usage Give a short usage message
$./step5 --usage
Usage: step5 [-?] [-d[NUM]] [--dot[=NUM]] [--period[=FOO]] [--help]
 [--usage]
$./step5 --period
.
$./step5 --period=4
....

Step-By-Step Into Argp

Step Six
In this section we're going to call the callback function from within the callback

function so that we can implement a brand new option.

Let's make a new long option --ellipsis that displays three dots on the
screen. It is functionally equivalent to --dot=3, and we will call parse_opt
from within parse_opt to implement it.

For the sake of simplicity, the --dot option has been changed to have a
mandatory argument. The highlighted portions are the regions of the code
that implement the new --ellipsis option.

We can see that our new --ellipsis option doesn't take an argument, and
that it has a very strange key of “777”. The 2nd field of the struct argp_option

32

Text 26: step6.c : an Argp-enabled program that calls it's own callback function.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 for (i = 0; i < atoi (arg); i++)
 printf (".");
 printf ("\n");
 break;
 }
 case 777:
 return parse_opt ('d', "3", state);
 }
 return 0;
}

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "dot", 'd', "NUM", 0, "Show some dots on the screen"},
 { "ellipsis", 777, 0, 0, "Show an ellipsis on the screen"},
 { 0 }
 };
 struct argp argp = { options, parse_opt, 0, 0 };
 return argp_parse (&argp, argc, argv, 0, 0, 0);
}

Step-By-Step Into Argp

(the key field) is special because Argp automatically detects if it is a viewable
character to be used in a short option or not. 777 is not a printable character,
and this means the --ellipsis option will be a long option, with no short
option equivalent.

We can also see that the parse_opt function is being called from inside itself.
This is the easiest way to execute other options. Because we want our
ellipsis option to show three dots on the screen, we call parse_opt with the 'd'
key to activate the --dot option, and we pass 3 as a string as the --dot
option's argument. We also pass the state variable, just because it's a
required parameter to the callback function.

Let's run the program and see how it runs.

We were unable to make this new --ellipsis option an alias because it does
not have an argument. Instead we made a new option and had it execute our
old --dot option with an argument of 3. The help and usage displays show
the new option, and we can see that the new option works correctly. We can
also see that the ellipsis option has no short option equivalent.

Real-life example: This sort of “option equivalence” is fairly frequently used in
command-line programs. If you look at the --archive option in the “cp” program,
you will see that it is equivalent to the options: “-dR –preserve-all”. Now you

33

Text 27: Compiling and running the step6 program.

$ make step6
cc step6.c -o step6
$./step6 --help
Usage: step6 [OPTION...]

 -d, --dot=NUM Show some dots on the screen
 --ellipsis Show an ellipsis on the screen
 -?, --help Give this help list
 --usage Give a short usage message
$./step6 --usage
Usage: step6 [-?] [-d NUM] [--dot=NUM] [--ellipsis] [--help] [--usage]
$./step6 --ellipsis
...
$./step6 --dot 3
...
$

Step-By-Step Into Argp

know how easy it is to make option equivalents in your own programs!

In the next step we will handle program arguments.

34

Step-By-Step Into Argp

Step Seven
In this section we will demonstrate the ARGP_KEY_ARG and ARGP_KEY_END

keys in the callback function, and also we will illustrate the use of the 6th
parameter to argp_parse, the user-supplied data hook for the callback function.

Let's add support for one to four arguments to our program. The idea here is
that the program will report an error if it doesn't get the right number of
arguments.

Here we can see that we're using two special ARGP_KEY keys. Argp passes in
ARGP_KEY_ARG whenever it encounters an argument to the program, and it sets
the arg parameter to point to that argument. When Argp has processed the

35

Text 28: step7.c : An Argp-enabled program that accepts arguments. Callback funcion.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 int *arg_count = state->input;
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 for (i = 0; i < atoi (arg); i++)
 printf (".");
 break;
 }
 case 777:
 return parse_opt ('d', "3", state);
 case ARGP_KEY_ARG:
 {
 (*arg_count)--;
 if (*arg_count >= 0)
 printf (" %s", arg);
 }
 break;
 case ARGP_KEY_END:
 {
 printf ("\n");
 if (*arg_count >= 4)
 argp_failure (state, 1, 0, "too few arguments");
 else if (*arg_count < 0)
 argp_failure (state, 1, 0, "too many arguments");
 }
 break;
 }
 return 0;
}

Step-By-Step Into Argp

last argument it passes ARGP_KEY_END to our callback function.

Argp provides an error-reporting facility called argp_failure that is to be used
when there is a problem parsing the command-line. When we use this
facility our error messages have the standard look and feel.

The state parameter is shown to have an input field, and we're using it in a
dual-purpose way:

1. to know how many arguments is the correct number of arguments.
2. to know how many arguments we've gotten on the command-line.

Argp also keeps track of how many arguments we've processed so far, in the
struct argp_state. There is a member called “arg_num” that reports precisely
this information.

The input field of the state parameter is a value that is passed to argp_parse.
Let's have a look at the main function so we can see that this happening:

And here we can see that we are indeed passing in a pointer to an int as the
6th parameter of the argp_parse function, and the value it points to is 4.
When callback functions are employed in a C program, there is almost
always a way to pass your own piece of data into the callback function. The
6th parameter of the argp_parse function is a way for you to pass any data you
want into your callback function. For command-line processing with Argp
this value is frequently a struct that contains flags that can be set by options.

We can also see that the struct argp has more fields that we thought. The 3rd

36

Text 29: step7.c : An Argp-enabled program that accepts arguments. Main function.

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "dot", 'd', "NUM", 0, "Show some dots on the screen"},
 { "ellipsis", 777, 0, 0, "Show an ellipsis on the screen"},
 { 0 }
 };
 int arg_count = 4;
 struct argp argp = { options, parse_opt, "WORD [WORD [WORD [WORD]]]" };
 return argp_parse (&argp, argc, argv, 0, 0, &arg_count);
}

Step-By-Step Into Argp

field of the struct argp holds the notation of what arguments we're expecting
on this command-line. In this case we're expecting exactly 4 arguments, so
we say so. For kicks we're going to call them “words” because it fits in with a
sentence construction motif for the program.

