

CERTI, an Open Source RTI,

why and how

Eric Noulard

Jean-Yves Rousselot
ONERA/DTIM/SER
Centre de Toulouse

2 avenue Edouard Belin
31055 Toulouse Cedex

France
rousselot@cert.fr, eric.noulard@onera.fr

Pierre Siron

Université de Toulouse, ISAE
10 avenue E. Belin

31055 Toulouse Cedex
France

pierre.siron@isae.fr

Keywords:
Open Source, RTI, Distributed Simulation, Collaborative development.

ABSTRACT: CERTI is an HLA RTI developed since 1996 by ONERA, the French Aerospace Lab. The initial purpose
of CERTI was to develop a home made RTI in order to: learn HLA usage and HLA RTI internals (e.g. time
management), have total control over source code in order to use this particular RTI with specific modifications in
several research projects (security mechanism, multi-resolution, high performance distributed simulation...). CERTI
became open source in 2002: https://savannah.nongnu.org/projects/certi. Since then, Open Source CERTI project has
had variable activity periods, mostly driven by research project needs and funds. CERTI development has started again
since the end of 2006, with an increased interest from the open source user community. After a brief status survey of
CERTI, this presentation will focus on the Open Source objectives of CERTI and explain why this is not a product but a
project driven OSS initiative, pushed by a Public establishment like ONERA. We will further explain how open
sourceness CERTI stimulates its development and the community itself and why every stakeholder benefits from this.

1. Introduction

There is a certain amount of non-commercial HLA
RTIs out there [1], but many of them seem
discontinued or do not have native C++ support. Is this
due to the fact that commercial ones are mature, which
lowers the need for non-commercial ones which were
mostly developed for research purposes? Is it hard to
maintain a working non-commercial RTI? ONERA, the
French Aerospace Lab manages the development of
one of those non-commercial RTIs, the CERTI, which
is an Open Source RTI available on various platforms.
We would like to share here our past and historical
knowledge, as well as ideas for the future of non-
commercial RTIs.

After a historical survey of CERTI and its current
status, we will explain why CERTI is an Open Source
project and how it all works.

2. CERTI Project History and Status

This first chapter gives a general idea of the CERTI
initiative. It includes the presentation of different
projects of distributed simulation at ONERA. Many
results have already been published but we will
emphasize, for each project, how the availability of
CERTI has been useful and necessary for us as well as
the connection with various research domains.
Another important aspect is that past results should not
be forgotten as they can still be valid regarding the
different requirements that could have distributed
simulations.

2.1 CERTI project history

CERTI project started back in 1996 when ONERA
wanted to continue research work on distributed
systems [2]. We wanted to study distributed simulation
itself as the primary research objective. We wanted to
learn, study and experiment with HLA. So we decided
to build our own RTI.

Let’s not forget that at the beginning of this project the
DMSO RTI was not available and that during the
project the development and distribution of the DMSO
RTI NG were stopped. For the moment, the status of
CERTI is stable, thanks mainly to the support of
ONERA.

CERTI is recognizable through its original architecture
of communicating processes. The RTI is a distributed
system involving two processes, a local one (RTIA)
and a global one (RTIG), as well as a library (libRTI)
linked with each federate. The RTI architecture is
depicted in Figure 1.

RTIA 3

libRTI

Federate 3

RTIA 1

libRTI

Federate 1

HLA Interface

RTIA 2

libRTI

Federate 2

Unix Socket

RTIG WAN

TCP Socket

Figure 1: CERTI architecture

Each federate process interacts locally with an RTI
Ambassador process (RTIA) through a Unix-domain
socket. This point evolved when we ported CERTI to
Windows systems and on multiprocessor architectures.
The RTIA processes exchange messages over the
network, in particular with the RTIG process, via TCP
(and UDP) sockets, in order to run the various
distributed algorithms associated with the RTI services.

A specific role of the RTIA is to immediately satisfy
some federate requests, while other requests require
network message sending or receiving. The RTIA
manages memory allocation for the message FIFOs and
always listens to both the federate and the network (the
RTIG). It is never blocked because the required

computation time is reduced. It also plays a great role
in the implementation of the tick function.

The RTI Gateway (RTIG) is a centralization point in
the architecture. Its function has been to simplify the
implementation of some services. It manages the
creation and destruction of federation executions and
the publication/subscription of data. It plays a key role
in message broadcasting which has been implemented
by an emulated multicast approach. When a message is
received from a given RTIA, the RTIG delivers it to
the interested RTIAs, avoiding a true broadcasting.

Based on this architecture, we started with the
implementation of the federation management, object
management and time management services. We had a
concrete application of theory of distributed
algorithmic and distributed simulation (from the
Chandy, Misra and Bryant algorithm to the Fujimoto
zero lookahead algorithm). We really hope that we
have brought a little contribution to these research
domains. Obviously we did not have the opportunity to
apply new reliable multicast protocols developed by
the networking community.

