axiom

BY

BY RICHARD D. JENKS AND ROBERT S. SUTOR

The Scientific Computation System

Numerical Algorithms Group Limited, 1992

With Contributions From

Scott C. Morrison Manuel Bronstein Patrizia Gianni
Jonathoon M. Steinbach William H. Burge Johannes Grabmeier
Barry Trager Timothy P. Daly William Sit

Stephen M. Watt Michael Dewar Clifton J. Williamson

Table of contents

Introduction to AXTOM e
Symbolic Computation e
Numeric Computation e
Interactive Programming
Data Structures e
Mathematical Structures e
Pattern Matching
Polymorphic Algorthms e
Extensibility e e

Introduction to A XIOM

Welcome to the world of AXIOM. We call AXIOM a scientific computation system: a self-con-
tained toolbox designed to meet your scientific programming needs, from symbolics, to numerics,
to graphics.

This introduction is a quick overview of what AXIOM offers.

Symbolic Computation

AXIOM provides a wide range of simple commands for symbolic mathematical problem solving.
Do you need to solve an equation, to expand a series, or to obtain an integral? If so, just ask
AXIOM to do it.

Integrate with respect to .

1
(z3(a + bx)/®

— integrate(1/(x**3 x (atb*x)**(1/3)),x)
— 2b%z%y/3log (%3\/b c+a +3abr+a+ a) +

4b%x%\/3log (?\’/523\/1) T+a-— a) +

12b%z%arctan (

2\/5%23\/bw+a+a\/§> +

3a

(12bz — 9a)V33/a¥/bz +a’
18a2:l:2\/§%

Type: Union(Expression Integer,...)

Axiom provides state-of-the art algebraic machinery to handle your most advanced symbolic
problems. For example, AXIOM’s integrator gives you the answer when an answer exists. If one
does not, it provides a proof that there is no answer. Integration is just one of a multitude of
symbolic operations that AXIOM provides.

Numeric Computation

AXIOM has a numerical library that includes operations for linear algebra, solutions of equa-
tions, and special functions. For many of these operations, you can select any number of floating
point digits to be carried out in the computation.

Solve 249 — 492% 4+ 9 to 49 digits of accuracy.
— solve(x**49-49*x*x*4+9 = 0, 1.e-49)
[z =—0.65465367069042711367, = =1.0869213956538595085,

(1)
= 0.65465367072552717397]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a later numerical
computation. Besides floating point numbers, AXIOM provides literally dozens of kinds of num-
bers to compute with. These range from various kinds of integers, to fractions, complex num-
bers, quaternions, continued fractions, and to numbers represented with an arbitrary base.

What is 10 to the 100" power in base 327

— radix(10%%*100,32)

A (D)9 (L) # (K)# (D) # (P)9#(G)# (R)F (S)# (T)# (C) 53 (1) # (F) 1644 (P) #(0) 54 (V)
724 (M) # (E)8272264 (J)# (S)# (L) # (A) (P 4625854 (Q) 7# (H |0)000000000000000\
0000 (3)

Type: RadixExpansion 32
4>

Interactive Programming

AXIOMS’s interactive programming language lets you define your own functions. A simple
example of a user-defined function is one that computes the successive Legendre polynomials.
AXIOM lets you define these polynomicals in a piece-wise way.

The first Legendre polynomial

— P (0) ==
Type: Void
_>
The second Legendre polynomial
— p(1) == x
Type: Void
_>
The n*" Legendre polynomial for (n > 1).
— p() == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n
Type: Void

In addition to letting you define simple functions like this, the interactive language can be used
to create entire application packages. All the graphs in the AXIOM Images section in the center
of the book, for example, were created by programs written in the interactive language.

The above definitions for p do no computation — they simply tell AXIOM how to compute p(k)
for some positive integer k. To actually get a value of a Legendre polynomial, you ask for it.

‘What is the tenth Legendre polynomial?
— p(10)

Compiling function p with type Integer -> Polynomial Fraction
Integer
Compiling function p as a recurrence relation.
46189 ,, 109395 ¢ 45045 5 15015 , 3465 , 63
— — - — 4
256 © 256 © ' 128 © 128 © ' 256" 256)

Type: Polynomial Fraction Integer

_>

AXIOM applies the above pieces for p to obtain the value p(10). But it does more: it creates an
optimized, compiled function p. The function is formed by putting the pieces together into a
single piece of code. By compiled, we mean that the function is translated into basic machine-
code. By optimized, we mean that certain transformations are performed on that code to make
it run faster. For p, AXIOM actually translates the original definition that is recursive (one that
calls itself) to one that is iterative (one that consists of a simple loop).

What is the coefficient of z°0 in p(90)?
— coefficient (p(90),x,90)

5688265542052017822223458237426581853561497449095175

77371252455336267181195264 ()

Type: Polynomial Fraction Integer

_)

In general, a user function is type-analyzed and compiled on first use. Later, if you use it with a
different kind of object, the function is recompiled if necessary.

