Eric NOULARD - eric.noulard@onera.fr
with the help of the CERTI developer community

June, 6 2011
ONERA - Centre de Toulouse
http://www.onera.fr/dtim
2 avenue E. Belin, B.P. 74025, F-31055 Toulouse Cedex 4, FRANCE

ONERA

THE FRENCH AEROSPACE LAB

Summary

e needs for a message specification language
@ The CERTI message specification language

O Demo

Q References

eric.noulard@onera.fr
http://www.onera.fr/dtim

QOutline

e needs for a message specification language
Message language specification why?
CERT]I practical needs
Embedded/Real-time CERTI

Outline

e needs for a message specification language
Message language specification why?

Distributed Architecture

Communication is needed

As soon as a system has a distributed architecture, each part needs to com-
municate with each other.

@ avionic system of an airplane (ARINC 659, ARINC 654/AFDX, ...)

@ embedded automotive system (CAN, FlexRay, ...)
@ people in a project (Phone, WebEx, E-mail, ...)
@ sailor on a boat (Morse Code, ...)

()

networked computer systems (distributed filesystem [NFS], time synchronization
protocol [NTP, IEEE-1588], monitoring [SNMP], ...)

Message based communication

Many communication systems are message based.

BIRRRREN c nccds for a message specification IaNEU3EE
g‘z High Level Architecture (HLA) components

@ a set of federates, which are user defined component,

@ a centralized and/or [set of] decentralized RTI (Run Time Infrastructure)
components

A set of communicating processes

One or more user federate processes, one or more LRC (Local RTI Compo-
nent) processes, possibly CRC (Central RTI Component).

LRGy @D LRC,

CRC

and now wit -1516-v2010 [9] are describing A services as:
@ informal textual description, which includes relationship between services,
@ some state charts,

@ some message sequence chart,

Reminder: HLA is just an example

HLA is taken here as an example but almost any middleware has the message
exchange need.

HLA specification: informal textual description

A set of services described as messages

The message are exchanged between Federate, LRC and possibly CRC

Create Federation Execution
@ Supplied Arguments

o Federation execution name
o FED designator

@ Returned Arguments
@ None
@ Exceptions

The federation execution already exists.

Could not locate FED information from supplied designator
Invalid FED

RTI internal error

Easy message structure

We should be able to easily (and may be formally) specify the content of
message corresponding to HLA services (including exceptions).

HLA specification: HLA state diagrams and/or MSC

@ Some message sequence chart (MSC) [4] of correct HLA federation execution

Federate RTI
Join Federation Execution

>

Establish Initial Data Requirements
Federation

-~
L 4

Execution Does
Not Exist

Destroy Normal Federate Execution

Federation Execution rea
Federation Execution Time Advance Request/Grant
Register/Discover Object Insiances
(Federation Execution Exists \ UpdalafReﬂet:_1 Attribute yalues
SendiReceive Interactions

The First Join Delete/Remove Object Instances
Federation Execution Supporting
No Joined Joined ‘()
The Last Resign Federates
derati

Federation Execution

Join Federation Execution Resign Federation Execution
or

Resign Federation Execution Y A

Figure 1—Basic states of the federation execution Figure 2—Overall view of federate-to-RTI relationship

More formal message

Message specification and code generation should enhance the formal spec-
ification, test and validation of CERTI.

Other middlewares

Middleware message use

Almost all middleware which support distributed execution and communica-
tion needs more or less formalized message specification (and code generation
for message handling).

@ ONC RPC [5] (a.k.a. SUN RPC used in NFS) ~» ONC RPC IDL and rpcgen
@ OMG Data Distribution Service [7] ~» OMG IDL and IDL compiler

@ Any Message-oriented middleware
http://fr.wikipedia.org/wiki/Message-Oriented_Middleware like JMS [1]
(but this one has no IDL, just Java).

@ Sometimes there is no middleware at all, “just message”. This is the case for the
Google Protocol buffer [3] and the protoc compiler.