The first prototype was a success for us. Despite the
distribution of commercial products, we have pursued
its development and extension with respect to the HLA
standard. CERTI guarantees a forward compatibility: a
federate developed and tested with CERTI will be
compatible with a certified RTI even if all the services
are not yet implemented (some HLA services were not
necessary for our usage). CERTI has been extensively
used in the projects summarized in the following
paragraphs.

2.2 Security of distributed simulation

An expected use of HLA/RTI [1] is to allow
simulations developed by various companies to
interoperate. However, some firms are reluctant to join
an HLA federation because they fear that some
confidential data could leak to their competitors.
Hence, there is a need for an HLA/RTI that guarantees
secure interoperation of simulations belonging to
various mutually suspicious organizations.

Although we have carried out a complete security
analysis (threat analysis, definition of security
objectives and security functions, etc.), we will only
mention here the implemented security architecture.

We have implemented TTP (Trusted Third Party)
security architecture. At the core is a local area
network operated by the trusted third party which
includes a machine that contains the RTIG process. A

company may trust the federate processes it has written
to behave correctly with respect to security concerns. It
might also trust some components of the RTI and in
particular the RTIG. But a company would certainly
not trust federate components developed by other
companies.

FedA FedB

libRTI libRTI

RTIA RTIA

RTIG

Secure association

filter

capsule capsule

Figure 2: Security architecture

There is no communication between company
machines except those mediated and authorized by the
RTIG. The description of the federation (FOM) must
be completed to include security domains. Security
domains we have considered include PrivateX where X
is the name of a company and Public. Security domains
may be organized hierarchically.

The extension to RTI services is very limited. We
propose to add security domain filters for the
publication and subscription services (messages
PublishObjectClass, PublishInteractionClass,
SubscribeObjectClass and SubscribeInteractionClass).
These messages are erased whenever the security
domain of the requesting federate does not dominate
and is not equal to the security domain of the requested
class. As the RTIG transmits UpdateAttributeValue
messages only to authorized subscriber RTIAs, a
federate from one company will never receive
ReflectAttributeValue messages for a private object of
another company.

To secure communication between remote federates
and the RTIG we use the Generic Security Services
Application Program Interface (GSS-API) [3]. This
interface hides from its callers the details of the
specific underlying security mechanism, leading to
better application portability, and moving generally in
the direction of a better interworking capability.

Mastering the code and the architecture of an RTI was
essential:

- To make communications secure or to go through
existing security mechanisms (firewalls for
example).

- To add some access control mechanisms.
- To do some code analysis (and to avoid Trojan

horses).

The link with researches in the security domain was
obvious (security of distributed systems, code analysis
and multi-level security policies).

2.3 Multi-resolution

Conventional simulations represent entities at just one
level of resolution. Multi-resolution representation of
entities consists in maintaining multiple and concurrent
representations of entities. We tackled the problem of
how HLA services may allow multi-resolution
modeling and simulation to be achieved. Our goal was
not to provide a general framework as a basis for
designing concurrent simulations of entities at different
levels of resolution. We focused on experience
feedback that we obtained by migrating a single-level
resolution HLA federation to a multi-level resolution
federation. The selected application is an Air-Ground
Combat simulation involving aggregated patrols of
aircraft engaged against a surface to air defense system.

Aggregate and disaggregate levels are respectively
shown in Figure 3 and Figure 4. At the aggregate level, a
patrol of aircraft has to attack a set of ground radars.
On entering the engagement area, the patrol
automatically disaggregates into its individual entities.
The engagement is then managed according to the rules
described for the single resolution application.

Figure 3: Aggregate level

Patrol

Aircraft

Radar

Figure 4: Disaggregate level

We have tested a centralized approach (a single
federate handles the patrol and its aircraft) and a fully
distributed approach (one federate per entity). The first
results showed that a fully distributed approach
facilitates the migration from a single-level resolution
application to a multi-level resolution one, in that the
underlying models of the components can be directly
re-used.

Although HLA interactions are useful and sufficient to
implement the communications between federates that
are dedicated to the multi-resolution management, they
are too low-level oriented. Therefore we are
investigating HLA-based higher level services,
encapsulating both aggregation/disaggregation
interactions and transfer of control from one level of
resolution to another.

With CERTI we have added these services to our
library but we have implemented them by using the
standard HLA services.

This was an interesting subject of distributed
algorithm, specifically the way the aggregation was
produced (a rendez-vous problem).

2.4 High-performance simulation

While HLA was initially designed to support fully
distributed simulation applications, it provides a
promising framework for composing not necessarily
distributed simulations, from existing reusable
components.

Simulation composability allows users to construct
federations from a set of communicating components
according to the needs of the decision makers.
Composability provides a means to build integrated
simulation platforms with increased coverage of
decision support. In such simulation applications,
distribution becomes a means to achieve high-

performance computing, while remaining a constraint
since existing components are reused.

