
A Distributed Simulation Environment
for Cyber-Physical Systems

DISC-IpSC Département Ingénierie Systèmes Complexes,

ISAE-SUPAERO

Supervised by: Janette Cardoso, Pièrre Siron

LI Yanxuan

École nationale supérieure de mécanique et d’aérotechnique

A report for Projet Fin d’étude submitted for the degree of

Diplôme d’ingénieur & Master de Recherche

September 2015

Acknowledgements

During this internship, I’m so glad to participate in the development of “Ptolemy-

HLA” project which is cooperation between University of Berkeley and ISAE-Supaéro.

It enriches my professional experiences in various aspects.

I’m really grateful for my two advisors: Janette Cardoso and Pièrre Siron from ISAE-

Supaéro. They’ve responded my questions in time, indicated the errors I’ve made,

clarified my confusions and so on. They did give me a lot of help and guidance for my

work. Their patience and rigor deeply impressed me.

Thanks to Christopher Brooks from University of Berkeley who taught me the right

way to program and advised me for a better work.

I’d like to thank all my colleagues in my office whom I got along with, and all the

people who helped me during my internship.

Thanks very much for my parents, staying by my side, supporting me and giving me

a warm.

Abstract

High-Level Architecture is the standard for distribution simulation, which basically

provides two mechanisms for time advancing: Next Time Request (NER) and Time

Advance Request (TAR). Ptolemy (PTII) is the simulation platform for heterogeneous

models. A co-framework called PTII-HLA is constructed, benefiting interoperability

and reuse of HLA and heterogeneity of Ptolemy. The main goal of this internship is to

improve the PTII-HLA simulation framework by implementing of the TAR mechanism.

A particular attention will be done in the case there are simultaneous events which

arrive at the same time.

Keywords: distributed simulation, HLA, time advancement, Time Advance

Request (TAR)

Contents

1 Introduction 1

1.1 Context . 1

1.2 Related Tools . 1

1.3 Internship Objective . 2

2 PTII-HLA 3

2.1 Overview of Ptolemy . 3

2.1.1 Discrete-event Simulation . 3

2.1.2 Event Processing . 4

2.1.3 Actions for Event Processing . 5

2.2 HLA Standard . 6

2.2.1 HLA services . 6

2.2.2 Time Management . 6

2.3 PTII-HLA Co-simulation Framework . 7

2.3.1 Ptolemy Components . 7

2.3.2 View of Programming . 8

2.3.3 Representation of Event Processing . 13

3 Basic Analysis and Improvements for Next Event Request 16

3.1 Analysis of NER . 16

3.1.1 Mechanism of NER . 17

3.1.2 Example of NER . 19

3.2 General Improvements . 20

3.2.1 Asynchronism problem of PTII start Time 20

3.2.2 Reduction of HLA service calls . 20

3.2.3 Rearrangement of HlaManager graphical user interface 21

4 Implementing Time Advance Request in PTII-HLA 23

4.1 Overview of TAR . 23

4.1.1 Interests of TAR . 23

4.1.2 Principal Mechanism of TAR . 23

4.2 Assessing TAR . 24

4.2.1 Possible Solutions for TAR Implementation 25

i

4.2.2 Chosen Approach . 29

4.3 Implementation of TAR . 30

4.3.1 Primary Results . 30

4.3.2 Development . 31

4.3.3 Programing . 33

4.4 Example of TAR . 33

4.5 Validation of TAR . 34

4.6 Problem for stopTime . 36

5 Conclusion 39

A HlaManager.java 40

A.1 proposeTime(Time) . 40

A.2 eventsBasedTimeAdvance(Time) . 41

A.3 timeSteppedBasedTimeAdvance(Time) . 43

A.4 updateHlaAttribute(HlaPublisher, Token, String) 45

A.5 putReflectedAttributesOnHlaSubscribers() 47

A.6 Other methods . 48

ii

List of Figures

1.1 Co-simulation of Ptolemy and HLA . 2

2.1 An example of ptolemy model . 3

2.2 Director and actor’s work mechanism . 4

2.3 Actor’s working process in Ptolemy with t1 ≤ t2 ≤ t3 5

2.4 Different time scale with hlaTimeUnitValue= 2 10

2.5 Definition of time axis and related points . 11

2.6 Actor only with time parameter . 11

2.7 HlaSubscriber with only time parameter . 12

2.8 HlaPublisher with only time parameter . 13

2.9 A Ptolemy model and its execution . 14

3.1 principal concept of NER . 16

3.2 NER Time Advancement Diagram, where fRAV (t) = t and fUAV (t) = t+ lah . . . 17

3.3 NER execution detail . 18

3.4 NER Example . 19

3.5 Two federates with different Ptolemy start time 20

3.6 HlaManager . 22

4.1 principal concept of TAR . 24

4.2 Concept of TAR: with UAV delay . 26

4.3 Concept of TAR: with RAV delay . 28

4.4 Different intervals for TAR . 31

4.5 TAR Time Advancement Diagram . 32

4.6 Example of TAR . 33

4.7 SimpleProducerMultipleConsumerTAR . 35

4.8 Results of SimpleProducerMultipleConsumerTAR 35

iii

List of Tables

2.1 Actions for Event Processing . 5

2.2 HLA services . 6

2.3 PTII-HLA components . 8

2.4 Time represent action for HLA and Ptolemy different time axis 15

4.1 Analysis of possible solutions . 29

iv

Chapter 1

Introduction

1.1 Context

A cyber-physical system (CPS) is an “intelligent” system which combines computing, network-

ing with physical dynamics. With a deep cooperation between embedded computers and networks,

they are capable to monitor and control the physical processes; meanwhile feedback loops allow

the physical processes to affect the computation. Today, CPS can be found in various domains,

such as aerospace, telemedicine, intelligent transportation system, and so on.

The complexity of CPS challenges its design which involves multi-faced subjects and integration

difficulty. Generally, CPS is divided into multiple parts and is developed by different engineering

teams. As an important means to validate CPS design, simulation requires diverse support for

different way of working, even though the integration between these heterogeneous parts and the

global evaluation, are not easy tasks. The interoperability is the base of CPS simulation and design.

In our case, we focus our attention on real-time and distributed CPS which is described by

heterogeneous models. The simulation tool Ptolemy II is proposed under the condition of HLA

standards.

1.2 Related Tools

Ptolemy II (PTII) [4] is an open source tool for designing, modeling, and simulation of concur-

rent, real-time, embedded, heterogeneous systems which has been developed by the University of

California Berkeley (UCB). It’s a suitable tool on modeling cyber-physical systems (CPS) which

provides different models of computation (MoC) such as continuous time for describing physi-

cal properties, or discrete events for describing software and control [9].

The IEEE High-Level Architecture (HLA) standard refers to distributed simulation benefiting

interoperability and reuse. It makes individual simulators interacting together during the same

simulation regardless of their computing platform, such as simulation models, concrete functional

codes (in C++, Java, etc.), and hardware equipment [1,9]. An individual simulator who complies

1

Federate 1 Federate 2 Federate 3

HLA interface HLA interface HLA interface

Run-Time Infrastructure (RTI) : CERTI

API API API

HLA federation

(a) HLA federation

Ptolemy Federate

HLA interface

Federate 1 Federate 2 Federate 3

HLA interface HLA interface HLA interface

Run-Time Infrastructure (RTI) : CERTI

API API API

HLA federation

HlaManager

HlaPublisher HlaSubscriber

Time Management

Data Exchange

(b) Ptolemy federate

Figure 1.1: Co-simulation of Ptolemy and HLA

with HLA is called a federate and the global simulation is called a federation (see figure 1.1a).

The interaction between these federates is managed by a run-time infrastructure (RTI). In our

frame work, an open source RTI named CERTI has been used for a set of services based on HLA

specifications.

A collaborative simulation framework called PTII-HLA combining PTII simulations with a

distributed simulation provided by a HLA compliant RTI (CERTI) was developed in a joint work

between UCB and ISAE [8]. It allows experimenting with heterogeneity of models of computation

provided by Ptolemy and interoperability provided by HLA. In PTII-HLA framework, the HLA

interface is made up by HlaManager which is in charge of time management forging links between

Ptolemy and HLA services, and two actors HlaPublisher and HlaSubscriber which serve the data

exchange between federates.

1.3 Internship Objective

HLA basically provides two mechanisms for time advancing: Next Time Request(NER) and Time

Advance Request (TAR). The main goal of this internship is to improve the PTII-HLA simulation

framework by implementing of the TAR mechanism. A particular attention will be done in the

case there are simultaneous events.

The work plan is organized as follows. In chapter 2, a global view of PTII-HLA framework

is done to know how they work individually and cooperatively. Chapter 3 shows the working

mechanism of NER, meanwhile some improvements has been done after the basic analysis. With

the reason of different implementation of TAR mechanism, a discussion is presented in chapter 4

where our approach is detailed. In the end, we make a conclusion in chapter 5. All related java

code is presented in appendix A.

2

Chapter 2

PTII-HLA

2.1 Overview of Ptolemy

In Ptolemy II (PTII) [4], a model of computation (MoC) defines the rules for the interaction

between modeling components. PTII supports numerous MoC like synchronized dataflow (SDF),

dynamic dataflow (DDF), discrete-event (DE), continuous etc, which enables heterogeneous, con-

current modeling and design. Ptolemy models are based on actor-oriented models. Actors

are components that execute concurrently and share data with each other by sending messages

via ports. A director is a component in model to specify its MoC determining how actors com-

municate with each other. PTII provides a superdense time for a model of time expressed by a

pair of parameters (t, n) with t ∈ R+, n ∈ N∗, called a time stamp, where t is the model time,

and n is a microstep [4]. An simple Ptolemy model with two actors and a discrete-event DE

director, is represented in figure 2.1.

Figure 2.1: An example of ptolemy model

2.1.1 Discrete-event Simulation

The discrete-event simulation (DES) models the operation of a system as a discrete sequence

of events in time. Each event occurs at a particular instant in time and marks a change of state

in the system.

In PTII, each event is represented as a tuple: a time stamp and a value, denoted by (t, n, val).

All events are stored in a queue called CalendarQueue as (t, n, val, actor) where “actor” means

the destination actor the event is addressed to. Let us consider that e1(t1, n1, val1, actor1), e2(t2,

3

n2, val1, actor1) are two events in the queue. All events are sorted by time stamp order in the

following way:

• If t1 < t2 or if t1 = t2, n1 < n2, e1 will be executed before e2.

• If t1 = t2, n1 = n2, the director chooses the execution order through actors’ ranking, more

details in [4].

The rank wipes off the indeterminism of simultaneous events which occur at the same time.

The simulation will takes the earliest event ei in the CalendarQueue, advances its model time

to ti, updates its state, adds new events (if any) in the queue. It does this sequential actions until

the end of the simulation or when the queue is empty.

2.1.2 Event Processing

A DE director is used in Ptolemy to govern the processing of DES simulation. It commands

actors to handle involving events (see figure 2.2). The execution of DE director consists of three

iterate phases: prefire, fire and postfire. To begin with, prefire checks whether the director is

ready to fire. Then, during fire it selects actors according to events in the queue, and asks them

to work. Each time, the director takes an earliest event in the queue, finds out the destination

actor of this event, and requests it to finish its own tasks. Postfire in the end verifies if all actors

finish their job.

More precisly, the destination actor under the director’s request, will work in three sub-phases

(prefire, fire, postfire) for data transmission. Prefire verifies preconditions before the actor’s

execution. During the fire phase, the actor reads the data in its input port. After a data

processing, the data is sent to the output ports producing a new event. This output event is

required to be no earlier in time than the input events that were consumed. This new event will

be registered and ordered in the queue. Finally, it’s postfire to see if the execution can process

into next iteration.

DE Director

e1(t1, n1, val1) e2(t2, n2, val2)

prefire()

fire()

postfire()

CalendarQueue

e1(t1, n1, val1)

e3(t3, n3, val3)

CalendarQueue

e2(t2, n2, val2)

e3(t3, n3, val3)

... ...

prefire()

fire()

postfire()

prefire()

fire()

postfire()

Actor

Figure 2.2: Director and actor’s work mechanism

4

2.1.3 Actions for Event Processing

For a better understanding of how to deal with Ptolemy events, we’ve broken down the event

processing into several actions, shown in table 2.1. It’s noticed that all actions are taken during

fire phase.

Table 2.1: Actions for Event Processing

Action Acted by Description Associated Java Method

Get DE director
Read the earliest event
in CalendarQueue.

eventQueue.get()

Consult DE director
Propose a valid time to
advance to.

consultTimeRegulators()

Take DE director
Read the earliest event in
CalendarQueue and remove it.

eventQueue.take()

Set DE director
Advance the current time
setting a new value.

setModelTime()

Put actor
Generate a new event and
put it in the CalendarQueue.

output.sent()

We take an example in figure 2.3 for a further explanation to see how director and actor works

with the events.