Let's take the program for a spin!

First of all we can see that our argument notation has been incorporated into
the help and usage displays, and it shows the user can she can give one, two,
three, or four words to this program, but not none or more than four words.

When we run it with exactly four arguments, the words get printed out just
as we would expect.

When we run it with no arguments, we get a newline and then an error
message. Can you see why this is the case by looking at the callback

37

Text 30: Compiling and running the step7 program.

$ make step7
cc step7.c -o step7
$./step7 --help
Usage: step7 [OPTION...] WORD [WORD [WORD [WORD]]]

 -d, --dot=NUM Show some dots on the screen
 --ellipsis Show an ellipsis on the screen
 -?, --help Give this help list
 --usage Give a short usage message
$./step7 --usage
Usage: step7 [-?] [-d NUM] [--dot=NUM] [--ellipsis] [--help] [--usage]
 WORD [WORD [WORD [WORD]]]
$./step7 once upon a time
 once upon a time
$./step7

step7: too few arguments
$./step7 foo bar baz
 foo bar baz
$./step7 once upon a time --ellipsis
... once upon a time
$./step7 one two three four five
 one two three four
step7: too many arguments
$

Step-By-Step Into Argp

function?

Exercise: How would you change the callback function so that a newline only gets
displayed when there are the correct number arguments? Can you remove the
space before the first word that the program displays?

When we run the program with an --ellispsis long option at the end of the
command-line, the “...” appears at the start of the sentence instead of at the
end. This is normal Argp behaviour: options are always parsed before
arguments. If this is unacceptable you can make Argp to honour the order of
your command-line options by passing ARGP_IN_ORDER into the bitwise flags
parameter (the 4th parameter) of the argp_parse function.

Lastly, we can see that our program has another bug: when we pass in five
arguments to the program it still displays the first four words before
displaying an error message. In a future step we will fix this bug.

Real-life example: Sometimes it is useful to accept a bounded number of
arguments on the command-line. Try having a look at the “ln” program. You can
see that it takes either one or two arguments just like our program takes one, two,
three or four arguments. Now you can see how to make an Argp-enabled program
emit an error message when it doesn't get the correct number of command-line
arguments.

In the next step we'll make a program that refuses to accept any command-
line arguments at all, and explore the concept of hidden options.

38

Step-By-Step Into Argp

Step Eight
In this section we will make a program that shows an error message when the

command-line has any arguments, and also we'll demonstrate another option flag,
the OPTION_HIDDEN flag that makes options invisible.

Let's change the motif of our program from sentence construction, to a morse
code motif. This will shrink our program but we will add a --dash option,
and we will modify the --ellispis long option to be functional, but invisible
in the help and usage displays. The program will not accept any arguments
at all, just like our step0 program behaved.

There are no new facilities shown in the callback function. We can see that
we've modified the --dot option to take an optional argument, and we can see
that we're stopping the program when we get an argument. Let's have a look

39

Text 31: step8.c : An Argp-enabled program that accepts a hidden option. Callback funcion.

#include <stdio.h>
#include <argp.h>

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 unsigned int dots = 1;
 if (arg != NULL)
 dots = atoi (arg);
 for (i = 0; i < dots; i++)
 printf (".");
 break;
 }
 break;
 case 888:
 printf ("-");
 break;
 case 777:
 return parse_opt ('d', "3", state);
 case ARGP_KEY_ARG:
 argp_failure (state, 1, 0, "too many arguments");
 break;
 case ARGP_KEY_END:
 printf("\n");
 break;
 }
 return 0;
}

Step-By-Step Into Argp

at the main function:

We can see that we've added a new long option called --dash, and that we've
given the --dot option an optional argument. We can also see that we're no
longer passing in a data hook to the argp_parse function. The new thing
shown here is the OPTION_HIDDEN flag on the --ellipsis option. This will make
the option continue to operate, but it will not be shown in the help or usage
displays.

Hidden options can be useful if they're not overused. One good aspect is that
a hidden option doesn't clutter up the --help display, and it can be fully
documented in the program's manual. Sometimes it is more important for
the program to appear simple to use, than to show five option aliases that do
the same thing. Perhaps a particular hidden-option is used only for ancient
compatibility purposes. We want to accept the option so that compatibility is
ensured, but we don't really want to advertise it.

One bad aspect of hidden options is that they can interfere with long option
shortcuts. Let's say we had a hidden option named --ellipsis and a visible
one called --elation (that displays a smiley face), the user would not be able
to type “--el” to activate the --elation long option. The hidden --ellipsis
option would confuse matters (Argp wouldn't know which option the user
was referring to), even though the user can't readily see the option in the
help or usage displays.

Hidden options require a balance of utility and information management

40

Text 32: step8.c : An Argp-enabled program that accepts a hidden option. Main function.

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "dot", 'd', "NUM", OPTION_ARG_OPTIONAL, "Show some dots on the screen"},
 { "ellipsis", 777, 0, OPTION_HIDDEN, "Show an ellipsis on the screen"},
 { "dash", 888, 0, 0, "Show a dash on the screen" },
 { 0 }
 };
 struct argp argp = { options, parse_opt };
 return argp_parse (&argp, argc, argv, 0, 0, 0);
}

Step-By-Step Into Argp

versus ease of use. Let's see the new hidden option in action.

Just as expected, the --ellipsis option isn't shown in the help and usage
displays, yet it functions as a valid option.

The case of the ambiguous option shortcut is also demonstrated. The
program refuses to operate because Argp is unable to determine if “--d”
means --dash or --dot.