Many more IDLs

http://en.wikipedia.org/wiki/Interface_description_language

http://fr.wikipedia.org/wiki/Message-Oriented_Middleware
http://en.wikipedia.org/wiki/Interface_description_language

Predictable and/or observable middleware

Generate message [handling] code
Generating verified code is usually far simpler that verifying hand-written
code.

If we target predictable and/or observable message-oriented middleware we
must have message specification in order to:
@ ensure that we know the exhaustive list of message,

@ generate serialize/de-serialize (or marshall/un-marshall) code with appropriate
properties (bounded memory footprint, bounded execution time, fault tolerance

)

@ be able to generate observation code, specification runtime checking code,
[formal] trace analysis code (passive testing) ...

Predictable Middleware

The more formally we can specify message [exchange] in the middleware the
more predictable middleware we can produce.

Outline

) The needs for a message specification language

CERT]I practical needs

mﬂ Current CERTI messaging system

Message a.k.a. RTIA Message

Federateg
libRTI

Federate;
libRTI

Federate;
libRTI

The messages exchanged between libRTI and RTIA (= CERTI LRC).

NetworkMessage a.k.a. RTIG Message

The messages exchanged between RTIA's and RTIG (= CERTI CRC).

call CFE

l Create

MCFE

send MCFE

Process

Create

i

' Process
l Create
send MCFE

MCFE

e

send NMCFE

send NMCFE

Create

' Process

NMCFE '
MCFE l

NMCFE

were)

Typical messages path (detailed) - |

sequence:
O Federate invoke IibRTI (RTlambassador service)
@ IibRTI builds an RTIA Message M_Create_Federation_Execution

O IibRTI serialize the message and sends it to RTIA, then usually wait for an
answer,

RTIA deserialize the message
RTIA invoke appropriate local service which may. ..
RTIA builds an RTIG Message NM_Create_Federation_Execution

RTIA serialize the message and sends it to RTIG, then usually wait for an
answer,

RTIG deserialize the message, invoke the concerned central service and. ..

RTIG builds a new RTIG Message NM_Create_Federation_Execution which
contains the answer (including may be an exception)

©0 00060

Typical messages path (detailed) - 1I

@ RTIA builds a new RTIA Message M_Create_Federation_Execution from the
received RTIG Message,

@ RTIA serialize the message and sends it to libRTI,

Q@ 1ibRTI deserialize the RTIA message (he was waiting for this answer), and give
back the control to the Federate or raise an exception if the Message was
conveying one.

A lot of message handling

CERTI is basically a set of message handling processes. Messages are built

and exchanged (unicasted or broadcasted) between Federates, RTIAs and
RTIG.

Typical of MOM (Message-Oriented Middleware)
This is not CERTI-specific probably all MOM do that kind of work.

© 00 N O 0~ WN -

10

©O© 00 N O G~ W N -

10

-
=

= ————————————————————————
b= 24 CERTI Messages C++4 source code usage examples

Isting

RTI:: FederateHandle
RTI:: RTlambassador:: joinFederationExecution (
const char xyourName,
const char xexecutionName ,
FederateAmbassadorPtr fedamb)
throw (...)
{
M_Join_Federation_Execution request, answer;
request .setFederateName (yourName);
request .setFederationName (executionName);
privateRefs —>executeService(&request , &answer);
return answer.getFederate ();

@ Line 8 declares 2 message objects of type M_Join_Federation_Execution,

@ Lines 9-10 setup message content,

@ Line 11 call the message send/receive generic service,

b= 24 CERTI Messages C++ source code usage examples
=5 T

void
RTlambPrivateRefs :: executeService (Message xrequest, Message xanswer) {
// send request to RTIA
try { request—>send(socket ,msgBufSend); }
catch (NetworkError) {
throw RTI:: RTlinternalError("1ibRTI: Network, Write Error");
}
// waiting RTIA reply.
try { answer—>receive(socket , msgBufReceive); }
catch (NetworkError) {
throw RTI:: RTlinternalError("1ibRTI: Error waiting RTI,reply");

// Services may only throw exceptions defined in the HLA standard
// the RTIA is responsible for sending ’'allowed’ exceptions only
processException (answer);

= ————————————————————————
b= 24 CERTI Messages C++4 source code usage examples

all-over-the-place in the CERTI code.
Manual usage for generated code

The usage of message object is hand-written but the source code of message
itself may ?must? be generated.