DE Director

e1(t1, n1, val1, Actor1) e2(t2, n2, val2, Actor2)

CalendarQueue

e1(t1, n1, val1, Actor1)

e3(t3, n3, val3, Actor3)

...

prefire()

fire()

postfire()

prefire()

fire()

postfire()

Actor

CalendarQueue

e2(t2, n2, val2, Actor2)

e3(t3, n3, val3, Actor3)

...

CalendarQueue

e1(t1, n1, val1, Actor1)

e3(t3, n3, val3, Actor3)

...

Figure 2.3: Actor’s working process in Ptolemy with t1 ≤ t2 ≤ t3

For handling the earliest event e1 in the queue, the director shall read (Get) it at first from

the queue to find out what’s the destination. Before consuming this event, the director verifies

(Consult) if it has a right to take action. Once the event is validated, the director processes it

immediately (Take), advances the current time to t1 (Set). The event then is already removed

from the queue and processed by its destination actor Actor1. Actor1 will generate (Put) a new

event e2 and stores it in the queue. The whole process is executed in this way:

Get e1 → Consult te1 → Take e1 → Set te1 → Put e2

5

2.2 HLA Standard

Aiming at improving the interoperability and reuse of simulators, HLA standard defines an in-

frastructure to create a global simulation (a federation) with a collection of distributed ones (a

federate) in the following aspects [6]:

(1) Rules: defining the basic duty of global federation and federates.

(2) Object model template (OMT): providing a standard format for information communicated

between different federates.

(3) Interface specification: defining a set of services to manage a federation, federates and their

interactions.

2.2.1 HLA services

It’s the role of the run-time infrastructure (RTI) to connect the interaction between federates.

It provides a programming library and an application programming interface (API) compliant to

HLA specification. In our framework, an open source RTI named CERTI [8] is used, implement-

ing the principle and services of HLA. It’s considered as a black box without knowing its detail

implementation, but for the useful services.

HLA services are grouped into six management categories to describe a federate’s life cycle.

For implementing the TAR mechanism, we focus on two of them: object management and time

management. The former is responsible for data exchange, while the latter takes charge of time

advance. Their associated services are listed in the following table 2.2. It’s noted that the services

with * are callbacks from RTI to federates after a tick() action, the others are from Federates to

RTI. With the help of these services, a federate can deal with messages at proper time.

Table 2.2: HLA services

Category Services Description (informal) Notation

Object updateAttributeValues() send and update values UAV()
reflectAttributeValues()* receive updated value RAV()

Time timeAdvanceRequest() ask to advance federate’s time TAR()
timeAdvanceGrant()* notify time advance federate’s time TAG()
nextEventRequest() ask to advance federate’s time NER()

2.2.2 Time Management

In HLA, incoming messages are categorized as either receive order (RO) or time stamp ordered

(TSO). RO messages conform to the FIFO queuing. TSO messages are assigned a time stamp by

federate. The transmission (via Update Attribute Values, UAV()) and reception(via Reflect

Attribute Values, RAV()) of these messages should be ordered by non-decreasing time stamp.

6

In this way, RTI ensures that no message is delivered “in its past”. We call that a regulating

federate who generates TSO messages and a constrained one who receives TSO messages. Of

course, a federate can be both regulating and constrained at a time.

In additional, HLA requires an extra time parameter lookahead for regulating federates. It

is used to estimate the minimum time stamp of a future event produced by a federate. In other

words, there’s a guarantee that no events will be sent if its time stamp is smaller than the current

time plus lookahead.

Knowing that in HLA time management, there isn’t any common clock notified by all feder-

ates, each federate should manage its local logical time and communicate it with the RTI. A

request is asked explicitly by a federate to advance to an instant in time, meanwhile its local time

is frozen until the authentication of RTI (Time Advance Granted, TAG()). By this means,

RTI ensures correct coordination of federates.

HLA divides the time management mechanism into two categories:

• time-stepped: a federate advances equally in time with a fixed time step. More precisely,

the next time value is fixed and the time step can’t change between two calls. TAR() is

used to make a time advance request.

• event-driven: a federate advance to the time stamp of the events as they are processed

or to a fixed value if there is no event before. NER() is applied for a request.

If the lookahead = 0, then the mechanisms are Next Time Request Available (NERA) and

Time Advance Request Available (TARA).

2.3 PTII-HLA Co-simulation Framework

The basic idea of how the Ptolemy and HLA-CERTI framework work is: Each Ptolemy model

corresponds to a federate in an HLA federation. In other words, a Ptolemy model must deal with

distributed events and must advance its logical time according to HLA rules. For the moment,

the top level director of a Ptolemy model must be a DE director.

2.3.1 Ptolemy Components

The framework PTII-HLA extends Ptolemy II for distributed simulation using the HLA standard

by adding three components: HlaManager, HlaPublisher and HlaSubscriber.

HlaManager is a decorator in Ptolemy II, which means it endows elements of the model with

parameters. In the case of HLA-CERTI, it decorates a time verification process in Ptolemy using

HLA time management. Two kind of time requests can be made by each federate : NER() or

7

TAR(). Only when the time request is valid through TAG(), the time of model can move forward.

The HlaManager interface allows to set up the following time parameters:

• Time Mangement Service: NER() or TAR()

• Time Step in seconds: the equal time increment for a time-stepped federate.

• Lookahead in seconds: the minimum interval in the future that a TSO message should be

sent after HLA current time plus Lookahead.

• Hla Time Unit: an extra parameter for the time scaling between Ptolemy model time and

HLA logical time, more details in 2.3.2.1 and [2].

HlaPublisher and HlaSubscriber are designed as Ptolemy normal actors, so they still have

three sub-phases including prefire, fire and postfire. After prefiring, HlaPublisher will execute

a fire action, invoking UAV service of RTI. In this way, it will generate TSO (HLA) messages

instead of Ptolemy events comparing with normal actors in Ptolemy. In the side of reception,

during director’s firing, all TSO messages shall be received by HlaSubscriber actor. It will take a

normal fire action to process the data, generating a new Ptolemy event.

A FOM file is used for the HLA communication, where exchangeable classes and their attributes

should be pointed out in an object. HlaPublisher is named as class.attribute which indicates one

attribute in a class each time. HlaSubscriber is an actor inside a composite actor named class, as

the same name in FOM file. The instance of this composite actor is named as federate.actor for

indicating the transmitting federate and actor. Meanwhile, its outputs are the attributes to which

the federate subscribes.

Table 2.3: PTII-HLA components

PTII-HLA components Icon PTII HLA

HlaManager Decorator
Time Advancement:

NER(), TAR(), TAG()

HlaPublisher Actor Send TSO messages: UAV()

HlaSubscriber Actor Receive TSO messages: RAV()

2.3.2 View of Programming

Concerning the implementation of this co-simulation, we need to work with two frameworks in a

Java environment:

8

• Ptolemy II: it acts as the main simulation platform including a set of Java packages. A

development version [10] is adopted.

• JCERTI: it is a Java library which is imported in Ptolemy and provides all application

programming interfaces (API) for CERTI services. We’ve installed CERTI [11] version 3.4.3

for use.

In the following sections, we will define precisely the different variables used for time manage-

ment and event processing.

2.3.2.1 Notion of Time

A simulation of a dynamic system has three notions of time [6]:

• Physical time: refers to the time in a physical system which is been modeled by simulation.

• Wallclock time: the lapse of time in real world during the simulation execution, which can

be measured by a processor clock.

• Simulation time: representation of the physical time in simulation. It includes a group of

values representing the different instance of time for the modeled system. In a distributed

simulation, using HLA standard, there are two types of time:

– The logical time of a federate, for example Ptolemy model time (section 2.1).

– The logical time of the federation, for example HLA logical time (section 2.2.2).

In this report, we estimate that a java class or an instance is written in the form of JavaClass

and a java method is noted like javaMethod() or javaMethod().

a) Time Axis

Ptolemy and HLA-CERTI, as two independent frameworks, they have their own execution rhythm

and local time. HLA-CERTI, as a master, governs the advance of local logical time CertiLogical-

Time for federates in the same federation, but each federate (Ptolemy model) governs its time for

Time class. So, it’s necessary to distinguish the notation of time in Ptolemy and in HLA-CERTI

and build their relationships.

In a simulation time axis, there are two scales for each federate: model (or logical) time in

Ptolemy and logical time in HLA-CERTI.

• t: time scale for Ptolemy Time, where Time is the ptolemy.actor.util.Time Java class in

Ptolemy , representing the model time.

• Lt: time scale for HLA-CERTI CertiLogicalTime, where CertiLogicalTime is the certi.-

rti.CertiLogicalTime Java class in HLA-CERTI, representing the logical time.

The federates can have different “time units”. Each federate has a parameter:

9

• hlaTimeUnitValue: a linear mapping scale between t and Lt. The mapping between the

two scales of time is: Lt = t× hlaTimeUnitValue.

The HLA interface is responsible for the conversion between Ptolemy time adn HLA-CERTI

logical time by using two methods:

• convertToCertiLogicalTime() : method to convert Ptolemy time to certi logical time.

• convertToPtolemyTime() : method to convert certi logical time to Ptolemy time.

After an initial point synchronization, the initial time for all federates created in HLA-CERTI

is set to zero.

An example is indicated in figure 2.4 where hlaTimeUnitValue is equal to 2. It means Lt

advances two time more rapid than t.

0

t: Time

Lt: CertiLogicalTime

0

Ts_hla

tptII: Time

Ts 3Ts2Ts 4Ts

0

thla: Time

Lt: CertiLogicalTime

Ts 2Ts 3Ts 4Ts

tcurrent_ptII

tcurrent_hla tnextPointInTime_hla

t0_ptII

0

0

10.0 40.030.020.0

10.0 40.030.020.0 60.050.0

Figure 2.4: Different time scale with hlaTimeUnitValue= 2

b) Time Variables

We define the HLA constants:

• lah named hlaLookahead which represents the minimum interval in the future that a TSO

message will be scheduled.

• Ts hla: hla time step named hlaTimeStep which is fixed at the beginning of the simulation

and makes an equal time increment in HLA-CERTI. With this constant parameter, we intend

to make a linkage between PTII and HLA in time-stepped mode.

For simplification of nomenclature, we admit that all notations of time we use is under Ptolemy

Time scale but with two parallel time axis ptII and hla.

• t: time scale for Ptolemy Time. It includes two time axis progressing in Ptolemy named

tptII , and in HLA-CERTI named thla.

• tcurrent: point in time axis where the model is right now located. It includes tcurrent ptII

named currentTime and tcurrent hla named hlaCurrentTime. The start time in Ptolemy is

noted as t0 ptII.

10

• tnextPointInT ime hla: next point in time named hlaNextPointInTime to which time-stepped

federates process all events occur up [3]. It’s estimated that tnextPointInT ime hla is only known

in HLA-CERTI and Ptolemy is not able to retrieve it directly.

tnextPointInT ime hla = tcurrent hla + Ts hla

We visualize the associated notations in figure 2.5 where Ptolemy and HLA-CERTI have the

same time scale with hlaTimeUnitValue = 1.

Ts_hla

tptII: Time

Ts 3Ts2Ts 4Ts

0

thla: Time

Lt: CertiLogicalTime

Ts 2Ts 3Ts 4Ts 6Ts 7Ts 8Ts5Ts

tcurrent_ptII

tcurrent_hla tnextPointInTime_hla

t0_ptII

0

0

Ts_hla

tptII: Time

Ts 3Ts2Ts 4Ts

0

thla: Time

Lt: CertiLogicalTime

Ts 2Ts 3Ts 4Ts

tcurrent_ptII

tcurrent_hla tnextPointInTime_hla

t0_ptII

0

0

Figure 2.5: Definition of time axis and related points

2.3.2.2 Discrete Event

The time advances in Ptolemy through event processing. In the PTII-HLA framework, the events

are generated and consumed by normal actors, besides there are also messages received (RAV)/sent

(UAV) from/to the RTI by the new actors HlaSubscriber and HlaPublisher. Let us clarify the

notion for different events in the sequel.

• ptolemy-event (shown in figure 2.6): a normal DEEvent noted as e(t, n, value, actor), which

is the registered in CalendarQueue, where t is the model time, n it the microstep, value is

the carried value and actor is the destination actor. The pair (t, n) is called timestamp. A

consummation of an event might generate a following one at present or in the future after

fire() action.

