

retour sur innovation

INTRODUCTION (1/5)

- Real Systems always respect two principles :
 - The determinism principle : the future of the system can be determined from its present state and its past:
 - At any time *t*, there is an *ɛ* value for which the future behavior of the system at *t* + *ɛ* is exactly known.
 - The *causality principle* : the future never influences the past:
 - The system state at time t is independent of anything that may occur at a time t' greater than t.
 - Any simulation of a real system have to ensure both principles.
- Distributed Event Driven Simulation
 - A distributed simulation system consists of *different autonomous computers* that communicate through *a global (or local) network*;
 - Simulators located on different computers interact with each other in order to achieve a *global common goal*:
 - Every simulator must determine the next instant, in the simulated time, which will produce a state change in the whole system.

INTRODUCTION (2/5)

Middleware Level

- Development of standards (CORBA, RPC,...) to consistently face problems involved by distribution (heterogeneous computers, network protocols):
 - → *HLA standard* for distributed simulations (1.3 / IEEE 1516 / Evolved).
- *Middleware* in computing terms is used to describe a software agent acting as an *intermediary* between different distributed processes:
 - → *Run Time Infrastructure (RTI)* is the HLA compliant middleware.

INTRODUCTION (3/5)

CERTI Middleware

•Open Source RTI managed and maintained by Onera team (GPL, LGPL): • ref: 09S-SIW-015.

- Developed in C++;
- Architecture of communicating processes;
- Implementation with TCP, UDP sockets;
- Available under *Linux*, *Unix* and *Windows* operating systems.
- *Fully compliant* with 1.3 standard;
- Not fully compliant with IEEE 1516:
 - Work in progress.
- Available at:
- → http://pierre.siron.free.fr/certi.html

4 / 18

INTRODUCTION (4/5)

<u>Targeted Applications</u>

- Formation flying simulation (Xplane, Flight Gear, MS Flight Simulator,...)
 - Communication between each simulator with CERTI

- Hardware-in-the-loop and embedded systems simulations
 - Connecting sensors and actuators with CERTI

P.Siron, E.Noulard, JB.Chaudron (April 6, 2011)

INTRODUCTION (5/5)

- <u>Our goal:</u> Using / Studying real-time properties with HLA standard
 - To use HLA standard to allow communication between several distributed process with timing constraints (real time tasks);
 - To understand weaknesses and strengths of time management techniques for real time;
 - To propose solutions and techniques *to ensure determinism* of HLA time management.

• <u>Plan</u>

- 🔆 Global View
- → Algorithms and Limitations
- → HLA services concerned

TM for event driven RT federate

- → NER, NERA and Time Creep
- → A new Optimized Algorithm
- ➔ Illustration

TM for time driven RT federate

- ➔ Periodic Federates
- ➔ Metrics, Formulas
- ➔ Illustration

- <u>Time management mechanisms</u>
 - One of the main benefits of this simulation standard HLA;
 - Allow a consistent global time throughout the simulation and to prevent causal anomalies effects;
 - Different kinds of approaches:
 - Optimistic Strategy (coherent-post):
 - → Virtual Time (Jefferson).
 - Conservative Strategy:
 - Avoid the violation of the *local causality constraint* altogether;
 - Main interest of this work.

Usefulness of Conservative Time Management for real time simulation ?

- Ensure respect of deadlines;
- Keep consistency between the different federates cycles during their execution.

Global View

- 🔆 Algorithms and Limitations
- → HLA services concerned

TM for event driven RT federate

- → NER, NERA and Time Creep
- → A new Optimized Algorithm
- ➔ Illustration

TM for time driven RT federate

- ➔ Periodic Federates
- ➔ Metrics, Formulas
- ➔ Illustration
- First Generation: NULL MESSAGE ALGORITHM [1979]
 - Based on Chandy, Misra & Bryant original algorithm;
 - <u>Limitation for real-time</u>: Latency due to *null message exchange* between federates (depends on *lookahead* parameter).
- Second Generation: DISTRIBUTED SNAPSHOTS ALGORITHM [1993]
 - Based on Mattern original algorithm;
 - <u>Limitation for real-time</u>: LBTS computation cannot generally be guaranteed to complete *within a bounded time* (Transient messages cause an LBTS computation to be aborted and retried).
- <u>CERTI Implementation</u>
 - Use NULL MESSAGE ALGORITHM algorithm;
 - Seems to have interesting behavior for real-time simulations;
 - Latency compensated by better synchronization.
 ref^r 08E-SIW-061

Global View Algorithms and Limitations

🔆 HLA services concerned

TM for event driven RT federate

- → NER, NERA and Time Creep
- → A new Optimized Algorithm
- ➔ Illustration

TM for time driven RT federate

- ➔ Periodic Federates
- ➔ Metrics, Formulas
- ➔ Illustration

<u>Time management HLA services concerned</u>

- Various services exist to allow the federate to express its requests for advancing its local logical time:
 - > timeAdvanceRequest() (TAR);
 - → timeAdvanceRequestAvailable() (TARA);
 - > nextEventRequest() (NER);
 - > nextEventRequestAvailable() (NERA);
- <u>Type of federate concerned</u>
 - TAR and TARA are devoted to federates which employ a *TIME*-*STEPPED mechanism*;
 - NER and NERA are devoted to federates which employ a EVENT-DRIVEN mechanism;
 - TARA and NERA are devoted to *zero-lookahead protocol*:
 - After TAG(t) messages with timestamp equal to t can still be delivered by the federate.

