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Figure 1: Plane Couette flow simulated with channelflow. The flow is driven by the motion of the upper
and lower walls, which travel with equal speeds in the ±x-directions. The flow is periodic in x and z.
The Reynolds number based on channel half-height and wall velocity is 600. The flow was integrated on
a 24 × 49 × 24 grid with a variable timestep 0.05 ≤ dt ≤ 0.15. The plot shows segments of streamlines
confined to the exposed planes.

1 Introduction
Channelflow is a direct numerical simulator for incompressible fluid flow on a periodic, rectangular, wall-
bounded domain. Channelflow uses spectral discretization in spatial directions (Fourier x Chebyshev x
Fourier), finite-differencing in time, and primitive variables (3d velocity and pressure) to integrate the in-
compressible Navier-Stokes equations. The mathematics are based on the spectral channel-flow algorithm in
Section 7.3 of Spectral Methods in Fluid Dynamics by Canuto, Hussaini, Quarteroni, and Zang ([1]). Chan-
nelflow is written in C++ and designed to be easy to use, easy to understand, modular, extensible, and fast.
Channelflow is documented, licensed under the GNU GPL version 2, and available for download at

http://savannah.nongnu.org/projects/channelflow

1.1 Design
Channelflow is written as a set of C++ classes that represent the major components of spectral channel-flow
simulation. The channelflow class library provides a high-level representation for expressing and performing
spectral channel-flow simulations. In channelflow’s high-level syntax, fluids simulation programs are short,
readable, and easily modifiable. Channelflow falls short of a providing a language for spectral simulation,
due to the scope of the problem domain and to the difficulty of presenting a clean syntax through C++ class
libraries. But channelflow should be good enough for a general use by fluids researchers who need a fast,
simple, and extensible way to simulate channel flows.

Channelflow’s classes are designed to be modular. Instances of classes behave as independent objects
with automatic memory management. Auxiliary fields and computations can be added to a program with a
few lines of code. In channelflow, even the DNS algorithm is an object. This greatly increases the flexibility
of DNS computations. For example, a DNS can be reparameterized and restarted multiple times within a
single program, multiple independent DNS computations can run side-by-side within the same program, and
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DNS computations can run as small components within a larger, more complex computations. As a result,
comparative calculations that formerly required coordination of several programs through shell scripts and
saved data files can be done within single channelflow program. In this way channelflow opens the way to a
new class of computations that were not practically possible with previous codes.

Channelflow uses object-oriented programming and data abstraction to maximize the organization and
readability of its library code, as well. Channelflow defines about a dozen C++ classes that act as abstract
data types for the major components of spectral channel-flow simulation, as outlined by CHQZ. Each class
forms a level of abstraction in which a set of mathematical operations are performed in terms of lower-level
abstractions, from time-stepping equations at the top to linear algebra at the bottom. The channelflow library
code thus naturally reflects mathematical algorithm, both in overall structure and line-by-line. One can look
at any part of the code and quickly understand what role it plays in the overall algorithm. One can learn the
algorithm in stages, either top-down or bottom-up, by focusing on one level of abstraction at a time.

Thus channelflow has three main benefits:

• Ease of use: Channelflow’s high-level syntax allows simple, rapid development of particular channel-
flow simulations.

• Modularity: Its modularity allows a broader range of channel-flow computations.

• Intelligibility: Its library code is organized and documented in a way that makes learning the details
easy.

Additional benefits are

• Extensibility: Channelflow is adaptable to new needs. For example, it should be easy to add a new
time-stepping algorithm or method of calculating the nonlinear term.

• Speed: Channelflow is as fast as comparable Fortran codes

• Verifiability: Channelflow contains a test suite that verifies the correct behavior of major classes.

• Documentation: The documentation describes how to use the software and precisely specifies the
mathematics of the algorithm.

• Support: Channelflow has a support website with public CVS access, support-request and bug-tracking
systems, etc. (http://savannah.nongnu.org/projects/channelflow).

1.2 Drawbacks and rough edges
The main potential drawbacks to using channelflow have to do with C++. C++ is a complex language that
takes some getting used to. There will be some learning overhead for those who are not familiar with it.
How much overhead depends on how deeply one wants to delve. Only very basic knowledge of C++ is
necessary for reparameterizing or modifying the example programs. Modification of library code will re-
quire a fair amount of experience. Secondly, C++ compilers vary in their implementation of the language.
Channelflow avoids the most complex aspects of the C++ language to minimize portability problems and
learning overhead, but one can probably expect a few problems compilation errors on new platforms. Chan-
nelflow was developed on GNU/Linux with gcc-3.2. Dietmar Rempfer ported earlier versions of channelflow
to MS-Windows and Visual C++, and the source code includes his modifications as #ifdefs. Increasing
channelflow’s portability is a major goal for future releases.

The following were not pressing concerns during the initial development of channelflow, but are getting
more attention in preparation for public release.
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• Memory footprint: Channelflow is memory-efficient with large objects, such as flow fields that scale
as N3, but it is less careful with small things, like making extra copies of parameters in order to
eliminate global variables. The wasted memory turns out to be negligible. See Section 8.2 for the
details.

• Import/export methods: Most channelflow modules have ASCII or binary input and output methods.
Some ASCII output is designed to be readable by Matlab. Matlab scripts are provided for reading this
data into Matlab. There are not yet import/export methods for the file formats of other channel-flow
codes or for tools like Fluent and Tecplot. It should be very easy to write these, if you know the format.

• Consistent nomenclature and syntax: A number of inconsistencies in this regard have become appar-
ent during preparation of the documentation. For example, Real unorm = L2Norm(u) computes
the L2-norm of FlowField u, but Real udiv = u.divergence() computes divergence. Some
class names could be changed.

• Coverage of problem domain: Channelflow aims to provide elemental differential and algebraic op-
erations for all its objects in order to allow easy computation of arbitrary quantities. But so far these
operations have been written and tested on an as-needed basis, so they are probably incomplete.

• Graphical user interface: A basic GUI for setting parameters, driving simulations, and plotting results
would be quite useful.

• Packaging: At this point it might be necessary to edit the Makefile to get channelflow to compile.
Ideally, channelflow should have an autoconf system (./configure; make) and be distributed in RPM
and Debian apt packages.

Help with any of these issues would be greatly appreciated.
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2 Quick start
Channelflow’s C++ classes are compiled into software libraries. Under normal circumstances, users of chan-
nelflow should not need to modify the channelflow library code. Channelflow programs, on the other hand,
are relatively short sequences of statements that use the library classes in particular ways to solve particular
problems. The channelflow distribution includes several example programs that show how this is done. Two
of these are presented as annotated examples in Section 2.2. Refer to the examples directory for other
examples.

Most common simulation needs, such as the extraction of data or statistics from the integration of an
autonomous flow, can probably be satisfied by modifications of the example programs. Complex problems
and unusual needs will call for novel arrangements of the classes and possibly modification to the libraries.