From now on we call te the model time of the ptolemy-event e.

preUAV(tpreUAV) UAV(Ltuav)

folRAV(tfolRAV)RAV(Ltrav)

preUAV(tpreUAV: Time) UAV(tuav: Time) UAV(Ltuav: CertiLogicalTime)

folRAV(tfolRAV: Time)RAV(trav: Time)RAV(Ltrav: CertiLogicalTime)

e1(te1) e2(te2)

e1(te1: Time) e2(te2: Time)

Figure 2.6: Actor only with time parameter

11

• rav-event (shown in figure 2.7): an auxiliary “event” in Ptolemy denoted as pRAV(trav,

value), which is generated by HLA callback RAV(Ltrav, value), received by the HlaSub-

scriber actor without registration in the queue. After the call of putReflectedAttributes-

OnSubscribers() method, this rav-event will be put in the queue becoming a ptolemy-event

named folRAV(tfolRAV , n, value, actor). After firing of HlaSubscriber, this event will be an

output event.

So there are three time stamp related to a HlaSubscriber:

– Ltrav: time stamp of a TSO message belonging to CertiLogicalTime in HLA-CERTI.

– trav: (auxiliary) time stamp of a rav-event in type of Time representing for Ltrav.

– tfolRAV : time stamp of a ptolemy-event belonging to Time in CalendarQueue.

RTI

RTIpreUAV(tpreUAV) UAV(Ltuav)

folRAV(tfolRAV)RAV(Ltrav)

preUAV(tpreUAV) pUAV(tuav) UAV(Ltuav)

folRAV(tfolRAV)pRAV(trav)RAV(Ltrav)

e1(te1) e2(te2)

e1(te1: Time) e2(te2: Time)

ptolemy-event uav-event TSO messages

ptolemy-eventrav-eventTSO messages

fUAV gUAV

gRAV fRAV

Figure 2.7: HlaSubscriber with only time parameter

Besides we define two functions serving to establish the links between these time stamps.

gRAV : Ltrav 7→ trav = Ltrav/ hlaTimeUnitValue (2.1)

fRAV : trav 7→ tfolRAV (2.2)

It’s noticed that gRAV is the function convertToPtolemyTime() and fRAV depends on the

time management used by the federate (NER or TAR) which will be presented in sections

3.1.1 and 4.2.1 respectively.

• uav-event (shown in figure 2.8): an auxiliary “event” in Ptolemy denoted as pUAV(tuav,

value) which is generated by a ptolemy-event called preUAV(tuav, n, value, HlaPublisher)

and received by HlaPublisher. During fire() phase, HlaPublisher will translate it to a TSO

message UAV(Ltuav, value) where Ltuav represents its time stamp belonging to CertiLogi-

calTime and sent it to RTI using UAV() service.

There are also three types of time stamps:

– tpreUAV : time stamp of a ptolemy-event belonging to Time in CalendarQueue.

– tuav: (auxiliary) time of uav-event in type of Time, with tuav = tpreUAV . tuav can be

modified explicitly.

– Ltuav: time stamp of a sent TSO message belonging to CertiLogicalTime in HLA-

CERTI, reminding that Ltuav = tuav × hlaTimeUnitValue.

12

RTI

RTIpreUAV(tpreUAV) UAV(Ltuav)

folRAV(tfolRAV)RAV(Ltrav)

preUAV(tpreUAV) pUAV(tuav) UAV(Ltuav)

folRAV(tfolRAV)pRAV(trav)RAV(Ltrav)

e1(te1) e2(te2)

e1(te1: Time) e2(te2: Time)

ptolemy-event uav-event TSO messages

ptolemy-eventrav-eventTSO messages

fUAV gUAV

gRAV fRAV

Figure 2.8: HlaPublisher with only time parameter

It’s still defined two functions for time management:

fUAV : tpreUAV 7→ tuav (2.3)

gUAV : tuav 7→ Ltuav = tuav × hlaTimeUnitValue (2.4)

It’s seen that gUAV corresponds the function convertToPtolemyTime() and gUAV = g−1RAV .

Moreover, fUAV will be detailed in section 3.1.1 and 4.2.1 which depends on the choice of

NER or TAR.

2.3.3 Representation of Event Processing

According to previous notations, we can distinguish three types of ptolemy-events: folRAV (out-

put of HlaSubscriber), preUAV (input of HlaPublisher) and others. They can be represented in

Ptolemy time axis tptII . folRAV and preUAV will be translated to, respectively, rav-event and

uav-event which are located in HLA time axis thla. Figure 2.9a depicts the following scenario

ocurring in 2.9b.

We will present how these events are related in the sequel. It must be pointed out that we will

keep the functions fUAV and fRAV without make any choice for TAR or NER time management.

The reader must keep in the mind that in figure 2.9a the time stamps in time axis thla and tptII are

related by these functions, and the time stamps can be different as it will be presented in chapters

3 and 4.

Let us consider that there are following events in the queue at the current time t0 ptII = 0:

preUAV events {preUAV1} and an other ptolemy-event {e3}. The preUAV will call UAV() service

during the fire() phase. The ptolemy-event e3 is a normal event which might generate another

ptolemy-event.

The event preUAV1(t1, n1, val1, HlaPublisher) is the first one to be processed, HlaPublisher

takes fire() action, it will generate the event pUAV1(fUAV (t1), val1). The processing of e3(t3,-

n3, val3, actor3) by actor3 can generate an other ptolemy-event e4 (after firing) with time stamp

t4 = t3 or t4 > t3 if actor3 is a TimeDelay actor. For this reason, new generated event e4 is

not presented in the figure. Let us consider that the RTI delivers an rav-event pRAV2′(t2′ , val2′)

to the federate, so this event is translated to ptolemy-event folRAV2′(fRAV (t2′), n2′ , val2′ , Actor2′).

In this way, we can represent dynamically the processing of CalendarQueue and make clear the

13

preUAV1

0
folRAV preUAV other

ptolemy-event

tptII

0
thla

pRAV pUAV

pRAV2'

e3

CalendarQueue

preUAV1(t1,n1,val1,HlaPublisher)

e3(t3, n3, val3, Actor3)

Ptolemy Model

pRAV

e2'

pUAV

e1

Used HLA services

Empty

CalendarQueue

Run-Time Infrastructure (RTI) :
CERTI

CalendarQueue

e3(t3, n3, val3, Actor3)

Used HLA services

pUAV1(fUAV(t1), val1)

CalendarQueue

e3(t3, n3, val3, Actor3)

Used HLA services

pUAV1(fUAV(t1), val1)

tick(), pRAV2'(t2', val2')

folRAV2' (fRAV(t2'),n2',val2',Actor2')

e4(t4, n4, val4, Actor4)

preUAV1(t1,n1,val1,HlaPublisher) e3(t3, n3, val3, Actor3)

Used HLA services

pUAV1(fUAV(t1), val1)

tick(), pRAV2'(t2', val2')

fUAV fRAV

pUAV1

folRAV2'

(a) An example of events’ execution in time axis

e1 e2'

0
folRAV preUAV other

ptolemy-event

tptII

0
thla

pRAV pUAV

e1 e2'

e3

CalendarQueue

preUAV1(t1,n1,val1,HlaPublisher)

e3(t3, n3, val3, Actor3)

Ptolemy Model

pRAV

e2'

pUAV

e1

Used HLA services

Empty

CalendarQueue

Run-Time Infrastructure (RTI) :
CERTI

CalendarQueue

e3(t3, n3, val3, Actor3)

Used HLA services

pUAV1(fUAV(t1), val1)

CalendarQueue

e3(t3, n3, val3, Actor3)

Used HLA services

pUAV1(fUAV(t1), val1)

tick(), pRAV2'(t2', val2')

folRAV2'(fRAV(t2'),n2',val2',Actor2')

e4(t4, n4, val4, Actor4)

preUAV1(t1,n1,val1,HlaPublisher) e3(t3, n3, val3, Actor3)

Used HLA services

pUAV1(fUAV(t1), val1)

tick(), pRAV2'(t2', val2')

fUAV fRAV

(b) Ptolemy model

Figure 2.9: A Ptolemy model and its execution

14

commutation mechanism between Ptolemy and HLA-CERTI.

Let us remind that e, folRAV, preUAV take place only in tptII and pRAV, pUAV occur only in

thla. In the sequel, subscripts ptII and hla are not indicated anymore except when it is necessary.

Even if a ptolemy-event, a rav-event and an uav-event includes more than one parameters, for the

sake of simplicity they will be represented by e(t), pRAV(t), folRAV(t), preUAV(t) and pUAV(t),

with a unique parameter t in Time. If necessary, the complete formula is written to avoid certain

ambiguity. With the help of gUAV and gRAV , we can represent HLA services as TAR(gUAV (t)),

NER(gUAV (t)), TAG(gRAV (Lt)), UAV(gUAV (t)), RAV(gRAV (Lt)). For a simplification, they are

respectively noted as pTAR(t), pNER(t), pTAG(t), pUAV(t), pRAV(t) which indicate the HLA

services in Ptolemy.

In addition, there is no difference between rav-event (pUAV) and pUAV() service because the

call of this service generates this so-called pUAV event. It’s the same case for pRAV.

Table 2.4: Time represent action for HLA and Ptolemy different time axis

Time axis Events or services

t in tptII e(t), folRAV(t), preUAV(t)
t in thla pRAV(t), pUAV(t), pNER(t), pTAR(t), pTAG(t)
Lt RAV(Lt), UAV(Lt), NER(Lt), TAR(Lt), TAG(Lt)

15

Chapter 3

Basic Analysis and Improvements for
Next Event Request

This chapter presents the existing implementation of NER service as presented in [8] for a good

understanding of PTII, HLA frameworks and their cooperation mechanism.

3.1 Analysis of NER

Federate RTI

NER(20)LT=10

RAV(14)

RAV(14)

TAG(14)

Wall clock
time

LT=14

Request its LT be
advanced to T

RTI delivers all TSO

msgs with TS <= T’

RTI guarantees all TSO
msg with TS <=T have
been delivered

NER(20)

TAG(20)LT=20

No TSO event

Request its LT be
advanced to T

RTI guarantees its LT
to T

RTI

NER(Lt2)
Lt1

RAV(Lt1’)

RAV(Lt1’)

TAG(Lt1’)
Lt1’

Request its logical time
be advanced to Lt2 > Lt1

RTI delivers all TSO
msgs with time stamps
= Lt1’

RTI guarantees all TSO
msg with time stamps
≤ Lt1’ have been delivered

Lt Lt

UAV(Lt1’+lah)

UAV(Lt1+lah)

tick()

tick()

tick()

NER(Lt2)

Fed
ptII

tick()

TAG(Lt2)

No TSO event

RTI guarantees its logical
time to Lt2

Request its logical time
be advanced to Lt2 > Lt1’

Lt2

Fed
PTII

Wall-
clock time

Fed
HLA

t1_ptII

tptII

t2_ptII

t1_hla

thla

t2_hla

×_hlaUnit
TimeValue

t1_hla’t1_ptII’

Figure 3.1: principal concept of NER

The main idea of NER mechanism in the HLA-CERTI framework is the following. An event-

based federate requests an advance of logical time through NextEventRequest service with time

parameter Lt. A typical NER processes as follows (see figure 3.1). At its current logical time

Lt1, it wants to advance to logical time Lt2 which is the time stamp of the next TSO message.

After a call of NER(Lt2), the RTI can send (if any) all TSO messages with time stamp Lt′1 (with

Lt1 < Lt′1 ≤ Lt2). The reception of those messages is done by a callback RAV(Lt′1). Once the

delivery is finished, a TAG(Lt′1) is issued indicating that time request was granted. The logical

16

time of a federate is advanced to Lt′1. Or if there is no TSO messages to be delivered, a TAG(Lt2)

is directly received by the federate that advances its time to Lt2.

3.1.1 Mechanism of NER

The analysis of the work was done from [8] and by a step-by-step debug. Figure 3.2 shows a

cooperation of PTII and HLA, and figure 3.3 shows the details of their communications.