Real-life example: Some programs take no program arguments at all. Look no
further than the “tty” program for a real-life example of this. Also some programs
have invisible options that are only documented in their manuals. Try looking at
the “gdb” command, and it's “-c” option; it is equivalent to --core but it is not
shown in the gdb's help display.

Now you know how to make your own hidden options with Argp! Go ahead
and add an easter egg to your next program. In the next step we will fill out
our help display with a version option and an email address for bugs.

41

Text 33: Compiling and running the step8 program.

$ make step8
cc step8.c -o step8
$./step8 --help
Usage: step8 [OPTION...]

 -d, --dot[=NUM] Show some dots on the screen
 --dash Show a dash on the screen
 -?, --help Give this help list
 --usage Give a short usage message
$./step8 --usage
Usage: step8 [-?] [-d[NUM]] [--dot[=NUM]] [--dash] [--help] [--usage]
$./step8 --ellipsis
...
$./step8 -d -d --dot --dash --dash --dash
...---
$./step8 --dash --
-
$./step8 --d
./step8: option '--d' is ambiguous
Try `step8 --help' or `step8 --usage' for more information.
$./step8 dot
step8: too many arguments
$

Step-By-Step Into Argp

Step Nine
In this section the argp_program_version and argp_program_bug_address global

variables will be demonstrated. In addition to that, the 4th field of the argp struct
(the docs field) will be used to add a description of the program to the help
display. A new argp key in the callback function will be demonstrated: the
ARGP_KEY_INIT key.

Let's put the finishing touches on our program. We will give it a standard --
version option, and we'll tell people what the program does, and where to
send their bug reports. We will also add a second usage to this program to
illustrate alternative an way to run this program. To make this program
more practical we will process the command-line arguments after we're
finished parsing them.

Argp has a few global variables in it's API, and here are two of them. If the
argp_program_version variable is set, then a --version long option, and a -V
short option will be included in our program, and it will display whatever
string we set the variable to, and then exit. If the argp_program_bug_address
variable is set, it will modify the help display to include a message of the
form “Report bugs to: foo@bar.“. It is good style for a program to be able to
report what version it is, and where bugs should be sent.

We can also see something called argz. Argz is another facility that
originates from the GNU Standard C Library. We will use this facility to
accumulate arguments as we encounter them on the command-line. The
struct arguments will hold our arguments, and we will set it as our input data
hook to the argp_parse function. It is a good idea to have a struct arguments in

42

Text 34: step9.c : An Argp-enabled program with a --version option and a bug address. Preamble.

#include <stdio.h>
#include <argp.h>
#include <argz.h>
#include <stdlib.h>

const char *argp_program_bug_address = "someone@example.com";
const char *argp_program_version = "version 1.0";

struct arguments
{
 char *argz;
 size_t argz_len;
};

Step-By-Step Into Argp

your program, where it contains flags that get set when options are
encountered, and the arguments as well. The stdlib.h file is included
because argz vectors are malloc'd and we want to use the free function.

The new element in this callback function is the ARGP_KEY_INIT. It gets passed
into the callback function before any parsing happens. Here we are using it
to initialize our struct arguments.

43

Text 35: step9.c : A program with a --version option and a bug address. Callback function.

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 struct arguments *a = state->input;
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 unsigned int dots = 1;
 if (arg != NULL)
 dots = atoi (arg);
 for (i = 0; i < dots; i++)
 printf (".");
 break;
 }
 case 888:
 printf ("-");
 break;
 case ARGP_KEY_ARG:
 argz_add (&a->argz, &a->argz_len, arg);
 break;
 case ARGP_KEY_INIT:
 a->argz = 0;
 a->argz_len = 0;
 break;
 case ARGP_KEY_END:
 {
 size_t count = argz_count (a->argz, a->argz_len);
 if (count > 2)
 argp_failure (state, 1, 0, "too many arguments");
 else if (count < 1)
 argp_failure (state, 1, 0, "too few arguments");
 }
 break;
 }
 return 0;
}

Step-By-Step Into Argp

When we're finished collecting the arguments (in the ARGP_KEY_END case), we
check to see if we have the right number of arguments. In this program the
right number of arguments is exactly 1 or exactly 2 arguments. For more
information on the argz facility, type “info argz” into your shell.

One new Argp element shown in this main function is the 4th field of the
struct argp. It has a special “\v” character in it, which is a vertical tab.
Everything before that vertical tab will be shown before the options in the
help display, while the remainder of the string will be shown after the
options. The purpose of this variable is two-fold:

1. To give a short description of the program.
2. To further describe the options or the operation of the program.

Another new Argp element shown in this main function is the newline in the
3rd field of the struct argp (the args_doc field). This is another way of telling
your users that there are other ways of running this program.

44

Text 36: step9.c : A program with a --version option and a bug address. Main function.

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "dot", 'd', "NUM", OPTION_ARG_OPTIONAL, "Show some dots on the screen"},
 { "dash", 888, 0, 0, "Show a dash on the screen" },
 { 0 }
 };
 struct argp argp = { options, parse_opt, "WORD\nWORD WORD",
 "Show some dots and dashes on the screen.\v"
 "A final newline is also shown regardless of whether any options were given." };
 struct arguments arguments;
 if (argp_parse (&argp, argc, argv, 0, 0, &arguments) == 0)
 {
 const char *prev = NULL;
 char *word;
 while ((word = argz_next (arguments.argz, arguments.argz_len, prev)))
 {
 printf (" %s", word);
 prev = word;
 }
 printf ("\n");
 free (arguments.argz);
 }
 return 0;
}

Step-By-Step Into Argp

Let's try out our new program.

In this demonstration we can see that this help output has two usages.
Many commands will have many different usage lines in their help output.
For an example look at the “ln” command; it has 4 usages. Argp makes it
easy to specify alternate usages for your program.

The help output has some explanatory text below the option descriptions. It
is a good practice to exercise restraint in making your help output too long.
Complicated explanations do not belong in your help output; they belong in a

45

Text 37: Compiling and running the step9 program.