2.1 Compilation
On a Unix system, the following commands unpack the source distribution and compile the libraries and a
simple example program:

birbal$ tar xvpfz channelflow-0.9.7.tgz
birbal$ cd channelflow-0.9.7/src
birbal$ make libs
birbal$ cd ../examples/couette
birbal$ make couette.x
birbal$ ./couette.x

To change the flow and integration parameters, edit couette.cpp and recompile. The other subdirectories
of channelflow-0.9.7/examples have example programs for channel flow, Poisseuille flow, Orr-
Sommerfeld eigenfunctions, and the decay of a sinusoidal perturbation.

2.2 Example programs
This section presents several annotated channelflow programs. The programs are listed and the text steps
explains what’s happening, line-by-line. The example programs are included in the channelflow distribution
package in the examples directory. See Section 9.1 for information on compilation and execution.

Before launching into the examples, a few brief statements about the the most important channelflow
classes: The FlowField class represents Fourier × Chebyshev × Fourier expansions of vector fields on
three-dimensional periodic domains. NSIntegrator represents a Navier-Stokes integration method, that is,
a time-stepping scheme and the subsidiary data structures necessary to solve the time-stepping equations.
ChebyCoeff, ComplexChebyCoeff, BasisFunc: represent Chebyshev expansions of real, complex, and
vector-valued functions on one-dimensional finite domains.

2.2.1 couette.cpp: a simple program for plane Couette flow

Code listing 2.1 shows the main body of a simple channelflow program, couette.cpp. The program integrates
a plane Couette flow with a linear base velocity profile, using 3rd-order Runge-Kutta timestepping, constant
pressure gradient, and a fixed time step. The initial fluctuating velocity field consists of small perturbations
in the first few Fourier modes. The complete program is included in the channelflow distribution package in
the examples/couette directory.
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Code listing 2.1 couette.cpp: a simple channelflow program (line numbers added)
1 (skip inclusion of header files)
2
3 int main() {
4
5 // Definition of numerical parameters Nx,Ny, etc.
6 (skipped to save space)
7
8 // Construct base flow for plane Couette: U(y) = y
9 ChebyCoeff U(Ny,a,b,Physical);

10 Vector y = chebypoints(Ny, a,b);
11 for (int ny=0; ny<Ny; ++ny)
12 U[ny] = y[ny];
13 U.save("U");
14 y.save("y");
15
16 // Construct data fields: 3d velocity and 1d pressure
17 FlowField u(Nx,Ny,Nz,3,Lx,Lz,a,b);
18 FlowField q(Nx,Ny,Nz,1,Lx,Lz,a,b);
19
20 // Perturb velocity field
21 u.addPerturbations(kxmax,kzmax,magnitude,decay);
22
23 // Construct Navier-Stoke Integrator
24 DNSFlags flags;
25 flags.timestepping = RK3; // use 3rd order Runge-Kutta method
26 flags.constraint = BulkVelocity; // enforce bulk velocity
27
28 NSIntegrator dns(u, U, nu, dt, flags);
29
30 // Timestepping loop
31 for (Real t=0.0; t<T; t += n*dt) {
32 cout << "============================================" << endl;
33 cout << " t == " << t << endl;
34 cout << " CFL == " << dns.CFL() << endl;
35 cout << "L2Norm2(u) == " << L2Norm2(u) << endl;
36
37 // Save the kx=1,kz=2 Fourier profile
38 ComplexChebyCoeff uprofile12 = u.profile(1,2,0);
39 uprofile12.makePhysical();
40 uprofile12.save("uprofile12"+i2s(int(t)));
41
42 // Take n steps of length dt
43 dns.advance(u, q, n);
44 }
45 u.binarySave("u");
46 q.binarySave("q");
47 }

7



line meaning

1–7 The code listing skips the header-file inclusion statements and parameter definitions
to save space. The parameter definitions take the form int Nx=32; Real Lx =
2*pi; etc.

8–14 The base flow U is declared as a variable of type ChebyCoeff and the y-gridpoints
y are set as a real-valued Vector. The for-loop sets the base flow to a linear profile,
U(y) = y. Both U and y are set and saved to disk in an ASCII Matlab-readable
format.

17–18 The fluctuating velocity u and modified pressure q fields are allocated and initialized
to zero. The FlowField constructor allocates memory for 3d and 1d Nx × Ny ×Nz
grids, respectively. The domain of each field is set to [0, Lx]× [a, b]× [0, Lz].

21 Random divergence-free perturbations are added to Fourier modes with |kx| <
kxmax and |kz| < kxmax. The magnitude and decay parameters determine
the spectral characteristics of the perturbations’ Chebyshev expansions along y.

24–26 The next few statements construct a DNSFlags object and modify a few of its default
values.

28 The NSIntegrator constructor allocates and initializes data needed for time-stepping
calculations, based on the initial velocity field, the base flow, the viscosity, the
timestep, and the flags.

31–35 A for-loop advances time from T0 to T1 in steps of length n*dt. At each step, the
time the CFL number, and the L2-norm of the velocity field are printed out.

38–40 The Fourier profile ũ12(y) is extracted from velocity field u, transformed from spectral
representation to physical gridpoint values, and then saved to disk in ASCII Matlab-
readable form, with filenames indicating the integration time.

43 The NSIntegrator object dns advances the velocity and pressure fields n steps of
length dt.

45–46 After the time-stepping loop finishes, the velocity and modified pressure fields are
saved to disk in binary form and the main program.

Of course, what’s notable about couette.cpp is what doesn’t appear, for example, allocation of arrays,
Fourier transforms, calculation of nonlinear terms, influence-matrix calculations, and solution of linear alge-
bra problems. These operations are carried out internally by the objects to which they pertain. Most of the
work occurs within the NSIntegrator construction (line 28, NSIntegrator(u,U,nu,dt,flags)), and
the NSIntegrator advance function (line 43, dns.advance(u,q,n)).

2.2.2 couette2.cpp: variable time-stepping, statistics, and start-up from saved fields

The couette2.cpp example program adds to couette.cpp variable time-stepping, simple statistics, and start-up
from saved field to couette.cpp. The statistics calculated in couette2.cpp are the mean-velocity profile and
the mean drag on the lower wall. Code listings 2.2 and 2.3 show the program in its entirety. The program is
included in the channelflow source distribution at examples/couette/couette2.cpp.
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Code listing 2.2 couette2.cpp: variable time-stepping, statistics, and start-up from saved fields