CERTI messages numbers: code generation needs

@ 153 Message types
@ 106 Network Message types
Multi-language binding
We want to generate the code for several languages: C+-+, Java, Python,
may be more . ..
We must generate - boring to write code
@ serialize/deserialize code

@ virtual constructor (the factory method pattern [2])

We should [be able to] generate
@ self verifying code (e.g. required field should be there)

@ may be observability code

QOutline

<) The needs for a message specification language

Embedded/Real-time CERTI

Embedded and/or Real-time CERTI

Embbeding CERTI

We are targeting to produce an embeddable and or realtime version of CERTI.
Those specialized CERTI instance much fullfill several ressource constraints.
Since CERTI is essentially a message processing library being able to produce
message code is necessary (but not sufficient) for reaching this goal.

A MUST-DO

We have to generate the message handling code if we want to generate an
embeddable and/or real-time CERTI.

QOutline

@ The CERTI message specification language
Basic features
Advanced Features
Perspective

Outline

@ The CERTI message specification language
Basic features

CERTI Message example

CERTI Message language

CERTI Message is home-brewed message specification language, used spec-
ify the content of a message. Then a code generator (message compiler) may
be used to generate helper code for using messages.

Listing 3: CERTI Message

message M_Create_Federation_Execution : merge Message {
required string federationName // the federation name
required string FEDid // the Federation ID (filename)

}

AW N

@ CERTI Message (Federate/libRTI AN RT'A) M_Create_Federation_Execution is defined at
line 1,

@ It contains two string fields which are required,

@ The defined message is a merge from another Message which has been previously
defined. Merging is a kind of message content inheritance, meaning that the

CERTI Message generator architecture

A classical compiler design

The CERTI message generator has a classical compiler architecture with a
parser front-end which turns the specification file in a intermediate AST-like
structure, this AST is then checked (and sometimes augmented), afterward
several backends may generate source code (msg, C+-+, Java, etc...)

CERTI NMsg C++ |

CERTI Msg C++ |

CERTI Msg Java |

Msg Spec

Generic Msg C++ |

AST Checker
Code Generator

Wireshark Msg dissector I

CERTI Message Features

@ In a each specification file one can define a package name where the message
defined in the file will be put,

@ The CERTI message language defines the following basic types byte, bool, onoff,
uint8, uintl6, uint32, uint64, int8,intl6,int32,int64, double, float, string.

@ There is 3 type constructors:

o enum which may be used to defined enumerated types,
o message which is used to specify a message content,
o native [message] which may be used to reference natively implemented message.

@ A message contains 0 or more typed fields. The field type may be basic type or
any already defined enum, message or native.

@ A field may have a qualifier:

o optional meaning that the field may be present in the message or not,
o required meaning that the field is mandatory and will be in each message of this type,
o repeated meaning that the field is a sequence of 0 or more items of this type.

CERTI Message BNF |

Listing 4: Courtesy of Lucas ALBA

1 |<identifier> ::= [a—zA—Z][a—zA—Z0—9]x

2 |<number> ::= [0—9]+

3

4 |<messageSpecification> ::= <package> <version> <message>x <factory>
5 |<package> ::= package <identifier>

6 |<version> ::= version <version_identifier>

7 |<version_identifier> ::= <number> ’’.’’ <number>

8

9 |<message> ::= <native> | <integralMessage>

10

11 |<native> ::= native <identifier> >’>{’’

12 [<representation>] <langage>x

13))}::

14 |<representation> ::= representation (<basic_type> | combine)

15 |<langage> ::= langage <langage_-name> ’’[’’ <texte> ’’]??