$ make step9
cc step9.c -o step9
$./step9 --help
Usage: step9 [OPTION...] WORD
 or: step9 [OPTION...] WORD WORD
Show some dots and dashes on the screen.

 -d, --dot[=NUM] Show some dots on the screen
 --dash Show a dash on the screen
 -?, --help Give this help list
 --usage Give a short usage message
 -V, --version Print program version

A final newline is also shown regardless of whether any options were given.

Report bugs to someone@example.com.
$./step9 --usage
Usage: step9 [-?V] [-d[NUM]] [--dot[=NUM]] [--dash] [--help] [--usage]
 [--version] WORD
 or: step9 [OPTION...] WORD WORD
$./step9 foo bar
 foo bar
$./step9 foo bar baz
step9: too many arguments
$./step9
step9: too few arguments
$./step9 foo --dash -d
-. foo
$./step9 --version
version 1.0
$

Step-By-Step Into Argp

manual or user's guide.

We can see that the program correctly handles the cases of too many or too
few arguments. We can also see that it shows error messages in the argp
fashion.

Lastly we can see that the program shows the argument (foo) after it shows
the options. This is because we're collecting the arguments in an argz vector
and displaying them after the command-line is parsed. If we passed
ARGP_IN_ORDER to the argp_parse function, it would have no effect on the output.

There is more than one way to obtain the version of a program that you're
using. Some people might tell you to use the package manager on your
system to see what version of a program you're running. If you are creating
a new program, you are obliged to give your program an authoritative
version. Some programmers even derive a certain amount of joy from the
version numbering scheme they employ. As the program's author, you are
upstream of the packagers and have the exclusive privilege of deciding on
what version number your program will have. The packagers downstream
(e.g. Red Hat and Ubuntu) from you redistribute your program if and as they
see fit. Important programs like gcc are so heavily patched by the
GNU+Linux distributions that they modify what version gets displayed
when the --version option is given on the command-line! The good news is
that your version is almost always left intact, and the modification comes in
the form of a notice that this version of gcc was modified and built by Red
Hat on a given date.

The argp_program_version variable limits the programmer to a simple string.
You can use your own function for the version option instead by defining a
function that looks like: void foo(FILE*, struct argp_state *) and calling it
argp_program_version_hook.

Exercise: Try changing the step9 program to have an argp_program_version_hook
function instead of a argp_program_version variable.

You now know enough to give your program some options and some
arguments. It's a good idea to take a break at this point, and examine the

46

Step-By-Step Into Argp

command line options in the programs you use, and see if you can make a
CLI that mirrors theirs. The steps in this book will now get more advanced
and complex.

In the next step we will use “option groups” to make our help output more
readable when there are many options.

47

Step-By-Step Into Argp

Step Ten
In this section we will explore the 6th and final field of struct argp_option, the

group field. We will see how to change the ordering of options in the help output,
and also how to arrange sets of options so that they appear as a cluster in the
help output.

Let's make our help output a little more readable by putting our --dash and
--dot options into their own group.

The group field is more complicated than it looks. Only two of our struct
argp_option records have it specified, as 7 and -1 respectively. These two
records are called option headers, and it is the normal convention to have
their text end in a colon.

The group field acts as a primary key to sort the options in the help output.
Records that have a larger non-negative value for their group appear after

48

Text 38: step10.c : A program with a group of options. Main function.

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { 0, 0, 0, 0, "Morse Code Options:", 7},
 { "dot", 'd', "NUM", OPTION_ARG_OPTIONAL, "Show some dots on the screen"},
 { "dash", 888, 0, 0, "Show a dash on the screen" },
 { 0, 0, 0, 0, "Informational Options:", -1},
 { "SOS", 999, 0, 0, "Give some help in morse code" },
 { 0 }
 };
 struct argp argp = { options, parse_opt, "WORD\nWORD WORD",
 "Show some dots and dashes on the screen.\v"
 "A final newline is also shown regardless of whether any options were given." };
 struct arguments arguments;
 if (argp_parse (&argp, argc, argv, 0, 0, &arguments) == 0)
 {
 const char *prev = NULL;
 char *word;
 while ((word = argz_next (arguments.argz, arguments.argz_len, prev)))
 {
 printf (" %s", word);
 prev = word;
 }
 printf ("\n");
 free (arguments.argz);
 }
 return 0;
}

Step-By-Step Into Argp

smaller non-negative groups. For example, groups with a value of 5 appear
before groups with a value of 7. Groups that have negative values appear
after the non-negative ones. Records that have a smaller negative value for
their group appear after larger negative groups. For example groups with a
value of -3 appear before groups with a value of -1. In the argp.h header file,
it succinctly defines the order as: “0, 1, 2, ..., n, -m, ..., -2, -1”.

The other struct argp_option records do not have a group value specified. This
is because the group value is automatically set for options that occur after a
option header. This means that our --dash and --dot options automatically
receive a group value of 7. The normal usage of the group value is to not
specify it for non-header options.

Options that have a group value of zero and do not appear after an option
header retain their value of zero and appear before all other options in the
help output. If we omit the group value in an option header, it is
automatically set to have a value of one more than the previous option's
group value. The purpose of the automated setting of group values is to
make it unnecessary to supply a group value in simple cases.

There is new --SOS option declared in our options array, so we need to add a
case block in our callback function to implement it:

49

Text 39: step10.c : A program with a group of options. This is a fragment of the callback function.

 case 888:
 printf ("-");
 break;
 case 999:
 parse_opt ('d', "3", state);
 printf (“ “);
 parse_opt (888, NULL, state);
 parse_opt (888, NULL, state);
 parse_opt (888, NULL, state);
 printf (“ “);
 parse_opt ('d', "3", state);
 printf ("\n");
 exit (0);
 break;
 case ARGP_KEY_ARG:
 argz_add (&a->argz, &a->argz_len, arg);
 break;

Step-By-Step Into Argp

There isn't anything surprising in this code fragment. We're simply showing
the SOS sequence and then exiting.