1 #include <iostream>
2 #include <iomanip>
3 #include "vector.h"
4 #include "chebyshev.h"
5 #include "flowfield.h"
6 #include "nsintegrator.h"
7
8 int main() {
9
10 // Define flow parameters
11 const Real Reynolds = 400.0;
12 const Real nu = 1.0/Reynolds;
13
14 // Define integration parameters
15 const Real dtmax = 0.15;
16 const Real dtmin = 0.05;
17 const Real CFLmax = 0.90;
18 const Real CFLmin = 0.5;
19 const Real dT = 1.0; // plot interval
20 const Real T0 = 100.0; // start time
21 const Real T1 = 200.0; // end time
22
23 // Load velocity, modified pressure, and base flow from disk.
24 FlowField u("u100");
25 FlowField q("q100");
26 ChebyCoeff U("U");
27
28 // Get y-domain information from velocity field.
29 Real a = u.a();
30 Real b = u.b();
31 int Ny = u.Ny();
32
33 // Construct Navier-Stoke Integrator
34 DNSFlags flags;
35 flags.timestepping = RK3;
36 flags.constraint = PressureGradient;
37
38 TimeStep dt((dtmax+dtmin)/2, dtmin, dtmax, dT, CFLmin, CFLmax);
39 NSIntegrator dns(u, U, nu, dt, flags, T0);
40
41 ChebyCoeff u00mean(Ny,a,b,Spectral);
42 Real dragmean = 0.0;
43 int count = 0;
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Code listing 2.3 couette2.cpp cont’d: variable time-stepping, statistics, and start-up from saved fields

44
45 for (Real t=T0; t<T1; t += dT) {
46
47 // Get kx=kz=0 Fourier component u00(y) and compute drag
48 ChebyCoeff u00 = Re(u.profile(0,0,0));
49 ChebyCoeff du00dy = diff(u00);
50 Real drag = nu*du00dy.eval_a();
51
52 u00mean += u00;
53 dragmean += drag;
54 ++count;
55
56 // Save stuff
57 string time = i2s(int(t));
58 u00.save("uprofile00_"+time);
59 Re(u.profile(1,2,0)).save("uprofile12_"+time);
60
61 cout << "==========================================" << endl;
62 cout << " t == " << t << endl;
63 cout << " dt == " << dt << endl;
64 cout << " CFL == " << dns.CFL() << endl;
65 cout << "L2Norm2(u) == " << L2Norm2(u) << endl;
66 cout << " drag == " << drag << endl;
67
68 // Take n steps of length dt
69 dns.advance(u, q, dt.n());
70
71 // Adjust timestep if CFL number is too large or too small.
72 if (dt.adjust(dns.CFL())) {
73 cout << "adjusting timestep" << endl;
74 dns.reset(nu, dt);
75 }
76 }
77
78 // Compute means
79 dragmean /= count;
80 u00mean /= count;
81
82 // Fourier-transform u00mean, save, and print
83 u00mean.makePhysical();
84 u00mean.save("u00mean");
85 cout << "mean drag == " << dragmean << endl;
86 }
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line meaning

1-6 These header-file inclusion statements declare standard C++ I/O classes and a number
of channelflow classes.

11-21 Definitions of flow and integration parameters.

24-26 Load the velocity, the modified pressure, and the base flow that were saved to disk in
couette.cpp. Channelflow’s binary storage format for FlowFields includes data
such as the gridsize, the domain, and the Physical/Spectral state of the data, in addition
to the data itself. Thus the FlowField u at line 24 is reconstructed in exactly the same
state as the FlowField saved at at line 45 in couette.cpp. ChebyCoeff uses an
ASCII, Matlab-readable file format, with parametric information stored in a comment
line.

29-31 Extract information about the y-domain from FlowField u.

34-36 Set a few flags for the NSIntegrator.

38 Construct a TimeStep object for variable time-stepping. The initial timestep is set
halfway between its minimum and maximum bounds. The timestep dt will vary
during the integration to keep the CFL number and the timestep between the given
bounds, but always as a whole-number fraction of the plot interval dT, i.e. dt = dT/n
for some integer n.

39 Construct an NSIntegrator based on the velocity field u, the base flow U, viscosity nu,
TimeStep dt, and starting time T0. The starting time of couette2.cpp equals the
end time of couette.cpp.

41-43 Construct variables for accumulating sums for the calculation of the mean drag and
the mean kx, kz = 0, 0 Fourier profile.

45 Begin time-stepping loop. Note that time increases by the plot interval dT each pass
through the loop.

48-50 Extract Fourier profile ũ00(y), compute Re(∂ũ00/∂y), and ν Re(∂ũ00/∂y|y=a). Line
50 uses a special efficient function for evaluating ChebyCoeffs at an endpoint.

52-54 The current values of ũ00(y) and the drag are added into their summation variables.

57-59 Save the current ũ00(y) and ũ12(y) profiles to disk, with file names that indicate the
integration time. Line 59 illustrates how to save a profile to disk without the use of a
temporary ChebyCoeff variable.

61-66 Print interesting information.

69 Advance n timesteps of length dt.

72-74 Check if the CFL condition is out of bounds and adjust if necessary. If adjustment
occurs, the dt.adjust function returns true, and the NSIntegrator dns is recali-
brated for the new timestepping interval.

79-80 Divide the sums by the number of samples to get the means.

83-85 Transform u00mean to gridpoint values, save to disk, and print the mean drag.
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3 Guide to main classes
This section is a user’s guide to the behavior and meaning of the main channelflow classes. The goal is to
discuss how to use and control the main classes in top-level channelflow programs. Parts of the NSIntegrator
class are in full mathematical detail in Section 4. At this point the documentation falls short of an exhaustive
reference manual. Please consult the header files and source code for more information.

3.1 ChebyCoeff
3.1.1 Description

The ChebyCoeff class represents real-valued Chebyshev expansions of functions on the domain [a, b], of the
form

f(y) =
N−1∑

n=0

f̂nT̄n(y) (1)

where T̄n(y) is the nth Chebyshev polynomial rescaled to the interval y ∈ [a, b]. That is,

T̄n(y) = Tn

(
2y − (b+ a)

b− a

)
(2)

ChebyCoeffs are on a general domain [a, b] instead of the usual [−1, 1] to facilitate programs that involve
more than one approximation domain. In general the right-hand side of eqn. 1 is an approximation of a
function f . For simplicity, we treat the function and its expansion as identically equal.

The spectral coefficients of a function f can be computed efficiently from the function values taken at a
discrete set of Chebyshev gridpoints. Let

yn =
b+ a

2
+
b− a

2
cos

(
nπ

N − 1

)
, n ∈ [0, N − 1] (3)

and let fn = f(yn). Then a fast cosine transform can be used to transform the function values {f0, f1, . . . , fN−1}
into the spectral coefficients {f̂0, f̂1, . . . , f̂N−1}, and and vice versa. See Numerical Recipes in C ([4]) for a
complete discussion of Chebyshev approximation, cosine transforms, and the FFT.

3.1.2 Data access, transforms, and state

The ChebyCoeff class has a data array that stores either function values or spectral coefficients and a flag
that indicates which state the data array is in. For the ChebyCoeff object f, elements of the data array are
accessed with the square-bracket operator, e.g. f[n]. The function f.state() returns Physical if the
array represents function values and Spectral if spectral coefficients. The Physical/Spectral state is set
at construction time and toggled when the ChebyCoeff’s transform functions are called. For example, the
following block of code constructs a length-N ChebyCoeff object f on the domain [−1, 1], sets the function
values {fn} to {sin(πyn)}, transforms the ChebyCoeff from Physical to Spectral, and then prints the
zeroth spectral coefficient.