Time modifiedTime = _consultTimeRegulators(localClock
.getLocalTimeForCurrentEnvironmentTime());

setModelTime(modifiedTime);

Actor actorToFire = _getNextActorToFire();

lastFoundEvent = _eventQueue.get();

currentTime = _consultTimeRegulators(lastFoundEvent
.timeStamp());

lastFoundEvent = _eventQueue.take();

currentTime = lastFoundEvent.timeStamp();

actorToFire = lastFoundEvent.actor();

setModelTime(currentTime);

_hlaManager.updateHlaAttribute(this,
in,input.sourcePortList().get(i).getContainer().getName());

Time currentTime = _director.getModelTime();

Director.prefire()

nextEvent = _eventQueue.get();

If actorToFire==NULL

Director.fire()

nextEvent = _eventQueue.get();

actorToFire.fire()

CertiLogicalTime ct= new CertiLogicalTime((1/
_hlaTimeUnitValue)*currentTime.getDoubleValue
()+ _hlaLookAHead);

pNER(te)

Tick()

pRAV(tbreakpoint, val)

_putReflectedAttributesOn
HlaSubscribers();

te = tbreakpoint

Get lastFoundEvent: e

Take lastFoundEvent: e

tcurrent_ptII=te

tcurrent_ptII=_consultTime
Regulators(te)

Ptolemy

proposeTime()

pUAV(tcurrent_ptII+lah)

TAG
Yes

No

_getNextActorToFire()

HlaPublisher.fire()

HlaManager.java

te = tcurrent_ptII

Return tcurrent_ptII

_ eventBased

Return _eventsBased
TimeAdvance()

Return
_timeSteppedBased

TimeAdvance()

_eventsBasedTimeAdvance()

Yes
No

RAV

Yes

Return te

No

Yes
No

Other actors

fire()

actorToFire =
HlaPublisher No

Yes

Figure 3.2: NER Time Advancement Diagram, where fRAV (t) = t and fUAV (t) = t+ lah

On the side of DE director, it gets a next event (i.e. lastFoundEvent) which is the most

recent ptolemy-event in CalendarQueue (i.e. the first one sorted by a time stamp order). A

time advancement request is made through consultTimeRegulators() method. It commands

all TimeRegulator classes to find out a valid time to advance to which is the smallest value among

all proposed times. It is the role of proposeTime() method to check out if this requested time

tlastFoundEvent is valid or not.

On the side of the HlaManager, as an intermediate layer, it links the communication between

Ptolemy and HLA-CERTI implementing TimeRegulator. Let us detail the way: time manage-

ment which is done through the method proposeTime() as depicted in figure 3.2. For the NER,

a federate requests directly to advance to tlastFoundEvent. If it receives any rav-event at tbreakpoint

17

DE director HlaSubscriberHlaMaganer RTI

preinitialize

initialize proposeTime(t0)
pNER(t0)

tick2()

putReflectedHlaAttribute()

fireAt(t0+lah)

return t0

fire(t0)

prefire

inputPortList().get(0)

updateHla
Attribute()

pUAV(t0+lah, val)

pTAG(t0)

fire

HlaManager

pNER(t2)

tick2()

HlaPublisher

pRAV(t0+lah, val)

preinitialize

initialize

prefire

fire

return t0+lah

pTAG(t0+lah)

pNER(t1)

tick2()

fire

proposeTime(t1)

tick2()

proposeTime(t2)

proposeTime(t2)
pNER(t2)

tick2()
pTAG(t1)

return t1tptII=t1

With t0<t1<t2

Callback

Returned Value

prefire

pNER(t0)

tick2()

pTAG(t0)

proposeTime(t0)

return t0

tptII=t0 tptII=0

tptII=t0

tptII=0

tptII=t0+lah

Normal Invocation

pUAV

pRAV

DE director

Ptolemy Fed 1 Ptolemy Fed 2

Figure 3.3: NER execution detail

18

(tcurrent ptII < tbreakpoint ≤ tlastFoundEvent) with a following pTAG(tbreakpoint), the CalendarQueue

is refreshed by putting all pRAV(tbreakpoint) inside. It is the returned time who represents a valid

time to advance to. So we have got the right to consume the next event in the queue. This

next event is either a new folRAV(tbreakpoint) or the original event lastFoundEvent. PTII finally

advances its current time and takes a fire() action.

From the event execution, we see that each progression of Ptolemy time corresponds a pro-

gression of HLA time. For a HlaPublisher, the fire() action should invoke UAV() service to send

TSO messages. Meanwhile, every time we get rav-event or not, HlaSubscriber will be waken up

after the reception of TAG.

Reminding that the previous definition in section 2.3.2.2 for fUAV : tpreUAV 7→ tuav and fRAV :

trav 7→ tfolRAV . For NER mechanism we have

∀t ∈ R+, fRAV (t) = t (3.1a)

∀t ∈ R+, tfolRAV = fUAV (t) = t+ lah (3.1b)

3.1.2 Example of NER

e30
tptII

0
thla

pUAV1 pRAV2'

NER

Lookahead

0
tptII

0
thla

TAR

Ts_hla 3Ts_hla2Ts_hla 4Ts_hla

folRAV preUAV other

ptolemy-event

pRAV pUAV

folRAV preUAV other

ptolemy-event

pRAV pUAV

Lookahead Lookahead

pUAV2

pUAV4

preUAV1 preUAV4

preUAV2

folRAV2'

pUAV1 pRAV2'pUAV2 pUAV4

e3

preUAV1 preUAV4

preUAV2

folRAV2'

Figure 3.4: NER Example

We’ll take an example for better comprehension of NER mechanism (see figure 3.4).

Execution process Time starts from tcurrent ptII = 0, tcurrentT hla = 0.

• Get preUAV1(t1) → pNER(t1) → {tick(), pTAG(t1)}, tcurrent hla = t1 → no RAV → Take

preUAV1 → Set tcurrent ptII = t1 → pUAV1(t1 + lah)

• Get preUAV2(t2) → pNER(t2) → {tick(), pTAG(t2)}, tcurrent hla = t2 → no RAV → Take

preUAV2 → Set tcurrent hla = t2 → pUAV(t2 + lah)

• Get e3(t3) → pNER(t3) → {tick(), pRAV(t2′)} → {tick(), pTAG(t2′)}, tcurrent hla = t2′ →
Put pRAV2′(t2′) → Take folRAV2′(t2′) → Set tcurrent hla = t2′ → fire(t2′)

• Get e3(t3) → pNER(t3) → {tick(), TAG(t3)}, tcurrent hla = t3 → no RAV → Take e3 → Set

tcurrent ptII = t3 → fire(t3)

19

• Get preUAV4(t4) → pNER(t4) → {tick(), pTAG(t4)}, ,tcurrent hla = t4 → no RAV → Take

preUAV4 → Set tcurrent ptII = t4 → pUAV(t4 + lah)

3.2 General Improvements

3.2.1 Asynchronism problem of PTII start Time

Federates in the previous version of HLA-CERTI framework could have the same stop time. But

the execution of the federation went wrong if they had different start time.

Let us consider the following case in figure 3.5 which is a simple producer/consumer model.

We’ve got two federates named A and B. A is the producer within an HlaPublishere. B is the

consumer within an HlaSubscriber. After initialization, the current time in PTII and HLA will

be set. So we have:

• For A, tcurrent ptII = t0 ptII = 0, tcurrent hla = 0;

• For B, tcurrent ptII = t0 ptII = 5, tcurrent hla = 0.

pUAV(0.1) pRAV(0.1)

t0_ptII = 0 lah = 0.1

tcurrent_ptII = 0 tcurrent_hla = 0

t0_ptII = 5 lah = 0.1

tcurrent_ptII = 5 tcurrent_hla = 0

A B

Figure 3.5: Two federates with different Ptolemy start time

Then, A has the right to send an uav−event denoted pUAV(0.1). In the reception, B gets the

associated rav-event as pRAV(0.1), so folRAV(0.1) is put in the queue. But for B, tcurrent ptII = 5,

the simulation displays an error because the director is unable to fire the actor at the requested

time in its past. Hence, for avoidance of such a case, an arbitrary choice is made without loss of

information: all rav-event with time stamp trav < t0 ptII are registered at t0 ptII .

∀t ∈ R+, fRAV (t) =

{
t0 ptII If t < t0 ptII

t, Otherwise
(3.2)

The current version allows the use of different start time and the results are coherent with our

expectation.

3.2.2 Reduction of HLA service calls

After a step-by-step debug for NER, it is found that a Ptolemy federate calls several times pNER()

at its current time. Obviously, it is unnecessary to make an request to advance to its own current

time which should be validated without hesitation. That’s why an additional condition is put into

use in proposeTime() to reduce the HLA services as indicated in algorithm 1.

20

Algorithm 1 Propose a valid time for Ptolemy’s time advancement

Require: an initial proposedT ime gets the time stamp of lastFoundEvent
Ensure: a valid proposedT ime to advance to

1: procedure proposeTime(proposedTime)
2: if proposedT ime = tcurrent ptII then
3: return proposedTime;
4: else call HLA time advancement service;
5: end if
6: end procedure

3.2.3 Rearrangement of HlaManager graphical user interface

The parameters’ value are set in HlaManager graphical user interface. Figure 3.6a depicts the

interface of the frame work at the beginning of this work. The modifications made in the code of

the framework lead to the following changes in the interface:

• Pull-down menu for NER/TAR.

In the previous version, the choice for choosing NER or TAR was implemented by a Parameter

class. Moreover, the user could choose both mechanism. But in current version, a federate

uses either NER or (-exclusive) TAR. The choice has been replaced by a pull-down menu,

implemented by a ChoiceParameter.

• Remove of logical start time.

The goal of HLA-CERTI framework is to model and simulate Cyber-Physical systems. For

such a simulation, a synchronization point is necessary. After the launch of RTI, a federate

waits for jointing of all federates, and keeps stepping until the synchronization point is

received. When all federates are ready, the tcurrent hla is set to zero, and the Ptolemy federates

begin to process. That’s why the parameter ”logical star time” was removed.

• Other modifications:

– the term “Synchronization Point Creator” was replaced by the correct term “Synchro-

nization Point Registor”

– a message recalling that time step is used only if the TAR mechanism is used.

– HLA Time Unit was introduced by [2].

21

(a) Legacy

(b) New

Figure 3.6: HlaManager

22

Chapter 4

Implementing Time Advance Request in
PTII-HLA

In this part, we’ll make clear TAR working mechanism in HLA and try to find out a solution for

its implementation under Ptolemy environment.

4.1 Overview of TAR

4.1.1 Interests of TAR

NER mechanism allows to react to each occurrence of an event e, advancing a federate’s time to

the time stamp of this event. If the federate is at tcurrent hla, it can advance to the time stamp te of

the event e. TAR mechanism is different: if the federate has a time step Ts hla and is at tcurrent hla,

it can only advance to the next point in time (tcurrent hla + Ts hla) if it can receive and handle

rav-events in the meantime. To an extent, NER is more consistent with the spirit of Ptolemy,

whereas it sacrifices the efficiency in some cases. As a result, we are interested in TAR which can

be more efficient to process events, if we make a good choice of time step Ts hla and lookahead lah.

In this way, RTI spends fewer resource to manage federates.

In reality, each CPS model consists of one or more continuous system. When we build their

simulation models, as one of the most important components, the control part is often imple-

mented as a time-driven (or sampled) system which acquires the inputs at regular intervals of

time and computes its reaction for each sample of its inputs [5]. We often use “synchronous”

approach (Lustre, etc) to make its design and analyze the performance. If we want to establish

two distributed system for physical system and controller, which means the two are simulated

as two federates. Then their communication shall naturally be TAR, the time step may be the

sampling period for example.

4.1.2 Principal Mechanism of TAR

With the acquirement in NER analysis, we have known more about PTII and HLA. The key of

our work right now is to understand the principle of TAR in HLA, then implement it in Ptolemy

23

environment.

Fed
PTII

RTI

TAR(Lt2)
Lt1

RAV(Lt1’)

RAV(Lt1’’)

TAG(Lt2)

Wall-
clock time

Lt2

Request its logical time
be advanced to Lt2>Lt1

RTI delivers all TSO
msgs with time stamps
≤ Lt2

RTI guarantees all TSO
msg with time stamps ≤ Lt2

have been delivered

Lt Lt

UAV(Lt2+lah)

UAV(Lt1+lah)

tick()

tick()

tick()

TAR(Lt3)

Fed
HLA

t1_ptII

tptII

t2_ptII

×_hlaUnit
TimeValue

t1_hla

thla

t2_hla

Figure 4.1: principal concept of TAR

In HLA, the time advance primitives provide a protocol for the federate and RTI to jointly

control the advancement of logical time [1, 7]. The principal mechanism of TAR is indicated

in figure 4.1. At a logical time Lt1, a federate requests a time advance to next point in time

TAR(Lt2). Only when the RTI guarantees that all TSO messages with time stamp smaller than

or equal to Lt2 have been successfully delivered. Thus the callback RAV(Ltrav) is used for the

reception of TSO messages with time stamp Ltrav (Lt1 < Ltrav ≤ Lt2). RTI then grant the logical

time advance of federate to Lt2 through TAG(Lt2). At the same time, the federate must delay

processing any local event until logical time has advanced to the time of that event, otherwise

other federates may receive a TSO message in its past. In this way, the synchronization of the

execution and the reception of a request are accomplished in the same time.

4.2 Assessing TAR

According to the principle of time advancement request (TAR), a time-stepped federate can set

up its logical time scale hlaT imeUnitV alue and the time step Ts hla.

There are some constraints in the implementation.

• HLA requires:

(R1) For a HlaPublisher, an uav-event should be sent in the future after tcurrent hla + lah.

tuav ≥ tcurrent hla + lah (4.1)

24

(R2) Or if the federate is not in a time advising phase which means after pTAR(t′hla), we

want to call pUAV service without the tick, an uav-event should be sent after t′hla + lah.

tuav ≥ t′hla + lah (4.2)

It should be watchful because JCERTI accepts this situation without throwing any

exceptions. This requirement should be respected explicitly. As a result, we propose

that during the advising phase, no actors will be stimulated, no uav-events will be

generated.