Let's compile step10 and have a look at our new help output!

Here we can see that morse code options are grouped under a heading and
followed by an empty line. Many programs have sets of options organized in
this manner; for an example try looking at the help output of automake.

Although the --dash and --dot options have the same group value, --dot
appears before --dash because the secondary sort key is the short option, and
the tertiary sort key is the long option name.

In a surprising twist, the --SOS option is interspersed with other help

50

Text 40: Compiling and running the step10 program.

$ make step10
cc step10.c -o step
$./step10 --help
Usage: step10 [OPTION...] WORD
 or: step10 [OPTION...] WORD WORD
Show some dots and dashes on the screen.

 Morse Code Options:
 -d, --dot[=NUM] Show some dots on the screen
 --dash Show a dash on the screen

 Informational Options:
 -?, --help Give this help list
 --SOS Give some help in morse code
 --usage Give a short usage message
 -V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or
optional
for any corresponding short options.

A final newline is also shown regardless of whether any options were given.

Report bugs to someone@example.com.
$./step10 --SOS
... --- ...
$

mailto:someone@example.com

Step-By-Step Into Argp

options. This interspersing of options happens because the default options
also have -1 as their group value.

In the next step we'll put the --dot and --dash options into a library and
instruct our program to use the options in that library.

51

Step-By-Step Into Argp

Step Eleven
In this step the 5th field of struct argp (children) will be used to incorporate

options from a library into our program. The struct argp_child will also be
demonstrated.

Mixing options from a library into a program is an exciting feature that only
Argp provides. Perhaps you have two programs and you want both programs
to have some of the same options. Argp makes it easy for many programs to
use the same options, without copying code.

It is common for programmers to encapsulate the functionality of a program
into a library so that other programmers can use that API to do new things.
In many cases the API has some configuration elements to it (even if it is
limited to where the configuration file is), and the programmer has to collect
that information to pass to the API. Argp lets you provide option parsers for
your library so that programmers who use your API don't have to write code
that does the same thing. As the writer of a library you've put a lot of
thought into how other programmers are going to use your API. When you
add an option parser to your library, you're thinking about the user-
experience on the command-line associated with your library. You can use
GNU Gettext to translate your options into other spoken-languages, so that
users of your option parser don't have to do extra translation. Downstream
programmers can use the option parser if they wish; and if they choose to
use it, they get the standard behaviour, look and feel that you want to give
your users on the command-line, and they get it for free.

Argp uses “child parsers” to mix options. To notify Argp that we want to mix
options, we provide a set of child parsers to the struct argp (the 5th
parameter) that we pass to argp_parse. A child parser is defined by struct
argp_child, and it looks like this:
struct argp_child
{
 const struct argp *argp;
 int flags;
 const char *header;
 int group;
};

The idea here is that we have another “child” struct argp that we want to mix

52

Step-By-Step Into Argp

with our main struct argp. In our example, the child struct argp will be an
exported symbol from a library. In an interesting recursive twist, the child
struct argp can also have it's own set of child parsers.

The flags field has the same semantics as the flags field of the argp_parse
function, and it's okay to pass zero for this field in most cases.

The header field puts a heading before the child's options in the help output.
When a heading is specified as an empty string in the struct argp_child, it
has the effect of grouping the given options, but it doesn't show a heading or
an empty line following the option group. This header field does not override
the heading that might already be included in the options of the given struct
argp.

The group field acts like the group field of struct argp_option. It puts these
options elsewhere in the help output. The group field doesn't override any
non-zero group fields in the struct argp_option array of the given struct argp.

There are limits to the mixing of options with Argp. Firstly it is important
to avoid key collisions; the first option will shadow the second option that has
the identical key. Secondly the child parsers cannot parse arguments on the
command line; the ARGP_KEY_ARG value simply never gets passed into the
parsing functions of child parsers. Argp only allows for options to be mixed,
not argument-handling.

To demonstrate the mixing of options, let's put our --dot and --dash options
into a library called libdotdash. Copy and paste the following code and put it
in a file called dotdash.c:

53

Step-By-Step Into Argp

Now let's make the accompanying header file dotdash.h:

Now let's make a program that uses our dotdash library. Cut and paste the

54

Text 42: dotdash.h : A library with a group of options. Header file.

#ifndef DASHDOT_H
#define DASHDOT_H
#include <argp.h>
extern struct argp dotdash_argp;
#endif

Text 41: dotdash.c : A library with a group of options.

 #include "dotdash.h"

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 switch (key)
 {
 case 'd':
 {
 unsigned int i;
 unsigned int dots = 1;
 if (arg != NULL)
 dots = atoi (arg);
 for (i = 0; i < dots; i++)
 printf (".");
 break;
 }
 case 888:
 printf ("-");
 break;
 }
 return 0;
}

static struct argp_option options[] =
{
 { "dot", 'd', "NUM", OPTION_ARG_OPTIONAL, "Show some dots on the screen"},
 { "dash", 888, 0, 0, "Show a dash on the screen" },
 { 0 }
};

struct argp
dotdash_argp =
{
 options, parse_opt, 0, 0, 0
};

Step-By-Step Into Argp

following code and put it in a file called step11.c:

Now let's compile the library and link it to our program:

Now let's take a look at the help output that the program generates:

55

Text 44: Compiling the dotdash library and linking it to the step11 program.

$ cc -c -o dotdash.o dotdash.c
$ ar cru libdotdash.a dotdash.o
$ ranlib libdotdash.a
$ cc step11.c -L./ -ldotdash -o step11

Text 43: step11.c : A program that mixes options from a library.