To face the aforementioned performance and
availability requirements, ONERA has designed the
HP-CERTI package [4], an optimized version of
CERTI, including two main development issues. The
first one, named SHM-CERTI, deals with a shared
memory communication scheme between RTIG and
RTIAs, in order to achieve high-performance
simulation of federations running on the same shared
memory execution platform. The objective of the
second issue is to increase both availability and
performance of composable simulations running on
high-performance cluster platforms. In the SHM-
CERTI architecture, TCP socket based
communications between the RTIG and RTIAs are
replaced by shared memory segments.

We have checked the performance optimization gained
with classical benchmarks and especially with a pilot
application of distributed cooperative simulation under
HLA. This last application, named SICODIS [5], has
involved various departments from ONERA:
Automatics, Computer Science and Physics. The
subject was the study of a new passive radar concept
and its evaluation for the recognition of different
objects in different scenarios. HLA has been a good
tool, making communication and work easier between
departments and research groups with very different
skills. Moreover, the developed federation can be
considered a tool with satisfying performances.

The availability of CERTI has made possible its
porting and optimization on various multiprocessor
architectures and the use of the latest research results in
the parallelism domain.

2.5 Hard real-time simulation

ONERA and CNES (the French space agency) had
common projects of new spatial systems, in particular
projects of in-formation flight of satellites. To simulate
these distributed systems, we could do distributed
simulations. This would allow us to re-use existing
simulators; however, we have new requirements for
HLA: hard real-time requirements.

In these new federations, each federate is time-stepped
driven. The constraints are to respect the deadlines of
each step and to synchronize the different steps of the
different federates. The time step of the more complex
federate is 5 ms. Satellites obviously have to
communicate to maintain their relative position or for
their payload. So there will be HLA data

Missile Radar

Aircraft

communication between federates that are to be
achieved every step.

CERTI and Linux operating system have been chosen
to perform many experiments, to define a simulation
architecture and have some guidelines for this new type
(at least for us) of HLA simulation.

New real-time mechanisms and practices were
necessary [6] to meet real-time requirements:
- For the operating system, we are setting a real-

time scheduling, locking memory pages, using
real-time timers in a new preemptible kernel.

- For CERTI, we have changed the implementation
of the tick function.

- For the federates, we have found that the use of the
time management services is more efficient for
these real time simulations (the use of the real-time
term in HLA should change…).

The different interactions between the application
level, the RTI level and the operating system level are
very difficult to understand but are essential to a
successful study. The availability of CERTI
implementation was a key point to understand global
scheduling and to adapt one function that impacts this
scheduling.

We are still working on this subject, in order to extend
the use of HLA (and CERTI) to the study of new
embedded systems, in parallel with researches in the
real time domain.

2.6 CERTI current status

CERTI is an Open Source project whose forge is
hosted at Savannah [7] and project home is at ONERA
[8]. CERTI software includes an HLA 1.3 RTI which is
compatible with the latest RTIG-NG release with some
missing services (MOM and part of Notification
Service). CERTI currently runs on several platforms
including various flavors of Linux, Microsoft
Windows, Solaris, FreeBSD and IRIX. The CERTI
RTI aims at HLA Evolved support [9] including SISO
DLC compliance [10] (or EDLC when available). The
level of completeness will depend on projects demands
and contributions.

As briefly explained later, CERTI is not a product to
be compared with commercial RTI; it is an Open
Source Project structured around a user community
which thus provides other software components or
companions projects and other kinds of services.

3. Open Source CERTI Project

CERTI is not only some freely available software. It is
an Open Source project hosted on the Savannah [7]
free software forge. We will explain hereafter why
CERTI is an Open Source project and how it works for
users and contributors.

3.1 Home-made, then Open Source CERTI - Why?

As shown in CERTI history, §2.1, it was both
necessary and natural for ONERA to have its own RTI
implementation in order to be able to pursue its
research activities in the distributed simulation domain.
Note that having source code control capability over
the RTI is a requirement that has been shared by others
in the past [11] [12]. The reasons range from being able
to add slight modifications in order to support a new
platform up to have full understanding of the RTI
internals in order to tune/optimize the federation
execution for performance [6].

We can imagine other future research needs like
studying the possibility of an HLA RTI as embedded
middleware, experimenting with different
implementations of HLA Evolved SURR [13] in order
to totally constrain the bandwidth, adding more fine-
grain QoS delivery than Reliable or BestEffort... For all
those test cases, we need to have our own RTI
implementation. Moreover, many such projects usually
do not need a fully HLA-compliant RTI but a tunable
one which includes all services mandatory for the
particular usage.

The next question is: Why should we be interested in
going Open Source?