Vector y = chebypoints(N,-1,1);
ChebyCoeff f(N,-1,1,Physical);

for (int n=0; n<N; ++n)
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f[n] = sin(pi*y[n]);

if (f.state() == Physical) // will be true
f.chebyfft(); // transform f from Physical to Spectral

cout << f[0] << endl; // print coeff of T_0

if (f.state() == Spectral) // will be true
f.ichebyfft(); // transform f from Spectral to Physical

cout << f[0] << endl; // print value of sin(pi*y[0])

Note that the return-value of f.state() is a variable of type fieldstate, with two possible values:
Physical and Spectral.

Several other forms of transform function are provided for convenience and efficiency. The functions

f.makeSpectral(); // if f.state()!=Spectral, transform to Spectral
f.makePhysical(); // if f.state()!=Physical, transform to Physical

are state-checking versions of f.chebyfft() and f.ichebyfft(). Using these forms eliminates the
possibility of performing the same transform twice in a row. A third form performs the transform specified
by an argument. If s be a variable of type fieldstate, then

f.makeState(s); // if f.state()!=s, transform to state s

transforms f to that state s.
Each of the transforms discussed so far has a more efficient form that takes a ChebyTransform ar-

gument. The ChebyTransform class is described in Section 3.3. For now, suffice it to say that some
common work can be factored out of multiple calls to ChebyCoeff transforms of equal length by con-
structing a ChebyTransform object and passing it to the ChebyCoeff transform functions, as in

int N = f.length();
ChebyTransform trans(N);

f.chebyfft(trans);
f.ichebyfft(trans);
f.makeSpectral(trans);
f.makePhysical(trans);
f.makestate(trans, s);

These forms are the preferred forms for ChebyCoeff transforms. They should be used in frequently re-
peated calculations. The forms without ChebyTransform arguments are conveniences for use when effi-
ciency is not an issue.

3.1.3 Input/output

ChebyCoeff I/O is done with a save function and a constructor that both take a filename argument. For
example, given a ChebyCoeff f,

string filebase = "foo";
f.save(foo);

ChebyCoeff g(filebase);
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saves f to disk in file foo.asc and then constructs g based on the data stored in the file. At after construc-
tion, g will be identical to f, with the same length, bounds, state, and data.

The ASCII file format for ChebyCoeff is

% N a b s
f[0]
f[1]
.
.
.
f[N-1]

where N is the integer expansion length, a and b are the double-precision domain bounds, s is a character
P or S, indicating the Physical or Spectral state, and the f [n] are double-precision values of function
values or spectral coefficients. The % character marks the first line as a comment in Matlab, so that the file
can be read into Matlab as an N × 1 matrix with the command load foo.asc.

3.1.4 Other functions

ChebyCoeff provides a number of other functions for arithmetical operations, computing norms, deriva-
tives, etc. Note that most of these functions operate on spectral coefficients and so require the ChebyCoeff
to be in Spectral state. Please refer to the header files for a complete list of functions. A few quick
examples:

ChebyCoeff f(N,a,b,Spectral);
ChebyCoeff g(N,a,b,Spectral);

f.randomize(magn, decay); // set f[n] = magn*random()*pow(decay,n)
g.randomize(magn, decay); // ditto for g

f += g; // add g to f;
Real x = L2Dist2(f,g); // 1/(b-a) Integral_aˆb (f-g)ˆ2 dy
Real y = chebyNorm2(f); // 2/(b-a) Integral_aˆb fˆ2/sqrt((y-a)(b-y)) dy

ChebyCoeff dfdy = diff(f); // compute derivative of f
ChebyCoeff F = integrate(f); // compute integral of f, set F.mean() to 0

Real f_a = f.eval_a(); // return function value at lower bound
Real f_m = f.eval((b+a)/2); // return function value at midpoint

3.2 ComplexChebyCoeff
ComplexChebyCoeff represents complex-valued Chebyshev expansions of the form of eqn. 1 and follows
the same syntax as ChebyCoeff in almost all respects. There’s just one thing to watch out for: you can’t
assign into f[n]! Or rather, you can assign into f[n], and it will compile and run with no complaints, but
it won’t have any effect on the value of f[n]. To set the value of f[n], use

f.set(n, z); // CORRECT: sets f[n] to z

and not
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f[n] = z; // INCORRECT: doesn’t change f[n]

This behavior is due to a bad design decision that I hope to correct before the channelflow-1.0.0 release. The
f[n] syntax works just fine for extracting spectral coefficients or function values.

Complex z = f[n]; // OK: sets z to f[n]

The ComplexChebyCoeff I/O methods follow the same syntax as ChebyCoeff, but the ASCII file
format has two columns for the real and imaginary parts of the data

% N a b s
Re(f[0]) Im(f[0])
Re(f[1]) Im(f[1])
.
.
.
Re(f[N-1]) Im(f[N-1)

Other numerical functions are the usual complex generalizations. For example, L2InnerProduct2(f,g)
computes 1/(b− a)

∫ b
a
fg∗dy.

3.3 ChebyTransform
ChebyTransform is a wrapper class for Chebyshev transformations based on Matteo Frigo and Steven G.
Johnson’s elegant and powerful FFTW package (see www.fftw.org and [2]).1 In order to use ChebyTransform
well, one should know a few things about FFTW. FFTW uses code generation and run-time profiling to find
the optimal FFT algorithm for given transform length on a given processor. Once that optimal FFT is found,
it can be reused as many times as needed on data of the same length. Thus optimal use of FFTW consists of
a relatively high-cost “learning” phase and repeated execution of the optimal FFT algorithm. If only a single
transform needs to be calculated, a good algorithm can be estimated with heuristics or the results of previous
learning. FFTW’s accumulated learning is called “wisdom.” Wisdom can be saved to disk and recalled in
subsequent runs.

The ChebyTransform class does FFTW’s learning or estimating during construction and repeated ex-
ecution in calls to its transform functions. The ChebyTransform constructor takes an integer N argument
that specifies the transform length and an optional integer flag argument that specifies how FFTW should
learn or estimate. The default behavior is wisdom-based estimation rather than learning. For example,

ChebyTransform trans(N);

constructs a ChebyTransform with wisdom-based estimation of the optimal FFT for length N.

ChebyTransform trans(N, FFTW_MEASURE);

performs the high-cost “learning” phase to find the optimal length-N transform.

ChebyTransform trans(N, FFTW_MEASURE | FFTW_WISDOM);

1Note: ChebyTransform was written with FFTW-2.x. FFTW-3.x is now out, with better efficiency, a new syntax, and a new
discrete cosine transform. ChebyTransform’s internals will change significantly when channelflow upgrades to FFTW-3.x. In the
meantime this section is rather light on the exact details of how ChebyTransform calculates its transforms.