Data Structures

A variety of data structures are available for interactive use. These include strings, lists, vectors,
sets, multisets, and hash tables. A particularly useful structure for interactive use is the infinite
stream:

Create tge infinit stream of derivatives of Legendre polynomials.

— [D(p(i),x) for i in 1..]

15, 335, 15 315, 105, 15

Lde, 5= 30 3% g ¢ - vt
6985 3150 105 3003, 365, 045,
8 e R T T T T
6435 . 9009 . 3465 , 315
_ 315 9
6° 16T 6 ©)

100395 5 45045 45045 , 3465 , 315
128 32 64 32 128’

230945 o 109395 , 135135 ; 15015 , 3465
128 ¢ 32 © T 761 T 33 ¥ gt

Type: Stream Polynomial Fraction Integer

Streams display only for a few of their initial elements. Otherwise, they are "lazy": they only
compute elements when you ask for them.

Data structures are an important component for building application software. Advanced users
can represent data for applications in optimal fashion. In all, AXIOM offers over forty kinds of
aggregate data structures, ranging from mutable structures (such as cyclic lists and flexible
arrays) to storage efficient structures (such as bit vectors). As an example, streams are used as
the internal data structure structure for power series.

What is the series expansion of log(cot(z)) about z =m/27

— series(log(cot(x)),x = %pi/2)

s (<255) +3(=5) + so(e5) e amase)

0= 5) sz (e 5) o ((=-5)")

Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

(10)

4>
Series and streams make no attempt to compute all their elements! Rather, they stand ready to

deliver elements on demand.

What is the coefficient of the 502 term of the series?
— coefficient(¥%,50)

44590788901016030052447242300856550965644
7131469286438669111584090881309360354581359130859375

(11)

Type: Expression Integer
_>

Mathematical Structures

AXIOM also has many kinds of mathematical structures. These range from simple ones (like
polynomials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most struc-
tures allow the construction of arbitrarily complicated "types".

Even a simple input expression can result in a type with several levels.
— matrix [[x+%i,0], [1,-21]
z+i O
12
70, (12)
Type: Matrix Polynomial Complex Integer

The AXIOM interpreter builds types in response to user input. Often, the type of the result is
changed in order to be applicable to an operation.

The inverse operation requires that elements of the above are fractions.

— inverse(%)

- 0

DO =

2x + 21

Type: Union(Matrix Fraction Polynomial Complex Integer,...)
_)

Pattern Matching

A convenient facility for symbolic computation is "pattern matching". Suppose you have a
trigonometric expression and you want to transform it to some equivalent form. Use a rule com-
mand to describe the transformation rules you need. Then give the rules a name and apply that
name as a function to your trigonometric expressioin.

Introduce rewrite rules.

— sinCosExpandRules := rule (

sin(x+y) == sin(x)*cos(y)+sin(y)*cos(x);
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y);
sin(2*x) == 2*sin(x)*cos(x);

cos(2*x) == cos(x)**2 - sin(x)**2

Type: Ruleset(Integer,Integer,Expression Integer)

Apply the rules to a simple trigonometric expression.

— sinCosExpandRules(sin(a+2*b+c))
(— cos (a)sin (b)* — 2cos (b)sin (a)sin (b) + cos (a)cos (b)2) sin (¢) —

cos (c)sin (a)sin (b)® + 2cos (a)cos (b)cos (c)sin (b) + (15)

cos (b)cos (¢)sin (a)

Type: Expression Integer

_)

Using input files, you can create your own library of transformation rules relevant to your appli-
cations, then selectively apply the rules you need.

Polymorphic Algorthms

All componetns of the AXIOM algebra library are written in the AXIOM library language. This
language is similar to the interactive language except for protocols that authors are obliged to
follow. The library language permits you to write "polymorphic algorithms", algorithms defined
to work in their most natural settings and over a variety of types.

Define a system of polynomial equations S.

— S := [B*x**3 + y +1 = 0, y**2 = 4]

Solve the system S using rational number arithmetic and 30 digits of accuracy.

— solve (S,1/10%x30)

9 p— 1757879671211184245283070414507
YT T 9535301200456458802993406410752 |’ (17)

y=22=-1]

Type: List List Equation Polynomial Fraction Integer

Solve S with the solution expressed in radicals.

— radicalSolve(S)

[[y=2, r=-1], [y=2, w=@}

il

\/—_3+1}
2

[y=2,a¢=

PV BV Rt Y I P VAR VL Rt
ly‘ BT Hy‘ > 23 H

Type: List List Equation Expression Integer

_)

While these solutions look very different, the results were produced by the same internal algo-
rithm! The internal algorithm actually works with equations over any "field". Examples of fields
are the rational numbers, floating point numbers, rational fractions, power series, and general
expressions involving radicals.

Extensibility

Users and system developers alike can augment the AXIOM library, all using one common lan-
guage. Library code, like interpreter code, is compiled into machine binary code for run-time
efficiency.

Using this language, you can create new compuational types and new algorithmic packages. All
library code is polymorphic, described in terms of a database of algebraic properties. By fol-
lowing the language protocols, there is an automatic, guaranteed interaction between your code
and that of colleagues and system implementers.