16

17 |<integralMessage> ::= message <message-name> °’’:’°’ merge <message_-name>
18 {0 Zfield_list> >}

19

20 |<field_list> ::= <field>x

<type> ::i= <basic_type> | <Message>
<basic_type> ::= onoff | bool | string | byte |
int8 | uint8 | intl6 |
uintlé | int32 | uint32 |
int64 | uint64 |
float | double

<identifier>
<identifier>

<message_-name> ::=

<langage_name> ::=

<factory> ::= factory <identifier> *’>{*’
<factory_-creator> | <factory_receiver>

> ;};)
<factory_creator> ::= factoryCreator
<identifier> <identifier>(<identifier>)
factoryReceiver
<identifier> <identifier>(<identifier>)

<factory_receiver> ::=

Outline

@ The CERTI message specification language

Advanced Features

Native Message

Living with existing code

Introducing message specification should not generate complete rewrite of
the code. Sometimes its easier to live with existing code.

Listing 5: Native Message

// Message is the base class for message exchanged between
// RTIA and Federate (libRTI) AKA CERT| Message.
// Every message which is a merge from Message will first
// include the content of a Message
native Message {
language CXX [#include "Message.hh"]
language Java [import certi.communication. CertiMessage]

0 N O WN =

@ A “native” message is a message whose content is defined in a language specific
manner. The source code defining the “native” is not generated by the CERTI
Message compiler.

Factory Method

Polymorphic reconstruction of message

We want to polymorphically reconstruct the message received.

Objet Objet
Message Message
Typet Typet

F 3
deserialize

serialize
Objet vide de type t attaché a
m une poignée de type a

F Y

send receive

[possibly] Bounded/Fixed size encoding

Receiver decoding order
CERT!I encoding works like CDR (CORBA encoding): endianity of the mes-

sage is the endianity of the sender.

User Information (Msg Payload) I Msg Length - bytes stream begin

4 bytes 1 byte

4 bytes

msg dependent size

@ Fixed size Header : 5 bytes, Endianity and Message Length.
@ ID : used for polymorphic reconstruction (factory method)

Outline

@ The CERTI message specification language

Perspective

Conclusion

Q Implement C backend, [on-going work by Daniel JARTOUX]

© Implement Wireshark dissector backend, [on-going work by Daniel JARTOUX]
O Generate self verifying debug code for C++,

O Implement Python backend,

O Make the generator less-CERTI specific.

@ Work on an eventual complementary language in order to help formal trace
verification.

Outline

© Demo

Small Demo

Should work
Address book example.

Outline

Q References

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

Google.
Google Protocol Buffers developer guide, April 2010.
http://code.google.com/intl/fr/apis/protocolbuffers/docs/overview.html.

. ITU.
Recommendation Z. 120.
Message Sequence Charts (MSC'96), 1996.

Sun Microsystems.

XDR: External Data Representation standard.
RFC 5531, May 2009.

See http://www.ietf.org/.

U.S. Department of Defense.
High Level Architecture Interface Specification, version 1.3, 4 1998.

OMG.

Data Distribution Service for Real-time Systems, Version 1.2.
Object Management Group, formal/07-01-01, January 2007.

(= 2/
=53
=S\ References ||

1516.1-2000 edition, 9 200.

IEEE Computer Society.
IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Federate Interface Specification, |EEE std
1516.1-2010 edition, 2010.

http://jcp.org/en/jsr/detail?id=914
http://code.google.com/intl/fr/apis/protocolbuffers/docs/overview.html
http://www.ietf.org/

	The needs for a message specification language
	Message language specification why?
	CERTI practical needs
	Embedded/Real-time CERTI

	The CERTI message specification language
	Basic features
	Advanced Features
	Perspective

	Demo
	References