15



learns the optimal transform and adds remembers it to improve any subsequent estimates. For exact details
on FFTW flags, see the FFTW documentation. Channelflow provides two methods for saving FFTW wis-
dom to disk and rereading it, fftw loadwisdom() and fftw savewisdom(), both taking an optional
filename argument. The filename defaults to ˜/.fft-wisdom if left unspecified.

I generally load wisdom at the beginning of my programs and save it at the end. However, I recommend
reading the FFTW documentation on wisdom. You can undermine the performance of channelflow by de-
veloping wisdom on one machine architecture and using it on another. The FFTW authors even recommend
tossing out wisdom every time you recompile, since the byte-alignment of arrays can affect optimality.

3.4 FlowField
The FlowField class represents vector-valued Fourier× Chebyshev× Fourier expansions whose mathemati-
cal form is

u(x) =

Nx/2∑

kx=−Nx/2+1

Ny−1∑

ny=0

Nz/2∑

kz=−Nz/2+1

̂̃ukx,ny,kz T̄ny(y) e2πi(kxx/Lx+kzz/Lz) (4)

where x = (x, y, z) and T̄m is the mth Chebyshev polynomial rescaled for the domain y ∈ [a, b]. The double
tilde/hat notation on the spectral coefficients indicates that the coefficients result from a combined Fourier
transform in xz and a Chebyshev transform in y.

The primary function of FlowField, like ChebyCoeff, is to store data in arrays, transform it back and
forth from Spectral and Physical representations, allow access to the physical data or spectral coefficients,
and perform mathemtical operations related to the spectral expansions. FlowField, however, is considerably
more complicated, so we discuss it in greater detail.

[Note: the FlowField section needs editing or rewriting. I think I reduced its clarity by trying to explain
mode numbers vs grid indices vs wave numbers more clearly.]

3.4.1 A few examples of use

The following code snippet declares a 3d FlowField on (Nx, Ny, Nz) gridpoints, on the box [0, Lx]× [a, b]×
[0, Lz], sets the field to physical values provided by an external function, and then transforms the field to a
spectral representation

FlowField u(Nx,Ny,Nz,3,Lx,Lz,a,b,Physical,Physical);

Vector x = u.xgridpts();
Vector y = u.ygridpts();
Vector z = u.zgridpts();

for (int i=0; i<3; ++i)
for (int ny=0; ny<Ny; ++ny)

for (int nx=0; nx<Nx; ++nx)
for (int nz=0; nz<Nz; ++nz)
u(nx,ny,nz,i) = f(x(nx), y(ny), z(nz), i);

u.makeSpectral();

The next code snippet declares a 3d FlowField in the default Spectral, Spectral state, assigns
successively smaller random values to the Chebyshev coefficients of the (kx, kz) = (−1, 4) Fourier mode,
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computes the curl of the field, ouputs the L2 norm of the curl, and then transforms and prints the curl’s
physical gridpoint values.

FlowField f(Nx,Ny,Nz,3,Lx,Lz,a,b);

int kx = -1;
int kz = 4;
int mx = u.mx(kx);
int mz = u.mz(kz);
Real magn = 1.0;
Real decay = 0.5;

for (int my=0; my<f.My(); ++my) {
for (int i=0; i<f.Nd(); ++i)

f.cmplx(mx,my,mz,i) = magn*randomComplex();
magn *= decay;

}

FlowField g = curl(f);
cout << "L2Norm(curl u) == " << L2Norm(g) << endl;

g.makePhysical();
for (int i=0; i<g.Nd(); ++i)
for (int nx=0; nx<g.Nx(); ++nx)

for (int ny=0; ny<g.Ny(); ++ny)
for (int nz=0; nz<g.Nz(); ++nz)
cout << g(nx,ny,nz,i) << ’ ’;

3.4.2 Mode numbers, wave numbers, and grid points

Fun facts about FlowFields:

• FlowFields are allocated in terms of their physical grid sizes Nx×Ny ×Nz and vector dimensionNd.

• Physical gridpoint data is real-valued, indexed by gridpoint indices (nx, ny, nz), and accessed with
syntax u(nx,ny,nz,i).

• Spectral coefficient data is complex-valued, indexed by mode numbers (mx,my,mz), and accessed
with syntax u.cmplx(mx,my,mz,i).

• However, FlowField’s xz and y transforms are independent, so that mixed Physcial,Spectral and Spec-
tral,Physical states are possible, too.

• u.Nx(), u.Ny(), and u.Nz() indicate the number of gridpoints in x, y, and z for a given Flow-
Field.

• u.Mx(), u.My(), and u.Mz() indicate the number of modes in x, y, and z for a given FlowField.

• The ranges of gridpoint indices are 0 ≤ nx < Nx, etc.

• The ranges of mode numbers are 0 ≤ mx < Mx, etc.
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• Because FlowField’s Fourier transform maps Real-valued gridpoint data into half as namy N Complex-
valued spectral coefficients, the number of gridpoints differs from the number of modes. In particular,

Mx = Nx (5)
My = Ny (6)
Mz = Nz/2 + 1 (7)

• The mode numbersmx and mz are merely indices into the complex array of spectral coefficients; they
are not equal to the Fourier wave numbers kx and kz that appear in eqn. 4. However, the two are
related by

mx =

{
kx +Mx −Mx/2 + 1 ≤ kx < 0

kx 0 ≤ kx ≤Mx/2
(8)

mz =

{
kz 0 ≤ kz < Mz

undefined kz < 0
(9)

and

kx =

{
mx 0 ≤ mx ≤Mx/2

mx −Mx Mx/2 < mx < Mx

(10)

kz = mz 0 ≤ mz < Mz (11)

• Gridpoint indices are related to the coordinates of gridpoints by

xnx =
nxLx
Nx

0 ≤ nx < Nx (12)

yny =
b+ a

2
+
b− a

2
cos

(
nyπ

Ny − 1

)
0 ≤ ny < Ny (13)

znz =
nzLz
Nz

0 ≤ nz < Nz (14)

3.4.3 FlowField states, access methods, and transforms

The primary functions of FlowField are to store data, either as spectral coefficients ̂̃umx,my ,mz or as physical
gridpoint values u(xnx , yny , znz), and to transform between spectral and physical representations as needed.
FlowField performs its x, z Fourier transforms together and its y Chebyshev transform separately, so that a
FlowField can be in any one of four states:
Tildes ( ũ ) denote Fourier coefficients; hats ( û ) Chebyshev coefficients. In what follows we use the abbre-
viations PP, PS, SP, and SS for the four states of FlowFields, with the xz state listed first.