#include <stdio.h>
#include <argp.h>
#include "dotdash.h"

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 switch (key)
 {
 case 999:
 printf ("... --- ...");
 break;
 }
 return 0;
}

int
main (int argc, char **argv)
{
 struct argp_option options[] =
 {
 { "SOS", 999, 0, 0, "Show the SOS sequence on the screen" },
 { 0 }
 };
 struct argp_child children_parsers[] =
 {
 { &dotdash_argp, 0, "Basic Morse Code Options:", 7 },
 { 0 }
 };
 struct argp argp = { options, parse_opt, 0, 0, children_parsers };
 int retval = argp_parse (&argp, argc, argv, 0, 0, 0);
 printf ("\n");
 return retval;
}

Step-By-Step Into Argp

Yay! The options from the dotdash library are mixed-in with our own --SOS
option. Now any Argp-enabled program can provide the --dot and --dash
options by linking to this library, and incorporating the dotdash argp child
parser.

Exercise: Try changing the header field of struct argp_child to NULL. What
happens? Now try changing it to “”. Can you spot the difference?

56

Text 45: Running the step11 program.

$./step11 --help
Usage: step11 [OPTION...]

 --SOS Show the SOS sequence on the screen

 Basic Morse Code Options:
 -d, --dot[=NUM] Show some dots on the screen
 --dash Show a dash on the screen

 -?, --help Give this help list
 --usage Give a short usage message

Mandatory or optional arguments to long options are also mandatory or
optional
for any corresponding short options.
$./step11 --SOS --dot=10
... ---

Step-By-Step Into Argp

Step Twelve
In this step we will make a larger program that demonstrates the passing back

of option input data from child parsers by using the child_inputs field of struct
argp_state. We will also show how to parse options in a string instead of a
command-line. And lastly the help_filter field of struct argp (the 6th field) will
also be demonstrated.

Let's make a program that converts morse code to human-readable text. The
program will have an interactive mode where you can enter in strings to be
converted to morse code, and it will also have a non-interactive mode where
the string is given on the command-line as argument.

The program will use the GNU Readline library to implement an interactive
mode. There will be two options that control the history of interactive mode:
--no-history, and --history-file. These options will be provided in a library
called libreadline-argp and mixed into our program.

The interactive mode will accept two commands: “quit” (which acts like you'd
expect), and “tap” which takes the --dot and --dash options from libdotdash.
If it gets a string that isn't a command, it converts it to morse code.

First let's look at the options that control the command history. There are no
new concepts introduced in the readline-argp.c file:

57

Step-By-Step Into Argp

The struct readline_arguments is defined in the header along with
readline_argp:

58

Text 46: readline-argp.c : A library that provides two readline related Argp options.

#include "readline-argp.h"
#include <unistd.h>

char *default_history_file = ".history";

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 struct readline_arguments *args = state->input;
 switch (key)
 {
 case 411:
 if (access (arg, R_OK))
 args->history_file = arg;
 else if (access (arg, W_OK))
 args->history_file = arg;
 else
 argp_failure (state, 1, 0, "Cannot open file `%s' for reading", arg);
 break;
 case 511:
 args->history_file = NULL;
 break;
 case ARGP_KEY_INIT:
 args->history_file = default_history_file;
 break;
 }
 return 0;
}

static struct argp_option options[] =
{
 { "history-file", 411, "FILE", 0,
 "Specify a FILE to store the interactive history"},
 { "no-history", 511, 0, 0, "Do not record a history in interactive mode"},
 { 0 }
};

struct argp
readline_argp =
{
 options, parse_opt, 0, 0, 0
};

Step-By-Step Into Argp

The idea behind the default_history_file variable is that users of the library
can set the default to whatever they want. Now let's have a look at the
option parsing of the program:

Here we make space for the option data coming from our new readline argp

59

Text 48: morse-tool.c : A program that converts morse code. Preamble.

#include <stdio.h>
#include <argp.h>
#include <argz.h>
#include <stdlib.h>
#include <readline/readline.h>
#include <readline/history.h>
#include "readline-argp.h"
#include "dotdash.h"

const char *argp_program_bug_address = "samuel@morse.net";
const char *argp_program_version = "version 1.0";

struct arguments
{
 int capitalize;
 char *argz;
 size_t argz_len;
 struct readline_arguments readline;
};

static struct argp_option options[] =
{
 { "capitalize", 'c', 0, 0,
 "Show morse translations in capital letters" },
 { 0 }
};
static struct argp_child children_parsers[] =
{
 { &readline_argp, 0, 0, 0 },
 { 0 }
};

Text 47: readline-argp.h : A library that provides two readline related Argp options. Header file.

#ifndef READLINE_ARGP_H
#define READLINE_ARGP_H
#include <argp.h>
extern struct argp readline_argp;
extern char * default_history_file;

struct readline_arguments
{
 char *history_file;
};
#endif

Step-By-Step Into Argp

library.

Here is what the main parsing function looks like:

Here we see how the struct readline_arguments gets passed into the readline
argp parser. The subscript of [0] is used because the struct readline_argp is
the first member of the set of child parsers (the children_parsers variable).

Let's have a look at the next section of the file that makes our help display a
little more informative:

60

Text 49: morse-tool.c : A program that converts morse code. Parsing function setting child_inputs.

static int
parse_opt (int key, char *arg, struct argp_state *state)
{
 struct arguments *a = (struct arguments*) state->input;

 switch (key)
 {
 case 'c':
 a->capitalize = 1;
 break;
 case ARGP_KEY_ARG:
 argz_add (&a->argz, &a->argz_len, arg);
 break;
 case ARGP_KEY_INIT:
 a->argz = NULL;
 a->argz_len = 0;
 a->capitalize = 0;
 state->child_inputs[0] = &a->readline;
 break;
 }
 return 0;
}

Step-By-Step Into Argp

The help_filter field in struct argp points to a function that changes the
appearance of the program's help output. The function will be called by
Argp on every option in our array of struct argp_option. It is not called back
for options in child parsers. The idea behind the help filter is that we can
change the appearance of a particular option's help output with information
at run-time instead of compile-time. The callback function gives us the key of
the option we're dealing with, the original option help text (which is the doc
field of struct argp_option), and the input parameter that we gave to
argp_parse. The function either returns the text that was passed in (meaning
no change), or a malloc'd string containing the new text we want the option to
have. Argp will free the newly malloc'd string later on.