Back in 2002, when CERTI was open sourced (from
contribution of Benoit Bréholée [14]) the immediate
and foreseen reasons were:

1. It was easier to exchange CERTI between
different project stakeholders,

2. CERTI could be freely used for teaching
purposes in universities,

3. Students and PhDs could easily contribute
using collaborative tools and open licenses.

Recently, two ONERA projects brought new
development activities into CERTI. The first one was
the joint CNES/ONERA formation flying satellite
program [5], that needs an RTI with real-time
capabilities, and more recently the IESTA project [15],
an infrastructure capable of evaluating new air
transport system concepts. For the latter, ONERA
wanted to ease the use of the underlying HLA RTI for
all stakeholders; it therefore suggested its Open Source
RTI as a possible solution which does not prevent the
usage of other RTIs.

With these needs in mind, we decided to re-stimulate
the CERTI Open Source community through the open
source Savannah forge [7]. After a little less than two
years of standard project activities, we have seen
noticeable open source contributions coming from
outside of ONERA project CERTI users:

• A small and self-explaining HLA Tutorial
application,

• Parts of an embryo of an HLA Test Suite,
• A Matlab/HLA13 binding [16],
• A Fortran90/HLA13 binding [16],
• A FlightGear/HLA plugin [17],
• An IEEE-1516/HLA Evolved compliant C++

encoding library [18],
• A Python/HLA binding [19],
• Many patches for fixing bugs in CERTI or in

the new companion software components.

All those contributions could certainly not have been
possible if CERTI was not an open source project.
Moreover there would not have been any contribution
if there had not been any publicly interested people.
For example, the FlightGear/HLA plugin would not
have been developed if CERTI was not open source
and/or freely available for the FlighGear potential users
which are used to open source software. The Matlab or
Fortran90 bindings are part of a PhD work [16] for
which free and open availability of software is a great
advantage.
As a preliminary conclusion, we can say that there is a
potentially growing open source community for Open
Source RTI, which confirms the opinion that seems to
have been shared at the Open Source Session organized
during the 2008 Fall SIW [20].

Therefore, our revised and updated reasons for
supporting the Open Source CERTI project are:

1. Having an RTI for which we can make fast
modification or add-on for specific project
needs: real-time simulation, embedded
middleware …

2. Federating an international user community
which contributes to the enhancement and
maintenance of the open source software
component,

3. Having freely usable HLA tools for teaching,
4. Having some piece of software usable for

pursuing research in the area of distributed
and/or high-performance simulation.

As an illustration, this open source user (and
contributor) testimonial summarizes the advantage of
an Open Source CERTI:

I'm using CERTI because I need a free HLA RTI with
C++ API that could be used by
individuals/organizations that cannot afford to
purchase a commercial HLA RTI. [...]
I need C++ API because most of the simulation
software I'm using is in C/C++. I like CERTI because:

• it's free (see above)
• it's open, so we can fix it quickly if necessary
• the license allows inclusion of CERTI in a

proprietary software
• it has satisfying quality
• it's still evolving
• it works both under Linux and Windows
• it has no Java inside, so it doesn't have poor

performance, complex installation and startup
• it has a friendly and supportive mailing list ;-)

That said, one may easily understand that CERTI is not
just "another RTI product", CERTI is not a product.
Thus, CERTI is not competing with others: commercial
MAK [21], Pitch [22] or even other Open Source RTI
like Portico [23], we are complementary. CERTI is an
Open Source Project managed by a government entity
with a living community of users and contributors.
Now let us explain how the CERTI Open Source
project works.

3.2 Open Source CERTI - How?

An open source project is structured around its
community of users and contributors/developers.
Unlike "usual standard" software, users may participate
in the evolution of the software, through their
contribution. This is somehow a new way to use
software which is already widespread including in
firms [24]. A striking difference between closed-source
and open source software is that a user may be a
contributor. Each contribution may enrich the globally
shared open source components and promote reuse as
shown in Figure 5.

Figure 5: Open Source user/contributor

User/Contributor 1

Make+Test

Reuse

Make
Test

The Open
World

User 2

User/Contributor 3

This does not necessarily prevent the different users
from having private, non open source in their project.
The mixing of open and closed-source parts in a project
using CERTI is possible because CERTI Open Source
License is LGPL [25] for libraries and GPL for
applications. Contributing to the open source software
is not mandatory; some users may be "standard users",
as shown in Figure 5.

The essence of an Open Source project is the open
collaboration between all stakeholders. This
collaboration is usually supported by collaborative
tools. We will describe hereafter the CERTI Project
stakeholders and collaborative tools. The description is
not that specific to CERTI and certainly similar to
other Open Source projects.

CERTI Project stakeholders: like any other open
source project, CERTI has different kinds of actors.
Each actor is a person who may (or may not) represent
his/her company.