FlowFields can be initialized in any of the four states. For example,

FlowField u(Nx,Ny,Nz,Lx,Lz,a,b,Physical,Spectral);

constructs a FlowField in state PS. FlowField has two functions for checking state:

fieldstate xzstate = u.xzstate();
fieldstate ystate = u.ystate();

A fieldstate has value Physical or Spectral.
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Table 1: FlowField states and access functions.

xz, y state access function mathematical meaning type description

Physical, Physical u(nx,ny,nz,i) ui(xnx , yny , znz) Real gridpoint values

Physical, Spectral u(nx,my,nz,i) ûi,my (xnx , znz) Real mixed state

Spectral, Physical u.cmplx(mx,ny,mz,i) ũi,mx,mz(yny ) Complex mixed state

Spectral, Spectral u.cmplx(mx,my,mz,i) ̂̃ui,mx,my,mz Complex spectral coeffs

3.4.4 FlowField access methods

As noted above, the xz Fourier transform applied to a P* FlowField puts the FlowField in S* state and
switches its data from real-valued to complex-valued. FlowField has separate functions for accessing real
and complex-valued data. For example, real-valued P* FlowField data is set with

u(nx,ny,nz,i) = 4.0; // for u in state P*

Complex-valued S* FlowField data is set with

u.cmplx(mx,my,mz,i) = 4.0 + 3.0*I; // for u in state S*

You must use the data access method that is appropriate for the FlowField’s xz state. Using the wrong access
method will corrupt FlowField data and lead to meaningless results. To ensure correct use, Channelflow
provides debugging libraries that check FlowField state during each data access call. If the access method
doesn’t match the state, an error message will be printed and execution will stop. If you’re unsure of the
correctness of your code, link to the debugging libraries and run. See Section 9.2.

The meaning of the assignments in the above examples depends further on the FlowField’s ystate. For
example, the above complex assignment sets the value of ũi,mx,mz(ymy ) if u is in state SP and ̂̃ui,mx,my ,mz
if u is SS.

FlowField provides conversion functions for array indices, gridpoint positions, and wavenumbers:

Real x = u.x(nx); // get the x coordinate of the nxth gridpoint
Real y = u.y(ny);
Real z = u.z(nz);

int kx = u.kx(mx); // get the wvenumber kx of the mxth mode
int kz = u.kz(mz);

int mx = u.mx(kx); // get the mode number mx of the kx Fourier mode
int mz = u.mz(kz);

Other functions provide bounds for the spatial indices. For example, a PP FlowField can be set to zero by

for (int i=0; i<u.Nd(); ++i)
for (int ny=0; ny<u.Ny(); ++ny)

for (int nx=0; nx<u.Nx(); ++nx)
for (int nz=0; nz<u.Nz(); ++nz)

u(nx,ny,nz,i) = 0.0;

whereas an SS FlowField is can be zeroed with
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Complex zero = 0.0 + 0.0*I;
for (int i=0; i<u.Nd(); ++i)
for (int my=0; my<u.My(); ++my)

for (int mx=0; mx<u.Mx(); ++mx)
for (int mz=0; mz<u.Mz(); ++mz)

u.cmplx(mx,my,mz,i) = zero;

3.4.5 FlowField transform functions

The FlowField transform functions are

u.realfft_xz(); // P* -> S*
u.irealfft_xz(); // S* -> P*
u.chebyfft_y(); // *P -> *S
u.ichebyfft_y(); // *S -> *P

u.makeSpectral_xz(); // ** -> S*
u.makePhysical_xz(); // ** -> P*
u.makeSpectral_y(); // ** -> *S
u.makePhysical_y(); // ** -> *P

u.makeSpectral(); // ** -> SS
u.makePhysical(); // ** -> PP

u.makeState(Spectral, Physical); // ** -> SP

Let us restrict attention for the moment to scalar functions of two variables. For example, hold y fixed
and let f(x, z) = u0(x, y, z). FlowField’s discrete xz-Fourier transform and inverse are defined as

f̃kx,kz =
1

LxLz

Nx−1∑

nx=0

Nz−1∑

nz=0

f(xnx , znz) e
−2πi(kxxnx/Lx+kzznz/Lz) ∆x ∆z, (15)

f(xnx , znz) =

Nx/2∑

kx=−Nx/2+1

Nz/2∑

kz=−Nz/2+1

f̃kx,kze
2πi(kxxnx/Lx+kzznz/Lz) (16)

for f(x, z) on the domain x ∈ LxT and z ∈ LzT, where T is the periodic unit interval. The gridpoints and
stepsizes are defined by xnx = nx∆x, znz = nz∆z, ∆x = Lx/Nx, and ∆z = Lz/Nz.

Compare these to the continuous Fourier transform and its inverse,

f̃kx,kz =
1

LxLz

∫ Lx

0

∫ Lz

0

f(x, z) e−2πi(kxx/Lx+kzz/Lz) dx dz, (17)

f(x, z) =
∞∑

kx=−∞

∞∑

kz=−∞
f̃kx,kze

2πi(kxx/Lx+kzz/Lz). (18)

Note the notational distinction of wide versus narrow tildes between the discrete and continuous transforms.
Eqn. 15 is a trapezoidal approximation to eqn. 17, so as Nx, Nz → ∞, f̃kxkz → f̃kxkz . Thus the discrete
Fourier transform and inverse can be viewed as a finite-sum approximation to the continous transform and
inverse.
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For sufficiently smooth f , the discrete spectral coefficients can be used to form an uniformly convergent
approximation of f . Define

fNx,Nz(x, z) =

Nx/2∑

kx=−Nx/2+1

Nz/2∑

kz=−Nz/2+1

f̃kx,kze
2πi(kxx/Lx+kzz/Lz) (19)

If f is sufficiently smooth, fNx,Nz converges to f uniformly (see [1] for details). Because analytic functions
are available only for setting initial conditions (and then only to finite precision), channelflow documentation
generally drops the superscripts and treats fNx,Nz as if it were f exactly.

Note that by eqn. 17, f̃kx+Nx,kz = f̃kx,kz , and likewise for kz . This allows some flexibility in the range
over which the wavenumbers are chosen to vary. Channelflow uses zero-centered wavenumber ranges to
reflect symmetry in the power-spectra of physical data and to assure that spectral differentiation is well-
behaved. For example, refer to range of the kx and kz indices in eqns. 16 and 19.

FlowField’s Chebyshev transform works by looping overnx, nz, in each case considering f(y) = ui(x, y, z)
with x, z fixed, and applying the transform described in Section 3 to convert the function values {f0, f1, . . . ,

fNy−1} to Chebyshev coefficients {f̂0, f̂1, . . . , f̂Ny−1}.

3.4.6 FlowField differential operators and norms

FlowField f,g Note: If f is a 3d vector-valued FlowField, FlowField g = grad(f); produces a
tensor-valued field g, with gij = ∂fi/∂xj . However, FlowFields were written with only scalar and vector
fields in mind, so g is stored as a 9d vector-valued field. A helper function i3j(i, j) = i ∗ 3 + j is provided
to simplify access to the tensor field components. For example,

FlowField g = grad(f);
Complex g01 = g(mx,my,mz,i3j(0,1)); // i.e. g01 = df_0/dx_1 = df_0/dy

This is incomplete (since it only works for 2-tensors of 3d fields) and a bit of a kludge. At some point I hope
to generalize FlowFields to more general tensors, at which point the syntax will have to change.