(R3) For a HlaSubcriber, a rav-event should be received between tcurrent hla and t′hla if we

make a time advance request at time pTAR(t′hla).

trav ∈]tcurrent hla, t
′
hla] (4.3)

(R4) With a time advance request at time t′hla, if a time advance grant pTAG(thla) is received,

we must have thla = t′hla, and tcurrent hla = t′hla

• Ptolemy requires:

(R5) A ptolemy-event can only be handled if its time stamp is bigger or equal than its current

time which means for folRAV events, we have:

tfolRAV ≥ tcurrent ptII (4.4)

• Federate pattern:

(R6) A time advance request with time t′hla is made by pTAR(t′hla) if and only if

t′hla = k × Ts hla, with k ∈ N (4.5)

Let us remind that the parameter hlaNextPointInTime is defined for the description of its

next point in HLA to advance to and it is math expression is:

tnextPointInT ime hla = tcurrent hla + Ts hla (4.6)

4.2.1 Possible Solutions for TAR Implementation

For the satisfaction of the previous requirements, it comes out two main ideas to implement the

TAR algorithm. An example will be taken for further explanation.

At the beginning, we suppose:

tcurrent ptII = tcurrent hla = 0

It’s recalled that the previous definitions for fUAV : tpreUAV 7→ tuav and fRAV : trav 7→ tfolRAV .

25

4.2.1.1 Option 1: with Enforced UAV Delay

Before the execution of a first event in a cycle, a federate does a pTAR(tnextPointInT ime hla) request

at tcurrent ptII . Rav-events can be received. But when a pTAG(tnextPointInT ime hla) is received, we

are sure that no more rav-events will arrive in this cycle. At this moment, tcurrent hla is set to

tnextPointInT ime hla. These rav-events should be transfered to ptolemy-events. And we are able

to execute the original or transfered ptolemy-events one by one in this cycle regardless of other

rav-events. On basis of (R3), (R5) is also valid, so we have the equation 4.7b.

As for the uav-events, they should be sent after tcurrent hla + lah to satisfy (R1) shown in

equation 4.7a.

∀t ∈ R+, fUAV (t) =

{
tnextPointInT ime hla + lah, if t ∈]tcurrent hla, tnextPointInT ime hla]

t, if t > tnextPointInT ime hla

(4.7a)

∀t ∈ R+, fRAV (t) = t (4.7b)

Example 1 Let us consider the scenario described in figure 4.2, tnextPointInT ime hla = Ts hla. Each

step bellow indicates the events in the CalendarQueue and HLA services (if any):

0
tptII

0
thla

TAR

Ts_hla

RAV opt1

0
tptII

0
thla

TAR

Ts_hla

RAV opt2

folRAV1'

UAV is delayed to Ts_hla+lah

lah

RAV is delayed to Ts_hla

e1', e2'

0

tptII

0

thla

TAR e1', e2'

Ts_hla

folRAV preUAV other

ptolemy-event

pRAV pUAV

e1 e2

e1 e2

e2'e1'

e1,e2

UAV is delayed to Ts_hla

RAV is delayed to Ts_hla

0

tptII

0

thla

TAR

Ts_hla
RAV opt3

folRAV preUAV other

ptolemy-event

RAV UAV

pUAV1

pRAV1'

folRAV1'

e1 e2 e2'e1'

e1 e2 e2'e1'

UAV is partially delayed to Ts_hla+lah

folRAV preUAV other

ptolemy-event

pRAV pUAV

folRAV preUAV other

ptolemy-event

pRAV pUAV

pUAV2
pRAV2'

pUAV1, pUAV2

pRAV1'

pUAV1

pRAV2'

pUAV2

preUAV1

preUAV2

folRAV2'

preUAV1

preUAV2

folRAV2'

folRAV1', folRAV2'

Figure 4.2: Concept of TAR: with UAV delay

Step 1.1 tcurrent ptII = 0, tcurrent hla = 0.

CalendarQueue: {preUAV1(t1), preUAV2(t2)}.
HLA service: pTAR(Ts hla); {tick(), pRAV1′(t1′)}; {tick(), pRAV2′(t2′)}; {tick(), pTAG(Ts hla)}.
CalendarQueue: {folRAV1′(t1′), preUAV1(t1), preUAV2(t2), folRAV2′(t2′)}.

Step 1.2 tcurrent ptII = t1′ , tcurrent hla = Ts hla.

CalendarQueue: {preUAV1(t1), preUAV2(t2), folRAV2′(t2′)}.

Step 1.3 tcurrent ptII = t1, tcurrent hla = Ts hla.

CalendarQueue: {preUAV2(t2), folRAV2′(t2′)}.
HLA service: pUAV1(Ts hla + lah).

Step 1.4 tcurrent ptII = t2, tcurrent hla = Ts hla.

CalendarQueue: {folRAV2′(t2′)}.
HLA service: pUAV2(Ts hla + lah).

26

Step 1.5 tcurrent ptII = t2′ , tcurrent hla = Ts hla.

CalendarQueue: ∅.

In a nutshell, both events preUAV1 and preUAV2, occurring at different time t1 and t2, are

delayed and sent to the RTI as rav-events at time Ts hla + lah. As for the pRAV, they are put in

the CalendarQueue with their original time stamp.

4.2.1.2 Another implementation for Option 1

The slight different with the previous method is the way we deal with rav-events. The main idea

of this choice is to make a pTAR() at the beginning of a cycle, deal with the pRAV immediately

if we get one, finally try to receive its TAG when all rav-events already have been processed. It

means that each time we receive a rav-event, we process our next event without TAG. In other

words, the time interval [tcurrent ptII , trav] is valid because no more rav-events will arrive earlier

than trav. Thus, pUAV will be handled during an advancing phase, (R2) should be taken into

account which validates (R1). It is a must to delay pUAV to tnextPointInT ime hla + lah (see equation

4.7a). The same equations with (4.7) are used in this implementation.

We find out we have the same results comparing with previous idea with a more complicated

process. In this way, the previous solution is our preference.

Example 2 We take the previous example to see how this method works.

Step 2.1 tcurrent ptII = 0, tcurrent hla = 0.

CalendarQueue: {preUAV1(t1, val1), preUAV2(t2, val2)}.
HLA service: pTAR(Ts hla); {tick(), pRAV1′(t1′)}.
CalendarQueue: {folRAV1′(t1′), preUAV1(t1), preUAV2(t2)}.

Step 2.2 tcurrent ptII = t1′ , tcurrent hla = 0.

CalendarQueue: {preUAV1(t1), preUAV2(t2)}.
HLA service: {tick(), pRAV2′(t2′)}.
CalendarQueue: {preUAV1(t1), preUAV2(t2), folRAV2′(t2′)}.

Step 2.3 tcurrent ptII = t1, tcurrent hla = 0.

CalendarQueue: {preUAV2(t2), folRAV2′(t2′)}.
HLA service: pUAV1(Ts hla + lah); {tick(), pTAG(Ts hla)}.

Step 2.4 tcurrent ptII = t2, tcurrent hla = Ts hla.

CalendarQueue: {folRAV2′(t2′)}.
HLA service: pUAV2(Ts hla + lah).

Step 2.5 tcurrent ptII = t2′ , tcurrent hla = Ts hla.

CalendarQueue: ∅.

Comparing with Example 1 and 2, we can see that there is no difference dealing with preUAV1(t1)

and preUAV2(t2) (e.g. Step 1.2 to 1.4 or 2.3 to 2.4) but Step 1.2 translates RAV(te1) and RAV(te2)

at once, whereas in Example 2, two different steps are needed (Step 2.1 and 2.2).

27

4.2.1.3 Option 2: with Enforced RAV Delay

We don’t intend to deal with the rav-events until the accomplishment of all ptolemy-events. It

means that pTAR(tnextPointInT ime hla) shall be done after the management of ptolemy-events in a

cycle. We receive the rav-events continuously until pTAG(tnextPointInT ime hla) is issued by RTI.

With (R5), a rav-event pRAV(t) with t ∈]tcurrent hla, tnextPointInT ime hla] should be registered in

the queue after tcurrent ptII , so we propose pRAV(tnextPointInT ime hla) (see equation 4.8b). (R1) is

conditionally guaranteed because the time tcurrent ptII and tcurrent hla are asynchronous. We make

sure of (R1) explicitly (see equation 4.8a).

∀t ∈ R+, fUAV (t) =

{
tcurrent hla + lah, if t < tcurrent hla + lah

t, otherwise
(4.8a)

∀t ∈ R+, fRAV (t) =

{
tnextPointInT ime hla, if t ∈]tcurrent hla, tnextPointInT ime hla]

t, if t > tnextPointInT ime hla.
(4.8b)

Example 3 Figure 4.3, tnextPointInT ime hla = Ts hla.

0
tptII

0
thla

TAR

Ts_hla

RAV opt1

0
tptII

0
thla

TAR

Ts_hla

RAV opt2

folRAV1'

UAV is delayed to Ts_hla+lah

lah

RAV is delayed to Ts_hla

e1', e2'

0

tptII

0

thla

TAR e1', e2'

Ts_hla

folRAV preUAV other

ptolemy-event

pRAV pUAV

e1 e2

e1 e2

e2'e1'

e1,e2

UAV is delayed to Ts_hla

RAV is delayed to Ts_hla

0

tptII

0

thla

TAR

Ts_hla
RAV opt3

folRAV preUAV other

ptolemy-event

RAV UAV

pUAV1

pRAV1'

folRAV1'

e1 e2 e2'e1'

e1 e2 e2'e1'

UAV is partially delayed to Ts_hla+lah

folRAV preUAV other

ptolemy-event

pRAV pUAV

folRAV preUAV other

ptolemy-event

pRAV pUAV

pUAV2
pRAV2'

pUAV1, pUAV2

pRAV1'

pUAV1

pRAV2'

pUAV2

preUAV1

preUAV2

folRAV2'

preUAV1

preUAV2

folRAV2'

folRAV1', folRAV2'

Figure 4.3: Concept of TAR: with RAV delay

Step 3.1 tcurrent ptII = t1, tcurrent hla = 0.

CalendarQueue: {preUAV2(t2)}.
HLA service: pUAV1(t1).

Step 3.2 tcurrent ptII = t2, tcurrent hla = 0.

CalendarQueue: ∅.

HLA service: pUAV2(t2); pTAR(Ts hla);{tick(), pRAV1′(t1′)}; {tick(), pRAV2′(t2′)}; {tick(),

pTAG(Ts hla)}.
CalendarQueue: {folRAV1′(Ts hla), folRAV2′(Ts hla)}.

Step 3.3 tcurrent ptII = Ts hla, tcurrent hla = Ts hla.

CalendarQueue: {folRAV2′(Ts hla)}.

Step 3.4 tcurrent ptII = Ts hla, tcurrent hla = Ts hla

CalendarQueue: ∅.

In a nutshell, the ptolemy-events preUAV1(t1), preUAV2(t2) are translated to uav-events at

their own time stamp te1 and te2 , while rav-events are delayed to Ts hla knowing that tcurrent hla = 0.

28

4.2.2 Chosen Approach

Table 4.1: Analysis of possible solutions

Option 1 Option 2

Implementation Enforced delay for UAV Enforced delay for RAV

Time Deviation
lah for UAV

Unconditional Conditional

Assuming that the execution order is Producer 1, Producer 2, Consumer.

Processing for
simple producer
consumer model

preUAV1

0

folRAV preUAV

tptII

0
thla

pRAV pUAV

Fed producer 1

0
tptII

0
thla

Fed producer 2

0
tptII

0
thla

Fed consumer

pUAV1

Ts_hla

Ts_hla

Ts_hla

lah

lah

pRAV1, pRAV2

0
tptII

0
thla

Fed producer 1

0
tptII

0
thla

Fed producer 2

0
tptII

0
thla

Fed consumer

Ts_hla

Ts_hla

Ts_hla

pRAV1

preUAV2

pUAV2

folRAV1, folRAV2

preUAV1

pUAV1

preUAV2

pUAV2

pRAV2

folRAV2, folRAV1

preUAV1

0

folRAV preUAV

tptII

0
thla

pRAV pUAV

Fed producer 1

0
tptII

0
thla

Fed producer 2

0
tptII

0
thla

Fed consumer

pUAV1

Ts_hla

Ts_hla

Ts_hla

lah

lah

pRAV1, pRAV2

0
tptII

0
thla

Fed producer 1

0
tptII

0
thla

Fed producer 2

0
tptII

0
thla

Fed consumer

Ts_hla

Ts_hla

Ts_hla

pRAV1

preUAV2

pUAV2

folRAV1, folRAV2

preUAV1

pUAV1

preUAV2

pUAV2

pRAV2

folRAV2, folRAV1

Feasibility Not Complicated

Performance
Not exactly the same behavior with NER, performance depends on the
choice of Ts hla and lah.
No pUAV(t)-pRAV(t) loop in an execution cycle.