• Project administrators: people who have the
right to perform administrative actions (add a
member, remove a member, lower or raise
privilege for a member regarding the usage of
the different collaborative tools, moderate
messages on project mailing lists …). CERTI
project currently has 2 administrators
representing one institution (ONERA). A
project administrator usually defines the
project roadmap and ensures the consistency
of the project when merging contributions.

• Project developers: people who have
[autonomous] write access to the source code
of one or several software components in the
project. They may add/remove/modify
software. They integrate external
contributions, they fix bugs, carry out the
release, etc… Note that a "developer" may be
someone who only takes care of
documentation; he may not be a computer
scientist even if most of them are. A
developer reports bugs. A developer will
voluntarily answer questions raised on the
mailing list, etc… There is at least one
developer responsible for the development of
each software component in the project.

• Project contributors: people who use the
software components and sometimes provide
bug fixes and/or new features such as a patch
(a piece of source code), documentation,
translation, new companion software
modules… The contribution may be merged
(or not) by a project developer. The decision
to include or reject the contribution is
discussed with potentially all interested

project stakeholders using collaborative tools
(mailing list, trackers); the developers plus
the administrator make the final decision.

• Project users: people who use any software
component found in the project. Users do ask
questions on the mailing lists, they are invited
to directly report bugs using project trackers.
They are invited to contribute; they may
become developers if they apply for it and
have recognized knowledge within the
project.

There are no deeply hierarchical responsibilities in a
relatively small project like CERTI, besides the roles
described previously. The community is open and
friendly. It is important to notice that an Open Source
project is essentially a set of people. Some of these
people work on the project for a company and some of
them not but merely contribute as a hobby. That's
another key difference between a commercial product
and open source software: a user may not ask for a bug
to be fixed or a new feature to be added within a firm
deadline unless he hires someone to do it. Some
companies offer commercial support for open source
software too, but this is not currently the case for
CERTI. There exist several business models around
open source [26]. CERTI evolution is currently only
driven by the needs of its users and primarily by the
research needs of ONERA. However, ONERA
welcomes contributions which go beyond its own
needs.

CERTI Collaborative tools: almost all open source
software projects use a set of collaborative tools in
order to support a worldwide team. Most of these tools
are web-enabled and grouped in a project portal called
a "forge". The CERTI project forge is hosted by
Savannah forge [7] as shown in Figure 6.

Figure 6: CERTI project at Savannah

We describe below the collaborative tools offered by
Savannah forge and used by the CERTI project. Note
that the use of those tools is open as much as it can be.
When an access right is enforced, it is either because
we want to avoid SPAM and/or because we have to
ensure project consistency. There are 4 levels of access
to the tools:

1. Anonymous: anyone on the internet,
2. Registered Savannah user: anyone who has a

valid Savannah account (which is free and
may be obtained through a simple request),

3. Developer: a registered Savannah user who
has been added to the CERTI project by a
CERTI administrator,

4. Administrator.

The CERTI administrator may set the required level of
privilege for using any tool. In the following
description of the collaborative tools, we will recall the
required level of privilege for each one.

The collaborative tools used by CERTI are:

• Download Area: this is where the CERTI
software may be downloaded. The access
level is Anonymous; it is therefore freely
accessible by anyone at
http://download.savannah.gnu.org/releases/ce
rti/. The primary distribution format is a
source archive to be compiled by the user.
CERTI currently compiles easily on several
combinations of Operating Systems
(Windows, Linux, Solaris, FreeBSD …) and
compilers (gcc, Visual Studio, Sun Studio,
MinGW …). If a user is not used to software
compilation, he may consult the online
documentation on this subject
http://www.nongnu.org/certi/certi_doc/index.
html or just kindly ask for help on the mailing
list.

• Mailing List: this is the primary
communication means for the CERTI
community. The list archive is freely
accessible to anyone. However, one must
subscribe to the list,
http://lists.nongnu.org/mailman/listinfo/certi-
devel, in order to be able to send a message.
This is a necessary measure in order to avoid
SPAM. The CERTI community is currently
small so there is no separate user/developer
mailing list.

• Bug Tracker: this is where bugs are reported
and handled,
https://savannah.nongnu.org/bugs/?group=cer
ti. Bug report is open to Anonymous users
but it is better to be a Registered Savannah
one in order to get automatic follow-up.

Every CERTI user is invited to file bug
reports, since this is the primary means to
improve CERTI. As soon as the bug is
assigned to a developer, the reporter will get
e-mail follow-up concerning his bug report.
The bug tracker is the place to look at when
you face trouble using CERTI; searching the
bug tracker may lead you to an already fixed
issue (possibly in a forthcoming release).

• Patch Tracker: this is where contributors
should drop their contribution,
https://savannah.nongnu.org/patch/?group=ce
rti. A patch is a file containing the source
difference between the current CERTI
version and the contribution. It will be
reviewed by CERTI developers and
eventually merged in the next CERTI release.