The key parameter to the function refers to the key field of struct argp_option.
If the value isn't a key of an option, it can be one of the following values:

• ARGP_KEY_HELP_PRE_DOC : Changes the doc field of struct argp, everything
before the vertical tab ('\v').

• ARGP_KEY_HELP_POST_DOC : Changes the doc field of struct argp, everything
after the vertical tab.

• ARGP_KEY_HELP_HEADER : Changes a header option (there can be many).
• ARGP_KEY_HELP_EXTRA : A way to add help text to the bottom of the help

output.
• ARGP_KEY_HELP_DUP_ARGS_NOTE : Changes the “mandatory arguments for

61

Text 50: morse-tool.c : A program that converts morse code. Help filter.

static char *
help_filter (int key, const char *text, void *input)
{
 if (key == ARGP_KEY_HELP_POST_DOC)
 {
 char *new_text = NULL;
 if (asprintf (&new_text, text, default_history_file) != -1)
 return new_text;
 }
 return (char *) text;
}

struct argp argp = { options, parse_opt, "[PHRASE]",
 "Translates to and from morse code.\vThis program starts in interactive mode when PHRASE is not
supplied on the command line. The history for interactive mode is stored in a file called `%s' by default.",
 children_parsers, help_filter };

Step-By-Step Into Argp

long options are also mandatory for short options” message.
• ARGP_KEY_HELP_ARGS_DOC : Changes the args_doc field of struct argp.

Our help_filter callback function simply changes the POST_DOC section to
insert the default filename for the history file. To make this easy, we put a
'%s' into the doc field of struct argp, and then we use the asprintf function to
fill in the value and make a new string. The asprintf function is another
GNU specific function that appears in the GNU C Standard Library.

Let's take a look at the next section of the file, the part that implements the
interactive mode of our program:

62

Step-By-Step Into Argp

Here we get a string from the readline function and operate on it. Readline
is a great library to link to if you need to ask the user for a string because it
can provide a history and the allows the user to edit the string in the
familiar way with the arrow keys along with delete and backspace. If the
command is legal we store it to the history file.

As we planned, there are two commands, “quit” and “tap”. We want the tap
command to have the dotdash options. We know from experience that
argp_parse takes an argument vector (e.g. an argv and an argc), and argz

63

Text 51: morse-tool.c : A program that converts morse code. Parsing options in a string.

static void
interactive_mode (char *prompt, int capitalize)
{
 char *line;
 char *argz = NULL;
 size_t argz_len = 0;
 while ((line = readline (prompt)))
 {
 if (strncmp (line, "tap ", 4) == 0 || strcmp (line, “tap”) == 0)
 {
 /* parse the tap command with the dotdash options. */
 if (argz_create_sep (line, ' ', &argz, &argz_len) == 0)
 {
 int flags = ARGP_NO_EXIT | ARGP_NO_ARGS;
 int argc = argz_count (argz, argz_len);
 char *argv[argc + 1];
 argz_extract (argz, argz_len, argv);
 argv[argc] = 0;
 if (argp_parse (&dotdash_argp, argc, argv, flags, 0, 0) == 0)
 {
 add_history (line);
 printf ("\n");
 }
 }
 }
 else if (strcmp (line, "quit") == 0)
 break;
 else
 {
 if (argz_create_sep (line, ' ', &argz, &argz_len) == 0)
 {
 if (morse_process_line (argz, argz_len, capitalize) == 0)
 add_history (line);
 }
 }
 }
 return;
}

Step-By-Step Into Argp

facility help us in crafting it. We want our tap command to have some help
output, and we take special care to make it not exit our program with the
ARGP_NO_EXIT flag. If the user gives us something that isn't a command, we
break up the line into words and try to convert them to or from morse code.

The 7th and final field in struct argp is the argp_domain field. This is a string
that will be used to identify a GNU Gettext domain that contains the various
translations for hardcoded strings in Argp. This doesn't affect the strings
you put in struct argp or struct argp_option, it only affects the text that
originate in the Argp routines and it is not necessary to set this value to
anything except 0.

We have now seen all of the fields in struct argp. The struct looks like this:

struct argp
{
 struct argp_option *options;
 error_t (*parser) (int key, char *arg, struct argp *state);
 char *args_doc;
 char *doc;
 struct argp_child *children;
 char *(*help_filter) (int key, char *text, void *input);
 char *argp_domain;
};5

For more information about how the letters are converted into morse code,
see the process_morse_line function inside morse.c at:
http://svn.sv.nongnu.org/viewvc/trunk/morse.c?root=argpbook.

To finish off the morse-tool.c file, it ends with a main function that does two
things: firstly it kicks off the processing of the command-line for the
program, and secondly it kicks off the interactive mode or batch mode of the
program. Let's take a look at the main function of our program:

5 Const declarations are not shown for readability.

64

http://svn.savannah.nongnu.org/viewvc/trunk/morse.c?root=argpbook

Step-By-Step Into Argp

Notice how the --version option is suppressed after we run argp_parse, so that
the quit and tap commands are less cluttered and a little bit simpler.

Okay let's compile this morse-tool program!

The libdotdash library was built in the previous step. Let's see what the
help, version and usage displays are:

65

Text 53: Compiling the libreadline-argp library and linking it to the morse-tool program.