Global View Algorithms and Limitations HLA services concerned

TM for event driven RT federate

NER, NERA and Time Creep

- → A new Optimized Algorithm
- ➔ Illustration

TM for time driven RT federate

- ➔ Periodic Federates
- ➔ Metrics, Formulas
- → Illustration

Time Creep Problem

- Two federates : Fed1 and Fed2 with lookahead=1 call the NER(5) service;
- •They are alone in the federation so that they could theoretically advance their local time strait to instant t=5;
- •Classical NULL message algorithm imply 12 null messages exchange for advance each federate;
- In several case, the number of Null Messages may become unacceptable and limits the performance of the simulation:
 - Lookahead Time Creep Problem.

Global View Algorithms and Limitations HLA services concerned TM for event driven RT federate

NER, NERA and Time Creep

🔆 A new Optimized Algorithm

➔ Illustration

TM for time driven RT federate

➔ Periodic Federates

- → Metrics, Formulas
- ➔ Illustration

NULL MESSAGE PRIME ALGORITHM

- The idea of our NULL MESSAGE PRIME algorithm is to *take advantage of the RTIG* (CERTI CRC Central Run-Time Infrastructure Component);
- In the classical NULL message algorithm : RTIG is only acting as a *pure gateway* and distributes the NULL messages to each concerned federate.

• <u>The new algorithm :</u>

- When a federate is NERing it will send a NULL PRIME message to the RTIG;
- RTIG computes an Federation-wide LBTS;
- Whenever the RTI-LBTS strictly increases, the *RTIG* will *generate an anonymous NULL message* and *broadcast it to all time constrained federates*.
- The NULL PRIME Message algorithm co-exists with the classical NULL Message and the protocol is still valid when federate use TAR and NER services.

Global View Algorithms and Limitations HLA services concerned

TM for event driven RT federate

NER, NERA and Time Creep A new Optimized Algorithm

🔆 Illustration

TM for time driven RT federate

- ➔ Periodic Federates
- ➔ Metrics, Formulas
- → Illustration

<u>Illustration</u>

In this case :

- the number of NULL message exchanged before TAG(5) is 8;
- In the original algorithm, it is **12**.
- The number of message generated by the algorithm is constant and independent from lookahead value (including zero lookahead).
- We think that the NULL PRIME Message algorithm is somehow equivalent to *global reduction* based algorithm like the one from *Mattern*.

Global View Algorithms and Limitations HLA services concerned

TM for event driven RT federate

NER, NERA and Time Creep A new Optimized Algorithm Illustration

TM for time driven RT federate

🔆 Periodic Federates

- ➔ Metrics, Formulas
- ➔ Illustration

Repeatability within the simulations

- Concept introduced by Fujimoto and McLean;
- Federates repeat the **same pattern** of execution periodically (time step noted Δt).
- Each step is the execution of 4 phases:
 - (1) a reception phase;
 - (2) a *computation* phase;
 - (3) a *transmission* phase;
 - (4) a *slack time* phase.
- Onera's studies show the necessity of adding a *synchronization* phase that could be done by 3 techniques:
 - (1) Consulting an hardware clock;

(2) Sending an interaction which rhythms the simulation;

(3) Using time management algorithms.

Global View Algorithms and Limitations HLA services concerned

TM for event driven RT federate

NER, NERA and Time Creep A new Optimized Algorithm Illustration

TM for time driven RT federate

A Periodic Federates

- → Metrics, Formulas
- ➔ Illustration

- Quantify NULL Message exchange
 - Allow a better evaluation of a *WCET* for a Real-time federate;
 - Add some deterministic mechanism;
 - Metrics available on an given simulated time interval;
 - Metrics available for a federate between its TAR() service call and TAG() RTI callback.

Global View Algorithms and Limitations HLA services concerned

Basic Assumptions

- The global simulation (Federation) is composed by *N* periodic federates
- For a federate i noted *fed(i)*:
- t(i) its logical time;
- Ik(i) its Iookahead;
- *ts(i)* its *time step* (expression of its computational periodicity in simulated time);
- gt(j) is the global state vector of federate j; This vector is currently updated during simulation by NULL MESSAGE exchange;
- **TS**_{LCM} is the study interval usually equal to the least common multiple of all federate step.

TM for event driven RT federate

NER, NERA and Time Creep

A new Optimized Algorithm

Illustration

TM for time driven RT federate

Periodic Federates

🔆 Metrics, Formulas

➔ Illustration

$$NM_{s}(i) = \frac{TS_{LCM}}{ts(i)}$$

$$NM_{R}(i) = \sum_{j} \left(\frac{TS_{LCM}}{ts(j)} \right)$$

$$W_{j} = \left[\frac{t(i) + ts(i) - gt(j)}{ts(j)}\right]$$

$$\sum_{j} W_{j} \leq NM_{Cycle}(i) \leq \sum_{j} W_{j} + (N-1)$$

P.Siron, E.Noulard, JB.Chaudron (April 6, 2011)

16/18

FUTURE TRENDS (1/2)

- Systems simulated with HLA may have a discrete modeling:
 - characterized by a *given state*;
 - its behavior over time can be described by a sequence of state *transition*.
- We were interested in formalism of Finite and Temporized Automata with the **UPPAAL** tool to validate our approach for each part of the problem.

FUTURE TRENDS (2/2)

- First Results for Time Stepped Federate:
 - UPPAAL models for Federate and RTI are available;
 - Properties and Metrics have been validated by UPPAAL Verifier for 2, 3 and 4 federates;
 - Combinatorial explosion for more ...
- First Results for Event Driven Federate:
 - UPPAAL models for federate and RTI are under construction;
 - Verification for soon...
- Perspectives:
 - Investigate the Similarities and differences between NULL MESSAGE PRIME Algorithm and MATTERN one;
 - Check others formal techniques for validation.

 Include these results to our general and global works on *real-time* distributed simulations (10E-SIW-011).