In fact, we could get an another option which combines option 1 and 2 with enforced UAV and

RAV delay at the same time with no time deviation. But the accumulation of two times of delay

bothers us obviously. We abandon this idea at once. Option 1 and 2 can both be implemented.

However, we should pay more attention, in some cases these two options will differentiate the

execution order of events. In the example in table 4.1, the federation Consumer would receive

preUAV1(t1) and preUAV2(t2) at Ts hla + lah when using option1 and would receive preUAV2(t2),

preUAV1(t1) at Ts hla. Considering a less time deviation in UAV, option 2 is chosen.

The option 2 allows us to deal with all ptolemy-events in a cycle of time then advance the HLA

logical time if a permission is granted (the reception of TAG), after a time request TAR made

through proposeTime().

29

In the waiting phase for a TAG, if a rav-event arrives with time stamp τ , we don’t want to

translate it to a ptolemy-event with its same time stamp τ . Because the appearance of a new

ptolemy-event will contradict with our previous work: we have already finished the processing of

all ptolemy-events in the cycle. So it is proposed to deal with this event at the end of the cycle.

4.3 Implementation of TAR

4.3.1 Primary Results

We will take the option 2 enforcing RAV delay in a Java implementation after a primary analysis.

In the following part, the notation for two events a, b:

• a; b means b is executed after a.

• a⇒ b means a is translated to b.

Corresponding to our choice, we have the results as follows.

1) All federates are supposed to be regulating and constrained at the same time.

2) RTI delivers rav-events respecting increasing time stamp order. It means that if two rav-events

have the same time stamp, they will be executed depending on the order of uav − events′

generation.

∀ pRAV(t1, val1), pRAV(t2, val2) with t1, t2 ∈ R+{
pRAV(t1, val1); pRAV(t2, val2), If t1 < t2, or {t1 = t2, pUAV(t1, val1); pUAV(t2, val2)}
pRAV(t2, val1); pRAV(t1, val2), If t1 > t2, or {t1 = t2, pUAV(t2, val2); pUAV(t1, val1)}

3) All rav-events in the same cycle will be time stepped to tnextPointInT ime hla. Each rav-event will

be translated to its associated ptolemy-event named folRAV following its reception.

∀t ∈ R+, fRAV (t) =

{
tnextPointInT ime hla, if t ∈]tcurrent hla, tnextPointInT ime hla]

t, if t > tnextPointInT ime hla.

4) An uav-event will be delayed to send if its time stamp is smaller than tcurrent hla+lah, otherwise

it keeps unchangeable.

∀t ∈ R+, fUAV (t) =

{
tcurrent hla + lah If t < tcurrent hla + lah

t Otherwise

5) Considering the asynchronism problem of t0 ptII (see section 3.2.1), the rav-events arriving

before t0 ptII , will be all received at the beginning of federate execution.

∀t ∈ R, fRAV (t) =

{
t0 ptII If t ≤ t0 ptII

t Otherwise

30

TAR

tnextPointInTime_hla
tnextPointInTime_hla

+Ts_hla

tcurrent_ptII < te_ptII ≤ tnextPointInTime_hla

tnextPointInTime_hla < te_ptII

tnextPointInTime_hla

+2Ts_hla

tcurrent_ptII

tcurrent_hla

tptII

thla

Arrival of
lastFoundEvent: e

tcurrent_ptII = te_ptII

Figure 4.4: Different intervals for TAR

4.3.2 Development

According to the arrival time of the earliest ptolemy-event, named lastFoundEvent, we can dis-

tinguish the following cases showing different behaviors.

(1) lastFoundEvent will arrive at the Ptolemy current time (see figure 4.4 green area) which

means

tlastFoundEvent = tcurrent ptII

In this case, it is not necessary to call HLA time advancement services (NER and TAR) at its

current Ptolemy time. As a result, the performance can be improved by returning its current

time without any HLA services.

(2) lastFoundEvent will arrive in the same cycle (see figure 4.4 blue area) which means

tlastFoundEvent ∈]tcurrent ptII , tnextPointInT ime hla]

With the asynchronism of tcurrent ptII and tcurrent hla, all ptolemy-events in the same cycle will

be priorly treated, thus advancing to its current time tcurrent ptII . There’s no worry about the

arrival of rav-events because they are all delayed to their own tnextPointInT ime hla.

(3) lastFoundEvent has its time stamp after tnextPointInT ime hla (see figure 4.4 red area).

tlastFoundEvent ∈]tnextPointInT ime hla,+∞[

There is no ptolemy-event in the interval]tcurrent ptII , tnextPointInT ime hla] during this phase,

the federate must do pTAR(tnextPointInT ime hla) then continuously do tick2() action until

its request is granted by a callback pTAG(tnextPointInT ime hla). After then, the tcurrent hla is

advanced to tnextPointInT ime hla. If we get any rav-event, it must be converted to a ptolemy-

event with time stamp tcurrent hla which is equal to tnextPointInT ime hla. As a result, the earliest

event in CalendarQueue is no more the original lastFoundEvent, but the recent received

event, tlastFoundEvent = tcurrent hla.

31

pTAR(tnextPointInTime_hla)

Tick()

Get lastFoundEvent: e

Take lastFoundEcvent: e

tcurrent_ptII=te

tcurrent_ptII=_consultTime
Regulators(te)

Ptolemy

_timeSteppedBasedTimeAdvance()

pUAV(tcurrent_ptII)

TAG

No

_getNextActorToFire()

HlaPublisher.fire()

HlaManager.java

Return te

tnextPointInTime_hla+=Ts_hla

Yes

No

tcurrent_ptII>tcurrent_hla+lah

pUAV(tcurrent_hla+lah)

pRAV(tnextPointInTime_hla, val)

_putReflectedAttributesOn
HlaSubscribers();

tnextPointInTime_hla< te

RAV

te= tnextPointInTime_hla

tnextPointInTime_hla< te

Yes

No

No

Yes

proposeTime()

te = tcurrent_ptII

Return tcurrent_ptII

_ eventBased

Return _eventsBased
TimeAdvance()

Return
_timeSteppedBased

TimeAdvance()

Yes
No

YesYes
No

Other actors

fire()

actorToFire =
HlaPublisher No

Yes

Figure 4.5: TAR Time Advancement Diagram

32

4.3.3 Programing

We test our condition (1) in section 4.3.2 at the beginning of proposeTime() (see algorithm 1

line 2) for reducing HLA services calls, directly return tcurrent ptII and give a detailed process in

timeSteppedBasedTimeAdvance() including above-mentioned case (2), case(3) (see figure 4.5 in

section 4.3.2). Its pseudo code is written for a clearer understanding (see algorithm 2).

Algorithm 2 Propose a valid time though TAR

Input: an initial proposedT ime gets the time stamp of lastFoundEvent
Output: a valid proposedT ime to advance to

1: Method: timeSteppedBasedTimeAdvance(proposedTime)
2: /* CASE: LastFoundEvent will arrive after tnextPointInT ime hla.*/

3: while proposedT ime > tnextPointInT ime hla do
4: pTAR(tnextPointInT ime hla);
5: tag ← FALSE;
6: rav ← FALSE;
7: while tag = FALSE do
8: /* Every tick() get a callback pRAV(t) or pTAG(t),

9: * Once TAG is received, tcurrent hla = tnextPointInT ime hla */

10: tick();
11: end while
12: if rav= TRUE then
13: put rav-events in the queue with RAV delay;
14: if tnextPointInT ime hla < proposedT ime then
15: proposedT ime← tnextPointInT ime hla;
16: end if
17: end if
18: tnextPointInT ime hla ← tnextPointInT ime hla + Ts hla;
19: end while

20: /* CASE: LastFoundEvent will directly or indirectly (via previous

21: * execution) arrive in the same cycle.*/

22: return proposedT ime;
23: end Method:

4.4 Example of TAR
e30

tptII

0
thla

pUAV1 pRAV2'

NER

Lookahead

0
tptII

0
thla

TAR

Ts_hla 3Ts_hla2Ts_hla 4Ts_hla

folRAV preUAV other

ptolemy-event

pRAV pUAV

folRAV preUAV other

ptolemy-event

pRAV pUAV

Lookahead Lookahead

pUAV2

pUAV4

preUAV1 preUAV4

preUAV2

folRAV2'

pUAV1 pRAV2'pUAV2 pUAV4

e3

preUAV1 preUAV4

preUAV2

folRAV2'

Figure 4.6: Example of TAR

We take our previous example in NER to see how TAR works, shown in figure 4.6.

33

Execution Process Time starts from tcurrent ptII = 0, tcurrent hla = 0. So tnextPointInT ime hla =

Ts hla.

• Get preUAV1(t1)

→ t1 ≤ Ts hla → return t1 → Take preUAV1 → Set tcurrent ptII = t1

→ tcurrent hla + lah ≤ tcurrent ptII → pUAV1(tcurrent ptII)

• Get preUAV2(t2)

→ t2 > Ts hla → pTAR(Ts hla) → {tick(), pTAG(Ts hla)}, tcurrent hla = Ts hla → no RAV,

tnextPointInT ime hla = 2Ts hla

→ t2 > 2Ts hla → pTAR(2Ts hla)→ {tick(), pTAG(2Ts hla)}, tcurrent hla = 2Ts hla → no RAV,

tnextPointInT ime hla = 3Ts hla

→ t2 ≤ 3Ts hla → return t2 → Take preUAV2 → Set tcurrent ptII = t2

→ tcurrent hla + lah < tcurrent ptII → pUAV2(tcurrent ptII)

• Get e3(t3)

→ t3 > 3Ts hla→ pTAR(3Ts hla)→{tick(), pRAV(t2′)}→ {tick(), pTAG(3Ts hla)}, tcurrent hla =

3Ts hla → with RAV, folRAV2′(3Ts hla) is put in the queue. → t2′ ≤ 3Ts hla → t2′ = 3Ts hla,

tnextPointInT ime hla = 4Ts hla

→ t2′ ≤ 4Ts hla → return t2′ → Take folRAV2′ → Set tcurrent ptII = t2′

→ fire(t2′)

• Get e3 with t3 ≤ 4Ts hla → return t3 → Take e3 → Set tcurrent ptII = t3

→ fire(t3)

• Get e4 with t4 ≤ 4Ts hla → return t4 → Take e4 → Set tcurrent ptII = t4

→ tcurrent hla + lah < tcurrent ptII → pUAV4(tcurrent hla)

4.5 Validation of TAR

After the implementation of TAR algorithm, we want to see whether it performs in our expecta-

tion. A simple producer multiple consumer model has been constructed to verify the consistency

with the specifications. Its detail is shown in figure 4.7. Moreover, it is also provided after instal-

lation of Ptolemy, situated in $PTII /org /hacerti /SimpleProducerMultipleConsumerTAR.

Here, we have got a unique producer (prod1), following two parallel consumers (cons1 & cons2).

Another two parallel consumers (cons3 & cons4) are connected to cons2 which permit us to dis-

tinguish the different behavior of NER and TAR. In this example, there are ptolemy-events which

are produced by actor DiscreteClock, and RAV messages which are received by HlaSubscriber in

prod1 producer1(as depicted in figure 4.8c).

All federates start with Ptolemy start time t0 ptII = 0 and have the same lookahead lah

lah=0.1. All of them have the same time step Ts hla Ts = 10 except for prod1 which has Ts=4.

34

(a) Global model (b) Producer1-tar (c) Consumer1-tar

(d) Consumer2-tar (e) Consumer3-tar (f) Consumer4-ner

Figure 4.7: SimpleProducerMultipleConsumerTAR

0
1

2

3

4

0 2 4 6 8 1 0 1 2

P 1

(a) Producer1

-4
-2

0

2

4

5 1 0 1 5 2 0

C 1

(b) Consumer1

val
x

0
1

2

3

4

1 0 1 5 2 0

C 2

(c) Consumer2

0

1

2

3

19.0 19.5 20.0 20.5 21.0

C 3

(d) Consumer3

0
1

2

3

4

1 2 1 4 1 6 1 8 2 0

C 4

(e) Consumer4

Figure 4.8: Results of SimpleProducerMultipleConsumerTAR

T represents the period of a DiscreteClock that generates the periodic events.