• Task Tracker: this is where planned CERTI
evolutions are listed,
https://savannah.nongnu.org/task/?group=cert
i. You have to be a CERTI developer to
create a task.

• SCM: Source Control Management, this is
the versioned repository of CERTI software
component, CERTI is using CVS (Concurrent
Versioning System). Anonymous users have
read-only access to the repository whereas
CERTI developers do have read/write access
to the source repository. Even if CERTI is an
Open Source software it has a structured and
controlled source revision policy. Using the
SCM we may rebuild any version of CERTI
since day 1 (unless the compiler you use at
that time is no longer available).

Collaborative tools are essential to the CERTI
community where we have already people from
France, Germany, Italy, United-States, etc. Most of
them have never met but are working together using
the collaborative tools; we hope to be able to organize
CERTI users’ meetings some day. Contribution may be
as small as a single bug report up to the whole
implementation of a missing feature.

Potential CERTI users must be prepared to use at least
the bug tracker and the mailing list and they should
quickly be pleased with these tools.

When using open source software of this kind you just
have to remember that this is not a commercial
product. You cannot file a bug report and expect the
community to do it as fast as you want. With open
source software there are two solutions to this problem:

1. Hire someone to fix the bug, which would be
simple because the person you hire would
have the full source at hand,

2. Fix it yourself: you have the source too.

You should now have a fairly good idea of how to use
and contribute to CERTI; for any remaining question,
you should find an answer on the CERTI Mailing List:
http://lists.nongnu.org/mailman/listinfo/certi-devel.

3.3 CERTI software components

As already introduced, the CERTI Open Source project
is now composed not only of the CERTI RTI itself but
of several other software components that may be
useful to potential HLA users. You will find hereafter
the list of current CERTI project software components
with a small description.

HLA Tutorial application: this is a small HLA
federate which implements a controller/process
application. The application is simple, with 2 federates;
it uses basic HLA 1.3 services and is self-explanatory
when running. This is an HLA sample application
which is designed to be self-contained from source. It
works with CERTI but should work with other RTIs
too.

HLA Tests Suite: this is a suite of standalone federate
applications whose purpose is to test a particular RTI
feature (parsing FED file, create/join/resign/destroy
federation execution, synchronization point…). Ideally,
the suite should cover all HLA [Evolved] features and
work either as a validating suite and/or benchmarking
suite. Each application is standalone and has been
designed to be easily run as a batch job. The output of
each "test" may be easily parsed for success or failure.
CERTI is using DTest [27] in order to automate the
launch of the whole suite; the result of the tests may be
automatically sent to a CTest dashboard [28]. The
whole Tests Suite is used as a regression test suite for
CERTI RTI. The current suite is far from complete and
any contribution in the suite is welcome.

Matlab or F90/HLA13 bindings: The objectives of
these bindings are the following [16]:

• provide engineers with HLA access within
their usual working environment,

• provide a way to easily extend existing code
to HLA federates,

• increase acceptance of HLA in the
engineering domain.

The current version of the MatlabHLA-Toolbox [29]
fully supports federation management, declaration
management, object management and time
management of the HLA 1.3 standard. A Matlab
federate invokes RTI services by calling the
appropriate MatlabHLA-Toolbox m-function. The m-

function directly calls a C++-wrapper function. All
necessary type conversions are then done. Following
this, the actual RTI library function is called. All RTI
services immediately return after execution. RTI
initiated calls are handled first on the wrapper layer.
LibRTI calls the implemented federate services. There,
a type conversion from C resp. C++ types into Matlab
types takes place. Finally, the appropriate m-file
service is called through invoking the MEX function
mexCallMatlab(). The execution then returns to libRTI.

Simulation model design and execution in the
engineering and scientific domain are often
characterized by the use of Scientific and technical
Computation Environments (SCE) like Matlab, a
famous commercial SCE. Other free SCEs already
exist, like Octave or Scilab. These systems increasingly
replace traditional Fortran coding. But existing Fortran
programs are used daily throughout the scientific and
engineering community. Especially for the
supercomputing community, Today Fortran is still the
primary programming language. Due to the increasing
importance of HLA, there is a need to provide
engineers with a native HLA interface in their "daily
working environments". This approach promises to
minimise the effort of applying HLA in the engineering
community. The F90HLA library closes this gap for
Fortran [30].

A FlightGear/HLA plugin: The Virtual Air project
[17] intends to provide a standardized (HLA 1.3 based)
framework for distributed air traffic simulation.
The project currently includes a FlightGear HLA plug-
in which is an HLA 1.3 interface for the FlightGear
flight simulator.

XPlane/HLA plugins: there are 2 plugins. The first
one makes it possible to get information from XPlane
to an HLA Federation and the second one makes it
possible for an HLA Federate to send commands to
XPlane.