$ cc -c -o readline-argp.o readline-argp.c
$ ar cru libreadline-argp.a readline-argp.o
$ ranlib libreadline-argp.a
$ cc morse-tool.c morse.c -L./ -ldotdash -lreadline-argp -lreadline -o morse-
tool

Text 52: morse-tool.c : A program that converts morse code. Parsing options in a string.

int
main (int argc, char **argv)
{
 struct arguments arguments;
 default_history_file = ".morse-tool.history";
 int retval = argp_parse (&argp, argc, argv, 0, 0, &arguments);
 if (retval != 0)
 return retval;

 /* silence --version and bug address in the tap command */
 argp_program_version = 0;
 argp_program_bug_address = 0;

 if (arguments.argz_len > 0)
 {
 morse_process_line (arguments.argz, arguments.argz_len,
 arguments.capitalize);
 free (arguments.argz);
 }
 else if (arguments.argz_len == 0)
 {
 if (arguments.readline.history_file)
 read_history (arguments.readline.history_file);
 interactive_mode ("morse> ", arguments.capitalize);
 if (arguments.readline.history_file)
 write_history (arguments.readline.history_file);
 }

 return retval;
}

Step-By-Step Into Argp

Here we can see three things:
1. That the options from libreadline-argp have been mixed-in with morse-

tool's --capitalize option.
2. That the help display shows the contents of our default_history_file

variable.
3. That the program takes a phrase on the command line or no phrase at

all.
Let's try out non-interactive mode:

Yay it works! Now let's try out interactive mode:

66

Text 54: Running the morse-tool program.

$./morse-tool --help
Usage: morse-tool [OPTION...] [PHRASE]
Translates to and from morse code.

 -c, --capitalize Show morse translations in capital letters
 --history-file=FILE Specify a FILE to store the interactive history
 --no-history Do not record a history in interactive mode
 -?, --help Give this help list
 --usage Give a short usage message
 -V, --version Print program version

This program starts in interactive mode when PHRASE is not supplied on the
command line. The history for interactive mode is stored in a file called
`.morse-tool.history' by default.

Report bugs to samuel@morse.net.
$./morse-tool --version
version 1.0
$./morse-tool --usage
Usage: morse-tool [-c?V] [--capitalize] [--history-file=FILE] [--no-history]
 [--help] [--usage] [--version] [PHRASE]

Text 55: Running the morse-tool program in non-interactive mode.

$./morse-tool hello world
.... . .-.. .-.. --- .-- --- .-. .-.. -..
$./morse-tool -c ---.. .-.. --- .-- --- .-. .-.. -..
HELLOWORLD

Step-By-Step Into Argp

One thing you'll notice is how polished the program feels when interacting
with it. This is mostly because of the functionality that libreadline provides.

If we ever wanted to translate “quit” or “tap” we can do so in non-interactive
mode.

It is difficult to demonstrate libreadline doing what it does, so the history
contents of the file is displayed to show that libreadline is really doing
something. The next time the program is started in interactive mode, the
user can press the up arrow key to see the last command given (e.g. “---”).

Exercise: Make a hidden option called --prompt to change the prompt form

67

Text 56: Running the morse-tool program in interactive mode.

$./morse-tool
morse> hello world
.... . .-.. .-.. --- .-- --- .-. .-.. -..
morse>-.. .-.. --- .-- --- .-. .-.. -..
helloworld
morse> tap --help
Usage: tap [OPTION...]

 -d, --dot[=NUM] Show some dots on the screen
 --dash Show a dash on the screen
 -?, --help Give this help list
 --usage Give a short usage message

Mandatory or optional arguments to long options are also mandatory or
optional
for any corresponding short options.

morse> tap --dash --dash --dash

morse> ---
o
morse> quit
$ cat .morse-tool.history
hello world
.... . .-.. .-.. --- .-- --- .-. .-.. -..
tap --help
tap --dash --dash --dash

Step-By-Step Into Argp

“morse>” to something else. Also prevent the “arguments to short options are
same options for long options” message from appearing in the tap command's
help display.

This morse-tool program shows how easy it is to make interactive programs
that take various commands with options. In the previous steps Argp parsed
command-lines given to our program. Now in this step we're using Argp so
that it operates on our program's data. Consider programs like bc, and ftp
and how libreadline and argp could be used to implement them.

Concluding Remarks
This section describes what we've covered, what some of the limits are, and

how you can learn more about Argp.

Congratulations on completing this step-by-step journey into Argp! We've
conveyed a lot information! We've covered the basics of the command-line:
from what long and short options are, to what arguments are and what
option arguments are, and how they all fit together. We've covered the basics
of command-line processing. We've seen how to collect mandatory and
optional arguments on the command-line, and how to parse long and short
options in an Argp callback function, some of which have mandatory or
optional arguments. We've demonstrated how to do error reporting from
within an Argp callback function. We've shown how to make option aliases,
hidden options and option equivalents. We've also shown how to mix Argp
parsers together into a single program so that the options are interspersed
into the existing options.

We've seen how to modify the help display in various ways. We've seen how
to put options into groups so that they appear together in the help display.
We've demonstrated how to display regular and alternative usages to the
program, how to set the description of what the program does, and how to
control the extra information at the bottom of the help display.

After programming with Argp for a while you can sense some of it's
limitations. It is impossible to make an argp parser by malloc'ing the struct

68

Step-By-Step Into Argp

argp_option array and so on; the data elements must all be pre-allocated (on
the stack) and const. Mixing options together gives precedence to the options
mixed first, so we can't override a same-named option that a programmer
has given us in a struct argp. Arguments are not processed in child parsers.

For more information, the GNU libc manual has a section on Argp6. Also
you can use a service like Google Code Search to search for programs that
use Argp7. Lastly you can look inside /usr/include/argp.h on your system;
much of it will look familiar to you, and the file is well-commented and
intended for programmers to read.

Recreational programming can be a lot of fun, and now you can have fun
incorporating Argp into your programs! Your Argp-enabled programs will be
more powerful and easier to use. Happy hacking!

6 http://www.gnu.org/s/libc/manual/html_node/Argp.html
7 http://www.google.com/codesearch?q=include+%3Cargp.h%3E&hl=en&btnG=Search+Code

69