Their execution results are shown in figure 4.8. Ignoring microstep and actor, an event is noted

as e(t, val). prod1, at the beginning , generates the ramp value every three seconds, denoted as

e1(0, 0), e2(3, 1), e3(6, 2), e4(9, 3), e5(12, 4). cons1 and cons2 receive all these values at the same

time. Knowing that all rav-events with time stamp smaller than tnextPointInT ime hla shall be delayed

to tnextPointInT ime hla. Four values corresponding to e1, e2, e3, e4 are received at time 10 by cons1 &

cons2, and the rest one corresponding to e5 is received at time 20. Moreover, for cons1, the actor

DiscreteClock produces the “internal” events at time 5 and 7 with a period 12. Meanwhile, the

events in cons2 are delayed explicitly with time 1.0.

Federates cons3 and cons4 work at the same time for reception. There’s no doubt that cons3

35

shall receive the first four values at its time step 20 with a TAR application (see figure 4.8d).

Then cons4 reacts immediately to obtain the sent values thanks to NER, as shown in figure 4.8e.

Theses results are the expected ones according to the analysis done in section 4.2.

4.6 Problem for stopTime

Let us note tstop for the stop time of each federate. If we analyze the results depicted on figure 4.8

in detail, we can observe that:

1. The event e5(12, 4) sent by federate prod1 is delayed by federate cons2 to timestamp t=20.

During the execution of cons2, an additional delay is affected by a TimeDelay actor (with

delay of 1 time unit). The associated value is sent through the output x with timestamp t =

21 and is displayed in figure 4.8c. Note that the stop time of this federate is tstop = 22 > 20.

2. The same event e5(12, 4) sent by federate prod1 is also delayed by federate cons1 to timestamp

t=20. Note that the stop time of federate cons1 is tstop = 20 and this event is displayed in

figure 4.8b.

3. The attribute x is subscribed by federate cons3, with tstop = 30. Those events with timestamp

t=11 (at cons2) are delayed by cons3 at timestamp t=20. We expect that the event with

timestamp t = 21 (at cons2) would have been received by cons3 at timestamp t = 30 and

displayed. But only events with t = 20 (at cons3) are displayed but the one with t=30 is

not shown in figure 4.8d.

What is the difference between federate cons1 and cons3? In both cases, tstop = k × Ts hla.

Let us remind that a federate will stop for two conditions:

(1) CalendarQueue is empty, so there is no events to treat.

After dealing with all rav-events with time stamp < 20 (at this time, tcurrent hla = 10), there’s

no events in the queue of cons3 so it terminates its work, and the federate will lost the data

in its last cycle of execution.

(2) CalendarQueue still has events inside but the next event i.e. lastFoundEvent will arrive later

than stopTime which means tlastFoundEvent > tstop.

Federate Cons1 ends up under this condition because DiscreteClock regenerates a new event

at time t = 5 + 2 ∗ T = 29 with a value val and stock it in the queue. In this way, DE

director will get this event, make a time advance request TAR(20) to HlaManager through

proposedTime(). After the authority of RTI, tcurrent hla is advanced to 20, and the tcurrent ptII

will be advanced to 29. At the end, it finds out this proposal time 29 is later than the tstop

for cons1 which stops the work of federate.

36

(a) Producer (b) Consumer

Lost

Lost

(a) Result for solution (a)

Lost

Lost

(b) Result for solution (b)

Proposal Solutions This two solutions are not yet coded in the HlaManager.java. We suppose

the stop time tstop = nTs hla, with n ∈ N. A simple producer/consumer model (see figure ??) is

used for explaining the difference of two results.

(a) Process the ptolemy-events with time stamp kTs hla (0 < k < n) before the time advance

request TAR(kTs hla) except for the events with time stamp 0 and nTs hla. In this case,

tcurrent hla maintain at time kTs hla when we process the preUAV((k+ 1)Ts hla), with k ∈]0, n[.

∀k ∈]0, n[, if we have preUAV(kTs hla) ⇒ UAV(kTs hla)

Then, RAV(kTs hla) ⇒ folRAV(kTs hla)

If k = 0, n, preUAV(kTs hla) ⇒ UAV(kTs hla + lah)

RAV(kTs hla + lah)⇒ folRAV((k + 1)Ts hla + lah)

Conclusion: ∀k ∈]0, n[, preUAV(kTs hla) will be received at time kTs hla, but for k = 0, n,

preUAV(kTs hla) will be received at (k + 1)Ts hla.

37

(b) Process the ptolemy-events with time stamp kTs hla (0 ≤ k ≤ n) after the time advance request

TAR(kTs hla). In this way, tcurrent hla advance to kTs hla, tcurrent hla = k ∗ Ts earlier than the

ptolemy- events processing.It means that:

∀k ∈ [0, n], if we have preUAV(kTs hla) ⇒ UAV(kTs hla + lah)

Then, RAV(kTs hla + lah) ⇒ folRAV((k + 1)Ts hla)

Conclusion: ∀k ∈ [0, n], preUAV(kTs hla) will be received at time (k + 1)Ts hla.

38

Chapter 5

Conclusion

This internship provides an opportunity to know distributed simulation works. Attention was

focused to improve the PTII-HLA simulation framework by implementing the of the TAR mech-

anism. As a standard for distributed simulation, HLA aims to offer the interoperability and reuse

of federates. While PTII takes charge of heterogeneous simulation. We benefit well with their

co-simulation framework.

With the existing implementation of NER work mechanism, its analysis was done at the be-

ginning which provides us an opportunity to get more acknowledges. We have found out some

shortcomings in NER implementation, various slight modifications were naturally done to improve

the NER. Meanwhile, being familiar with the PTII-HLA co-simulation framework, we intended to

think out our algorithm for TAR implementation. Even though HLA standards concerning TAR

are well specified, we have made some choices for the implementation under certain constraints of

Ptolemy. All assumptions of our work were detailed in this report. The explanation of algorithm

is always not easy, that’s why we tried to find a formal way to let the algorithm make sense. For

a validation of TAR, we made several corn cases models to see its performance which conforms

our expectations.

This work has several perspectives: implement the special cases for NER and TAR where

lookahead is equal to zero, named next event request available (NERA) and time advance request

available (TARA). Now that TAR is validated for quite simple models, a more complicated appli-

cation could be implemented.

During the whole internship, I became familiar with Unix system because all the work are

done inside, working with the Ptolemy project headed by Christopher Brooks at University of

Berkeley allowed me to learn how to work with other programmers for developing a software to-

gether, how to properly program, what is the pattern design. The tool svn is so good to make

a version control. This internship give me a chance to learn a lot of new things and put them in use.

39

Appendix A

HlaManager.java

A.1 proposeTime(Time)

/** Propose a time to advance to. This method is the one implementing the

* TimeRegulator interface and using the HLA/CERTI Time Management services

* (if required). Following HLA and CERTI recommendations, if the Time

* Management is required then we have the following behavior:

* Case 1: If lookahead = 0

* -a) if time-stepped Federate, then the timeAdvanceRequestAvailable()

* (TARA) service is used;

* -b) if event-based Federate, then the nextEventRequestAvailable()

* (NERA) service is used

* Case 2: If lookahead > 0

* -c) if time-stepped Federate, then timeAdvanceRequest() (TAR) is used;

* -d) if event-based Federate, then the nextEventRequest() (NER) is used;

* Otherwise the proposedTime is returned.

* NOTE: For the Ptolemy II - HLA/CERTI cooperation the default (and correct)

* behavior is the case 1 and CERTI has to be compiled with the option

* "CERTI_USE_NULL_PRIME_MESSAGE_PROTOCOL".

* @param proposedTime The proposed time.

* @return The proposed time or a smaller time.

* @exception IllegalActionException If this attribute is not

* contained by an Actor.

*/

@Override

public Time proposeTime(Time proposedTime) throws IllegalActionException {

Time currentTime = _director.getModelTime();

...

// If the proposedTime is equal to current time

// so it has no need to ask for the HLA service

// then return the currentTime.

if (currentTime.equals(proposedTime)) {

// Even if we avoid the multiple calls of the HLA Time management

// service for optimization, it could be possible to have events

// from the Federation in the Federate’s priority timestamp queue,

// so we tick() to get these events (if they exist).

if (_debugging) {

40

_debug(this.getDisplayName() + " proposeTime() - SKIP RTI"

+ " with current Time is equal to proposed Time ("

+ currentTime.getDoubleValue() + ")");

}

try {

_rtia.tick();

} catch (ConcurrentAccessAttempted e) {

throw new IllegalActionException(this, e,

"ConcurrentAccessAttempted ");

} catch (RTIinternalError e) {

throw new IllegalActionException(this, e, "RTIinternalError ");

}

return currentTime;

}

// If the HLA Time Management is required, ask to the HLA/CERTI

// Federation (the RTI) the authorization to advance its time.

if (_isTimeRegulator && _isTimeConstrained) {

synchronized (this) {

// Call the corresponding HLA Time Management service.

try {

if (_eventBased) {

return _eventsBasedTimeAdvance(proposedTime);

} else {

return _timeSteppedBasedTimeAdvance(proposedTime);

}

} catch (InvalidFederationTime e) {

...

}

}

}

//_lastProposedTime = breakpoint;

return null;

}

A.2 eventsBasedTimeAdvance(Time)

/**

* RTI service for event-based federate (NER or NERA)

* is used for proposing a time to advance to.

* @param proposedTime time stamp of lastFoundEvent

* @return a valid time

*/

private Time _eventsBasedTimeAdvance(Time proposedTime)

throws IllegalActionException, InvalidFederationTime,

FederationTimeAlreadyPassed, TimeAdvanceAlreadyInProgress,

FederateNotExecutionMember, SaveInProgress,

EnableTimeRegulationPending, EnableTimeConstrainedPending,

RestoreInProgress, RTIinternalError, ConcurrentAccessAttempted,

SpecifiedSaveLabelDoesNotExist {

41

CertiLogicalTime certiProposedTime = _convertToCertiLogicalTime(proposedTime);

if (_hlaLookAHead > 0) {

// Event-based + lookahead > 0 => NER.

if (_debugging) {

_debug(this.getDisplayName()

+ " proposeTime() - current status - " + "t_ptII = "

+ _director.getModelTime().getDoubleValue()

+ "; t_certi = " + _federateAmbassador.logicalTimeHLA

+ " - call CERTI NER -" + " nextEventRequest("

+ certiProposedTime.getTime() + ") with model at "

+ proposedTime.getDoubleValue());

}

_rtia.nextEventRequest(certiProposedTime);

} else {

// Event-based + lookahead = 0 => NERA + NER.

// Start the time advancement loop with one NERA call.

...

}

// Wait the time grant from the HLA/CERTI Federation (from the RTI).

_federateAmbassador.timeAdvanceGrant = false;

int cntTick = 0;

while (!(_federateAmbassador.timeAdvanceGrant)) {

if (_debugging) {

_debug(this.getDisplayName() + " proposeTime() -"

+ " wait CERTI TAG - " + "timeAdvanceGrant("

+ certiProposedTime.getTime() + ") by calling tick2()");

}

_rtia.tick2();

cntTick++;

}

// If we get any rav-event

if (cntTick != 1){

// Store reflected attributes RAV as events on HLASubscriber actors.

_putReflectedAttributesOnHlaSubscribers();

// At this step we are sure that the HLA logical time of the

// Federate has been updated (by the reception of the TAG callback

// (timeAdvanceGrant()) and its value is the proposedTime or

// less, so we have a breakpoint time.

try {

CertiLogicalTime hlaTimeGranted = (CertiLogicalTime)

_federateAmbassador.logicalTimeHLA;

Time breakpoint = _convertToPtolemyTime(hlaTimeGranted);

if (_debugging) {

_debug("TAG for " + hlaTimeGranted + "model moves to"

+ breakpoint.getDoubleValue());

}

// So we’d like to propose the breakpoint time instead.

proposedTime = breakpoint;

42

} catch (IllegalActionException e) {

throw new IllegalActionException(this, e,

"The breakpoint time is not a valid Ptolemy time");

}

}

return proposedTime;

}

A.3 timeSteppedBasedTimeAdvance(Time)

/**

* RTI service for time-stepped federate (TAR or TARA)

* is used for proposing a time to advance to.

* @param proposedTime time stamp of lastFoundEvent

* @return a valid time to advance to

*/

private Time _timeSteppedBasedTimeAdvance(Time proposedTime)

throws IllegalActionException, InvalidFederationTime,

FederationTimeAlreadyPassed, TimeAdvanceAlreadyInProgress,

FederateNotExecutionMember, SaveInProgress,

EnableTimeRegulationPending, EnableTimeConstrainedPending,

RestoreInProgress, RTIinternalError, ConcurrentAccessAttempted {

Time currentTime = _director.getModelTime();

if (_hlaTimeStep > 0) {

// Calculate the next point in time for making a TAR(hlaNextPointInTime)

// or TARA(hlaNextPointInTime)

Time hlaNextPointInTime = _getHlaNextPointInTime();

CertiLogicalTime certiNextPointInTime =

_convertToCertiLogicalTime(hlaNextPointInTime);

// There are two types of events in a federate model:

// - rav et uav events via RTI

// - all events in ptolemy eventQueue

if (_hlaLookAHead > 0) {

// Time-stepped + lookahead > 0 => TAR.