3.4.7 FlowField’s layout in memory

Given the above relations, the expansion eqn. 4 can be rewritten as

u(x) =

Mx−1∑

mx=0

My−1∑

my=0

Mz−1∑

mz=0

̂̃umx,my,mz T̄my (y) e2πi(kxx/Lx+kzz/Lz) + complex conjugate (20)

which more closely reflects how spectral FlowField data is laid out in computer memory and how it is ac-
cessed in Channelflow programs. Note that the negative-kz modes are not included in the sum (they are
accounted for by the implicit addition of the sum’s complex conjugate), and that the the meaning and the
ranges of the indices on ̂̃u have changed between eqn. 4 and 20.

FlowFields use four-dimensional data storage arrays. Three dimensions are for the x, y, z spatial dimen-
sions; another dimension allows for the components i of the vector-valued field. In memory, the data is laid
out as a long, one-dimensional array. Stepping through sequential memory locations, z varies most quickly,
followed by x (to form the xz planes described below), then y, then i. The order was chosen to optimize the
xz Fourier transforms. Hence the best looping order for accessing FlowField data is i,ny,nx,nz, with i
outermost and z innermost.

FlowField’s xz memory layout is taken directly from FFTW. Figure 2 illustrates xz memory layout for the
caseNx = 8 andNz = 10. The upper picture represents anNz×Nx array of double-precision real numbers,

21



Table 2: FlowField differential operators

Convenience form Preferred form Meaning

FlowField g = xdiff(f); xdiff(f,g); g = ∂f/∂x

FlowField g = xdiff(f,n); xdiff(f,g,n); g = ∂nf/∂xn

FlowField g = ydiff(f); ydiff(f,g); g = ∂f/∂y

FlowField g = ydiff(f,n); ydiff(f,g,n); g = ∂nf/∂yn

FlowField g = zdiff(f); zdiff(f,g); g = ∂f/∂z

FlowField g = zdiff(f,n); zdiff(f,g,n); g = ∂nf/∂zn

FlowField g = xdiff(f,m,n,p); diff(f,g,m,n,p); g = ∂m+n+pf/∂xm∂yn∂zp

FlowField g = grad(f); grad(f,g); g = ∇f, gi = ∂f/∂xi for 1d f

g = ∇f , gij = ∂fi/∂xj for 3d f

FlowField g = lapl(f); lapl(f,g); g = ∇2f

FlowField g = div(f); div(f,g); g = ∇ · f
FlowField g = curl(f); curl(f,g); g = ∇× f

FlowField g = norm(f); norm(f,g); g = ‖f‖
FlowField g = norm2(f); norm2(f,g); g = ‖f‖2

FlowField g = energy(f); energy(f,g); g = 1
2‖f‖2

FlowField g = cross(f); cross(f,h,g); g = f × h

FlowField g = dot(f); dot(f,h,g); g = f · h
FlowField g = outer(f); outer(f,h,g); gij = fihj
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Figure 2: Layout of data in memory for real-to-complex xz-Fourier transforms for the case Nx = 8,
Nz = 10. The Fourier transform converts real-valued data, above, to complex-valued data, below. Each solid
box in the upper picture is a double-precision real number. Each solid box in the picture below is a double-
precision complex number, with real and imaginary parts separated by a dashed line. The arrow indicates
row-major storage order: successive memory locations store data with successive nz.
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Real r = L2Norm2(f, true); r = 1
LxLyLz

∫ Lx
0

∫ b
a

∫ Lz
0 f · f dx dy dz

Real r = L2Norm2(f, false); r =
∫ Lx

0

∫ b
a

∫ Lz
0

f · f dx dy dz
Real r = L2Norm2(f, true); r = L2Norm2(f)

Real r = L2Norm(f); r = sqrt(L2Norm2(f))

Real r = L2Dist2(f,g); r = L2Norm2(f− g)

Real r = L2Dist(f,g); r = L2Norm(f− g)

Real r = bcNorm2(f); r = 1
LxLz

∫ Lx
0

∫ Lz
0 (f · f |y=a + f · f |y=b) dx dz

Real r = bcNorm(f); r =
√
L2Norm2(f)

Real r = bcDist2(f); r = L2Norm2(f− g)

Real r = divL2Dist(f); r = L2Norm(f− g)

Real r = divNorm2(f); r = 1
LxLyLz

∫ Lx
0

∫ b
a

∫ Lz
0

f · f dx dy dz
Real r = divNorm(f); r =

√
L2Norm2(f)

Real r = divL2Dist2(f); r = L2Norm2(f− g)

Real r = divL2Dist(f); r = L2Norm(f− g)

Table 3: FlowField differential operators

with two columns for padding. The bottom picture shows the same memory after the Fourier transform, now
interpreted as an Mx ×Mz = Nx × (Nz/2 + 1) array of complex numbers. In the bottom picture note the
correspondence between the mode-number array index mx and the wavenumber kx, and the reduced range
of themz array index. The Fourier coefficients with negative kz are defined implicitly by f̃kx,−kz = f̃∗−kx,kz .

3.5 NSIntegrator and related classes
An NSIntegrator advances a pair of velocity and pressure FlowFields forward in time, according to the Navier-
Stokes. This section describes how to use NSIntegrator. For its mathematical details, see Section 4.

NSIntegrators are constructed by

NSIntegrator dns(u, U, nu, dt, flags);

or

NSIntegrator dns(u, U, nu, dt, flags, T0);

Of the arguments, u is a FlowField representing the initial condition of the fluctuating velocity, U is a Cheby-
Coeff representing the base flow, dt is either a Real number or a TimeStep object representing the finite-
difference time step, and flags is a DNSFlags object. The optional T0 argument is a real number that
specifies the starting time or the integration.

3.5.1 Configuring NSIntegrator with DNSFlags

The DNSFlags class is used to configure some optional generalizations of CHQZ’s algorithm. DNSFlags
contains several flag variables which can be set at construction or assigned afterwards. For example,
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DNSFlags flags(BulkVelocity, CNAB2, Rotational, DealiasXZ, PrintTime);

or

DNSFlags flags; // set to default values
flags.constraint = PressureGradient;
flags.timestepping = CNAB2;

The complete set of DNSFlags variables and their allowed values are

DNSFlags variable allowed values (default first)

flags.constraint BulkVelocity, PressureGradient

flags.timestepping RK3, CNAB2

flags.nonlinearity Rotational, SkewSymmetric, Alternating, Linearized

flags.dealiasing DealiasXZ, NoDealiasing, DealiasY, DealiasXYZ

flags.verbosity PrintTime, Silent, VerifyTauSolve, PrintAll

The basic meanings of the DNSFlags variables are

• flags.constraint : Periodic channel flows satisfy the Navier-Stokes equations with either the
bulk velocity or the spatial-mean pressure gradient set as an external constraint. This flag sets which
constraint is to be enforced. NSIntegrator’s default behavior determines the spatial-mean pressure
gradient or bulk velocity from the fluctuation’s initial condition u and matches this as a fixed constraint
at each time step. NSIntegrator can match time-varying constraints as well. See Section 3.5.3 for
further details.