An IEEE-1516/HLA Evolved compliant C++
encoding library: The library [18] implements
efficient access functions that provide direct access to
IEEE 1516.2 compliant data buffers. The data are
manipulated "in situ", no temporary variables are
created. The extensive use of template
metaprogramming allows many operations to be pre-
calculated during compile-time. The library has similar
features as those described in [31]; however, the two
have been independently developed and the CERTI
component is freely available since it is an open source
component.

A Python/HLA binding: The PyHLA module [19]
provides Python language bindings for the Modeling &
Simulation High Level Architecture (M&S HLA). The
PyHLA module aims to enable rapid development of
HLA federates, i.e. to simplify the activity 4.3 of
FEDEP [IEEE 1516.3]. Integrating HLA into the
Python language may reduce the development and
maintenance effort (compared to C/C++). PyHLA
provides:

• Python language HLA API, that is compliant
with the HLA 1.3 standard (implemented as a
Python wrapper for the C++ HLA API),

• Pack/unpack methods providing IEEE 1516.2
encoding,

• HLAuse python function that is able to
directly import OMT DIF data types (the
XML format described in IEEE 1516.2)

The PyHLA module can be built on a variety of
platform/compiler combinations, including Windows,
Linux and Sun Solaris. The module relies on the
Classic Python interpreter (version 2.4 or higher) and
requires an HLA 1.3 compliant RTI with C++ DLC
API.

As a side note, we would like to remark that CERTI
users need to open the HLA interface to "non-native"
HLA standard bindings like Java and C++. We did call
those Matlab, F90, Python "bindings" but they do not
currently intend to add another officially normalized
binding to HLA standard, by the way, those "bindings"
do not cover the whole HLA standard. Those user
bindings aim at bringing HLA usage to a wider
audience.

4. Conclusion

We have described the history and the current state of
the CERTI Open Source project, its initial motivation
and evolution. CERTI was initially built from the
internal ONERA research project needs [2] [14]; it will
keep its roots in these fundamental needs but with a
firm will to federating a worldwide user community
interested in distributed simulation.

The open source CERTI project has two main goals.
The first is to spread HLA usage and knowledge for
research purposes inside and outside ONERA. This
already was the case in the past [32] and this is still the
case nowadays [16] [33]. The second goal CERTI is to
federate a wide international open source community
around distributed simulation. We thus invite
universities and laboratories to use CERTI and maybe
contribute or help other CERTI users with their CERTI

software component. Contributions, new CERTI usage,
or collaboration with other open source projects are
welcome.

5. References

[1] Wikipedia: “Run-Time Infrastructure"

http://en.wikipedia.org/wiki/Run-
Time_Infrastructure(Simulation), January 2009.

[2] Pierre Siron: "Design and Implementation of a
HLA RTI Prototype at ONERA", 1998 Fall
Simulation Interoperability Workshop, 98F-SIW-
036, ftp://ftp.cert.fr/pub/siron/98f-siw-036.ps.

[3] Pierre Bieber, Jacques Cazin, Pierre Siron, Guy
Zanon: "Security Extensions to ONERA HLA RTI
Prototype", 1998 Fall Simulation Interoperability
98F-SIW-086, ftp://ftp.cert.fr/pub/siron/98f-siw-
086.ps.

[4] Martin Adelantado, Jean-Loup Bussenot, Jean-
Yves Rousselot, Pierre Siron, Marc Betoule: "HP-
CERTI: Towards a high Performance, high
Availability Open Source RTI for Composable
Simulations", 2004 Fall Simulation
Interoperability Workshop, 04F-SIW-014,
ftp://ftp.cert.fr/pub/siron/04F-SIW-014.pdf.

[5] Pierre Siron: A pilot application of distributed
cooperative simulation under HLA (SICODIS
PRF), Scientific and Technical Activities,
ONERA, 2005.

[6] Bruno d’Ausbourg, Pierre Siron, Eric Noulard:
"Running Real Time Distributed Simulations
under Linux and CERTI", 2008 Euro Simulation
Interoperability Workshop Proceedings, 08E-SIW-
061, ftp://ftp.cert.fr/pub/siron/08E-SIW-061.pdf.

[7] CERTI Open source project at Savannah:
https://savannah.nongnu.org/projects/certi, January
2009.

[8] CERTI Home at ONERA:
http://www.cert.fr/CERTI, January 2009.

[9] Björn Möller, Katherine L Morse, Mike Lightner,
Reed Little, Robert Lutz: "HLA Evolved – A
Summary of Major Technical Improvements",
Proceedings of 2008 Spring Simulation
Interoperability Workshop, 08F-SIW-064,
September 2008, http://www.pitch.se/images//08f-
siw-064.pdf.

[10] Dynamic Link Compatible HLA API Standard for
the HLA Interface Specification (IEEE 1516.1
Version), SISO-STD-004.1-2004, 20 April 2004.