// LastFoundEvent is the earlist event in calendar queue,

// We’d like to see if it is still the earlist one after

// a registration of a rav-event.

// There are two cases:

// case 1:

// WHILE time stamp of LastFoundEvent(proposedTime) >

hlaNextPointInTime,

// THEN TAR(hlaNextPointInTime) service is called.

// Tick() doesn’t stop Until it receives a TAG(hlaNextPointInTime),

// At the end of tick,

// IF we get any RAV(t)

// all rav should be put in the queue

43

// with a time stamp delay to hlaNextPointInTime;

// IF hlaNextPointInTime < proposedTime which means

LastFoundEvent

// is no more our earlist event;

// THEN proposedTime should be raplaced by

hlaNextPointInTime.

// END IF

// END IF

// END WHILE

// case 2: LastFoundEvent is directly or indirectly(via case 1)

// in (hlacurrentTime, hlaNextPointInTime]

// we don’t want to advance the certi time.

// so return proposedTime, this event is valid to execute.

// case 1:

while (proposedTime.compareTo(hlaNextPointInTime) > 0) {

if (_debugging) {

_debug(this.getDisplayName()

+ " proposeTime() - current status "

+ "t_ptII = " + currentTime + "; t_certi = "

+ _federateAmbassador.logicalTimeHLA

+ " - call CERTI TAR - "

+ " timeAdvanceRequest("

+ certiNextPointInTime.getTime() + ")");

}

_rtia.timeAdvanceRequest(certiNextPointInTime);

// Wait the time grant from the HLA/CERTI Federation (from the RTI).

_federateAmbassador.timeAdvanceGrant = false;

int cntTick = 0;

while (!(_federateAmbassador.timeAdvanceGrant)) {

if (_debugging) {

_debug(this.getDisplayName() + " proposeTime() -"

+ " wait CERTI TAG - "

+ "timeAdvanceGrant("

+ certiNextPointInTime.getTime()

+ ") by calling tick2()");

}

try {

_rtia.tick2();

cntTick++;

} catch (RTIexception e) {

throw new IllegalActionException(this, e,

e.getMessage());

}

}

// If we get any rav-event

if (cntTick != 1) {

// Store reflected attributes as events on HLASubscriber actors.

_putReflectedAttributesOnHlaSubscribers();

// If the new rav-event will arrive before our lastFoundEvent,

44

if (hlaNextPointInTime.compareTo(proposedTime) < 0)

proposedTime = hlaNextPointInTime;

}

// Advance the hlaNextPointInTime

hlaNextPointInTime = _getHlaNextPointInTime();

certiNextPointInTime =

_convertToCertiLogicalTime(hlaNextPointInTime);

}

// case 2:

if (_debugging) {

_debug(this.getDisplayName()

+ " proposeTime() - current status " + "t_ptII = "

+ currentTime + "; t_certi = "

+ _federateAmbassador.logicalTimeHLA

+ " - an event with time stamp = " + proposedTime

+ " will be taken.");

}

return proposedTime;

} else {

// Time-stepped + lookahead = 0 => TARA + TAR.

// Start the loop with one TARA call.

...

}

}

return null;

}

A.4 updateHlaAttribute(HlaPublisher, Token, String)

void updateHlaAttribute(HlaPublisher hp, Token in, String senderName)

throws IllegalActionException {

Time currentTime = _director.getModelTime();

// The following operations build the different arguments required

// to use the updateAttributeValues() (UAV) service provided by HLA/CERTI.

// Retrieve information of the HLA attribute to publish.

Object[] tObj = _hlaAttributesToPublish.get(hp.getName());

// Encode the value to be sent to the CERTI.

byte[] valAttribute = MessageProcessing.encodeHlaValue(hp, in);

if (_debugging) {

if (hp.useCertiMessageBuffer()) {

_debug(this.getDisplayName()

+ " - A HLA value from ptolemy has been"

+ " encoded as CERTI MessageBuffer" + " , currentTime="

+ _director.getModelTime().getDoubleValue());

}

}

45

SuppliedAttributes suppAttributes = null;

try {

suppAttributes = RtiFactoryFactory.getRtiFactory()

.createSuppliedAttributes();

} catch (RTIinternalError e) {

throw new IllegalActionException(this, e, "RTIinternalError ");

}

suppAttributes.add(_getAttributeHandleFromTab(tObj), valAttribute);

byte[] tag = EncodingHelpers.encodeString(_getPortFromTab(tObj)

.getContainer().getName());

// Create a representation of uav-event timestamp for CERTI.

// HLA implies to send event in the future when using NER or TAR services with

lookahead > 0.

// To avoid CERTI exception when calling UAV service

// with condition: uav(tau) tau >= hlaCurrentTime + lookahead.

Time uavTimeStamp = null;

if (_eventBased) {

// for NER, we add the lookahead value to the uav event’s timestamp.

uavTimeStamp = currentTime.add(_hlaLookAHead);

} else {

// For TAR, all uav-events with timestamp tau

// that must be published after (hla current Time + lookahead)

// We’ve made a choice for implementation of uav(tau):

// option 1: (all or certain) tau is delayed to hlaNextPointInTime,

// option 2: (all or certain)tau is delayed to currentTime+lookahead,

// option 3: others may exist.

// Here we take option 2: if tau <= hlaCurrentTime + lookahead.

// tau is delayed to currentTime + lookahead.

CertiLogicalTime certiCurrentTime = (CertiLogicalTime)

_federateAmbassador.logicalTimeHLA;

Time hlaCurrentTime = _convertToPtolemyTime(certiCurrentTime);

if (hlaCurrentTime.add(_hlaLookAHead).compareTo(currentTime) > 0)

uavTimeStamp = currentTime.add(_hlaLookAHead);

else

uavTimeStamp = currentTime;

}

CertiLogicalTime ct = _convertToCertiLogicalTime(uavTimeStamp);

if (_debugging) {

_debug(this.getDisplayName() + " publish() -"

+ " send (UAV) updateAttributeValues "

+ " current Ptolemy Time=" + currentTime.getDoubleValue()

+ " HLA attribute \""

+ _getPortFromTab(tObj).getContainer().getName()

+ "\" (timestamp=" + ct.getTime() + ", value="

+ in.toString() + ")");

}

try {

int id = _registeredObject.get(_federateName + " " + senderName);

_rtia.updateAttributeValues(id, suppAttributes, tag, ct);

} catch (Exception e) {

46

throw new IllegalActionException(this, e, e.getMessage());

}

}

A.5 putReflectedAttributesOnHlaSubscribers()

private void _putReflectedAttributesOnHlaSubscribers()

throws IllegalActionException {

// Reflected HLA attributes, e.g. updated values of HLA attributes

// received by callbacks (from the RTI) from the whole HLA/CERTI

// Federation, are store in the _subscribedValues queue (see

// reflectAttributeValues() in PtolemyFederateAmbassadorInner class).

Iterator<Entry<String, LinkedList<TimedEvent>>> it = _fromFederationEvents

.entrySet().iterator();

while (it.hasNext()) {

Map.Entry<String, LinkedList<TimedEvent>> elt = it.next();

//multiple events can occur at the same time

LinkedList<TimedEvent> events = elt.getValue();

while (events.size() > 0) {

TimedEvent ravevent = events.get(0);

// All rav-events received by HlaSubscriber actors, RAV(tau) with tau <

hlaCurrentTime

// are put in the event queue with timestamp hlaCurrentTime

if (_timeStepped) {

ravevent.timeStamp = _getHlaCurrentTime();

}

// If any rav-event received by HlaSubscriber actors, RAV(tau) with tau

< ptolemy startTime

// are put in the event queue with timestamp startTime

//FIXME: Or should it be an exception because there is something wrong

with

//the overall simulation ??

if (ravevent.timeStamp.compareTo(_director.getModelStartTime()) < 0) {

ravevent.timeStamp = _director.getModelStartTime();

}

// Get the HLA subscriber actor to which the event is destined to.

String identity = elt.getKey();

TypedIOPort tiop = _getPortFromTab(_hlaAttributesSubscribedTo

.get(identity));

HlaSubscriber hs = (HlaSubscriber) tiop.getContainer();

hs.putReflectedHlaAttribute(ravevent);

if (_debugging) {

_debug(this.getDisplayName()

+ " _putReflectedAttributesOnHlaSubscribers() - "

47

+ " put Event: " + ravevent.toString() + " in "

+ hs.getDisplayName());

}

events.removeFirst();

}

}

}

A.6 Other methods

/**

* make a conversion from ptolemy time to certi logical time

* @param pt ptolemy time

* @return certi logical time

*/

private CertiLogicalTime _convertToCertiLogicalTime(Time pt) {

return new CertiLogicalTime(pt.getDoubleValue() * _hlaTimeUnitValue);

}

/**

* make a conversion from certi logical time to ptolemy time

* @param ct certi logical time

* @return ptolemy time

* @throws IllegalActionException

*/

private Time _convertToPtolemyTime(CertiLogicalTime ct)

throws IllegalActionException {

return new Time(_director, ct.getTime() / _hlaTimeUnitValue);

}

/**

* Get hlaNextPointInTime in HLA to advance to when TAR is used.

* hlaNextPointInTime = hlaCurrentTime + Ts.

* @return next point in time to advance to.

* @throws IllegalActionException if hlaTimeStep is NULL.

*/

private Time _getHlaNextPointInTime() throws IllegalActionException {

return _getHlaCurrentTime().add(_hlaTimeStep);

}

/**

* Get the current time in HLA which is advanced after a TAG callback.

* @return hla current time

*/

private Time _getHlaCurrentTime() throws IllegalActionException {

CertiLogicalTime certiCurrentTime = (CertiLogicalTime)

_federateAmbassador.logicalTimeHLA;

return _convertToPtolemyTime(certiCurrentTime);

}

48

Bibliography

[1] B. Bréholée. Interconnexion de Simulations Distribuées HLA. PhD thesis, École Nationale

Supérieure de L’Aéronautique et de l’Espace, Mars 2005.

[2] D. Côme. Improving hla-ptolemy cosimulation framework.

[3] Defense Modeling and Simulation Office, 1901 N. Beauregard Street, Suite 504 Alexandria,

VA 22311. High Level Architecture Run-Time Infrastructure (RTI 1.3-Next Generation Pro-

grammer’s Guide Version 3.2), September 2000.

[4] C. P. Editor. System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org, 2014.

[5] J. FORGET. Architecture de Simulation Distribuée Temps Réel. PhD thesis, Université de

Toulouse, November 2009.

[6] R. M. Fujimoto. Time management in the high level architecture.

[7] R. M. Fujimoto and R. M. Weatherly. Time management in the dod high level architecture.

26:60–67.

[8] G. Lasnier. Toward a distributed and deterministic framework to design cyber-

physicalsystems.

[9] G. Lasnier, J. Cardoso, P. Siron, C. Pagetti, and P. Derler. Distributed simulation of het-

erogeneous and real-time systems. In Distributed Simulation and Real Time Applications

(DS-RT), pages 55–62. IEEE.

[10] U. of Berkeley. The ptolemy project. http://ptolemy.eecs.berkeley.edu/ptolemyII/

index.htm.

[11] ONERA. Certi. http://www.nongnu.org/certi/certi_doc/Install/html/intro.html.

49

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm
http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm
http://www.nongnu.org/certi/certi_doc/Install/html/intro.html

	Introduction
	Context
	Related Tools
	Internship Objective

	PTII-HLA
	Overview of Ptolemy
	Discrete-event Simulation
	Event Processing
	Actions for Event Processing

	HLA Standard
	HLA services
	Time Management

	PTII-HLA Co-simulation Framework
	Ptolemy Components
	View of Programming
	Representation of Event Processing

	Basic Analysis and Improvements for Next Event Request
	Analysis of NER
	Mechanism of NER
	Example of NER

	General Improvements
	Asynchronism problem of PTII start Time
	Reduction of HLA service calls
	Rearrangement of HlaManager graphical user interface

	Implementing Time Advance Request in PTII-HLA
	Overview of TAR
	Interests of TAR
	Principal Mechanism of TAR

	Assessing TAR
	Possible Solutions for TAR Implementation
	Chosen Approach

	Implementation of TAR
	Primary Results
	Development
	Programing

	Example of TAR
	Validation of TAR
	Problem for stopTime

	Conclusion
	HlaManager.java
	proposeTime(Time)
	_eventsBasedTimeAdvance(Time)
	_timeSteppedBasedTimeAdvance(Time)
	updateHlaAttribute(HlaPublisher, Token, String)
	_putReflectedAttributesOnHlaSubscribers()
	Other methods