[11] Pamella Knight et al. : "Evaluation of Run Time
Infrastructure (RTI) Implementations", Huntsville
Simulation Conference 2002,
http://www.scs.org/confernc/hsc/hsc02/hsc/papers/
hsc017.pdf.

[12] Len Granowetter, Douglas D. Wood: "Opening the
Black Box: The Effect of RTI Implementation

Details on the Success of an HLA Federation",
MÄK Technologies whitepaper,
http://www.mak.com/pdfs/wp_blackbox.pdf.

[13] Björn Möller, Mikael Karlsson: "Developing Well-
Balanced Federations Using the HLA Evolved
Smart Update Rate Reduction", Proceedings of
2005 Fall Simulation Interoperability Workshop,
05F-SIW-087, http://www.pitch.se/images//05f-
siw-087.pdf.

[14] Benoit Bréholée, Pierre Siron: CERTI, Evolutions
of the ONERA RTI Prototype, 02F-SIW-018

[15] IESTA Project: An infrastructure capable of
evaluating new air transport system concepts,
http://www.onera.fr/iesta/index.php.

[16] Christian Stenzel, S. Pawletta: "CERTI - Bindings
to Matlab and Fortran", Magdeburger HLA-
Forum, 27 february 2008.", http://www.mb.hs-
wismar.de/~stenzel/talks/hla_forum10.pdf.

[17] Petr Gotthard, "Virtual Air: a Multiplayer
framework for flight simulators",
http://sourceforge.net/projects/virtualair/ see also
http://wiki.flightgear.org/index.php/Virtual_Air.

[18] IEEE-1516.2 compliant encoding task on CERTI
Project: http://savannah.nongnu.org/patch/?6534 .

[19] Petr Gotthard: "Using M&S HLA in Python",
http://www.nongnu.org/certi/PyHLA/index.html.

[20] Informal private communication with Tim
Pokorny about 2008 Fall SIW Open Source
Session.

[21] MAK RTI: http://www.mak.com/products/rti.php.
[22] Pitch RTI: http://www.pitch.se/products/pitch-

prti/pitch-prti-overview.html.
[23] Portico Project: http://www.porticoproject.org.
[24] Gartner Group: "Using Open-Source Software

Increases, Companies Must Adopt and Enforce an
OSS Policy", November 17, 2008
http://www.gartner.com/it/page.jsp?id=801412.

[25] LGPL: GNU Lesser General Public License,
http://www.gnu.org/copyleft/lesser.html.

[26] APRIL: "The Economic Models of Free
Software", white paper,
http://www.april.org/files/economic-
models_en.pdf, December 2007.

[27] Lionel Duroyon: "What is DTest ?", internship
report, Onera DTIM, 11 april 2008,
http://download.savannah.nongnu.org/releases/tsp/
dtest/what_is_dtest.pdf.

[28] CERTI CTest dashboard:
http://www.cdash.org/CDashPublic/index.php?pro
ject=CERTI%20HLA%20TestsSuite.

[29] MatlabHLA-Toolbox: http://www.mb.hs-
wismar.de/~stenzel/software/MatlabHLA.html.

[30] F90HLA: http://www.mb.hs-
wismar.de/~stenzel/software/F90HLA.html.

[31]Jay Graham: "Creating an HLA 1516 Data
Encoding Library using C++ Template
Metaprogramming Techniques", 2007 Spring
Simulation Interoperability Workshop
Proceedings, 07S-SIW-035.

[32] Valery Raulet, Vincent Rodin, Alexis Nédélec:
Using HLA to provide a Collaborative Multi
Agent Virtual Prototyping platform, 2003 Spring
SIW, 03S-SIW-51.

[33] Hassen Jawhar Hadj-Amor: Contribution au
prototypage virtuel de systèmes mécatroniques
basé sur une architecture distribuée HLA.
Expérimentation sous les environnements
OpenModelica-OpenMASK, PhD Thesis, 2008.

Author Biographies

ERIC NOULARD graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1995 and received his PhD in
computer science from Versailles University in 2000.
After 7 years working in the Aerospace & Telecom
domain for BT C&SI, mostly building high-
performance tests & validation systems, he joined
ONERA research center in Toulouse as a Research
Scientist. He now works on distributed and real-time
systems and is actively involved in the development of
the CERTI and TSP Open Source projects.

JEAN-YVES ROUSSELOT is a long-standing
ONERA engineer, so long that no one dares ask when
he joined ONERA. He has black feet but a clear mind
and a stormy voice. We are pretty sure that he will
have peacefully retired when you read this. The co-
authors would like to thank him warmly for giving his
last working years to CERTI.

PIERRE SIRON graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1980 and received his doctorate in
1984. He is currently a Research Engineer at ONERA
and works on parallel and distributed systems. He is
the leader of the CERTI Project. He is also a Professor
at the University of Toulouse, ISAE, and the head of
the computer science program of the SUPAERO
training (French High School for Engineers in
Aeronautics & Space Sciences).