• flags.timestepping: NSIntegrator uses either a 2nd-order Crank-Nicolson/Adams-Bashforth
(CNAB2) or a 3rd-order Runge-Kutta time-stepping scheme (RK3). See Section 4.4. RK3 is generally
preferable, since it’s usually more efficient in terms of calculations per unit time integration, and since
it can be started from a single velocity field.

• flags.nonlinearity: The nonlinear term in the Navier-Stokes calculation can be computed in
rotational, skewsymmetric, or alternating convection/divergence form or can be linearized about the
base flow. For the fully nonlinear forms, rotational is simple and fast but generates high-frequency
errors unless used with xz-dealiasing. Skewsymmetric is slower but well-behaved without dealiasing.
The alternating form alternates between convection and divergence forms of the nonlinear term and is
a cheap practical way to get the benefits of skewsymmetric without the computational expense. See [7]
and Section 4.3 for further details.

• flags.dealiasing: Nonlinear terms are calculated with collocation methods. NSIntegrator can
pad FlowFields with zeros to eliminate aliasing errors. DealiasXZ causes 2/3-style padding in xz:
at each time-step the upper 1/3 of x and z of the velocity field’s Fourier coefficients are set to zero.
DealiasY causes 3/2-style padding in y: the collocation calculations are performed in temporary
arrays of length 3Ny/2. See [1] and Section 4.4 for more details.

• flags.verbosity: This flag governs what the NSIntegrator prints at each timestep. PrintTime
prints the integration time at each timestep, which is helpful when running channelflow programs inter-
actively. VerifyTauSolve prints a verbose and expensive verification of the tau-equation solutions
for each Fourier mode. Other values are self-explanatory.

25



For precise specification of how the DNSFlags configuration variables affect the integration, please refer
to Section 4.

3.5.2 Base-fluctuation decomposition

The NSIntegrator decomposes the velocity and pressure fields into base and fluctuating parts

utot(x, t) = U(y)ex + u(x, t) (21)

ptot(x, t) = x
dP

dx
(t) + p(x, t) (22)

Channelflow represents u and p with xz-periodic FlowFields. Hence in the decomposition of the pressure
gradient,

∇ptot(x, t) =
dP

dx
(t)ex +∇p(x, t), (23)

the fluctuating pressure gradient ∇p has a zero spatial mean, and all of the spatial-mean pressure gradient
is carried by the base pressure gradient. For simplicity, dP/dx is referred to as the mean pressure gradient
in subsequent material, with spatial-mean implied. NSIntegrator imposes no further restriction on the base
flow U(y) or the base pressure gradient dP/dx: they do not have to solve the Navier-Stokes equations as
a pair, nor is u required to have zero spatial mean. The base flow U(y) for a simulation is set through the
ChebyCoeff U argument to the NSIntegrator constructor.

3.5.3 Enforcing bulk velocity or mean pressure constraints

A channel flow can satisfy either an externally imposed bulk velocity, or an externally imposed mean pressure
gradient. When one of is enforced as a constraint, the other is a dependent variable whose value is determined
from the momentum equation. NSIntegrator allows either type of constraint, as specified by its DNSFlags
argument. By default, NSIntegrator determines the value of the constraint from the initial data and matches
that value at all future times. For bulk velocity, the initial value is determined by

Ubulk =
1

LxLz(b− a)

∫ Lx

0

∫ b

a

∫ Lz

0

U(y) + u(x, 0) dx dy dz (24)

The initial mean pressure gradient is set from the initial wall-shear, according to

dP

dx
=

ν

b− a

(
dumean

dy

∣∣∣∣
b

− dumean

dy

∣∣∣∣
a

)
(25)

Check correctness of eqn, use of ν vs µ, and ρ. Note that this choice is somewhat arbitrary –it assumes the
net acceleration of the fluid is zero.

NSIntegrator allows the initial constraint values to be reset. For example,

NSIntegrator dns(u,U,nu,dt,flags);
dns.reset dPdx(0.0);

resets the mean pressure constraint to zero and sets the constraint type to PressureGradient.

NSIntegrator dns(u,U,nu,dt,flags);
dns.reset Ubulk(0.0);

resets the bulk velocity constraint to zero and sets the constraint type to BulkVelocity.
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3.5.4 Fixed and variable time-stepping

Fixed time-stepping
In the simplest case, NSIntegrator performs fixed time-stepping and enforces a constant bulk velocity or

mean pressure gradient

Real dt=0.10;
DNSFlags flags(BulkVelocity, RK3, Rotational, DealiasXZ, PrintTime);
NSIntegrator dns(u, U, nu, dt, flags);

for (int n=0; n<N; ++n)
dns.advance(u, q);

The loop advances the fluctuating velocity u and modified pressure q N steps of length dt. The advance()
function can also take multiple steps internally, for example,

int m = 10;
for (int n=0; n<N; ++n)

dns.advance(u, q, m);

advances u and q a total of N*m steps of length dt. The integration time can be determined at any point by
calling Real t = dns.advance(u, q, m);.
Variable time-stepping

Variable time-stepping minimizes the computational cost of an integration by maximizing the timestep
while keeping the CFL number near a threshold. The optional TimeStep class automates some of the issues
associated with variable timesteps. TimeStep tries to maximize the CFL number subject to the constraints
that (1) the timestep stays in a given range, (2) the CFL number stays in a given range, and (3) the timestep
is a whole-number fraction of a fixed time-interval. The last constraint allows one to stop and examine
integrations at fixed time-intervals. For example,

TimeStep dt(dtstart, dtmin, dtmax, dT, CFLmin, CFLmax);
NSIntegrator dns(u, U, nu, dt, flags);

for (Real t=0; t<T0; t += dT) {
dns.advance(u, q, dt.n());

if (dt.adjust(dns.CFL()))
dns.reset(nu, dt);

}

In this example, the TimeStep object adjusts itself to keep the CFL number between CFLmax and over
CFLmin, dt between dtmin and dtmax, and dt a whole-number fraction of dT, so that dt*dt.n()
= dT and each pass through the for-loop then covers the same time-interval. If the CFL number goes out
of range, dt.adjust changes the value of the time step and returns true, and the dns object is reset to
compute with the new integration timestep. Resetting the NSIntegrator’s timestep is a moderately expensive
operation (about the same as advancing one timestep), so it should be done infrequently.

CFL number. Measure expense of dns.reset().
Time-varying constraints

The following code enforces a time-varying bulk velocity.

27



DNSFlags flags(BulkVelocity, CNAB2, Rotational, DealiasXZ, PrintTime);
NSIntegrator dns(u, U, nu, dt, flags);
for (Real t=0; t<T0; t += dt) {

Real ubulk = sin(k*t);
dns.advance(u, q, ubulk);

}

To enforcing a time-varying constraint on the pressure gradient, change the first DNSFlags argument to
PressureGradient and perhaps rename ubulk to dPdx.

Note that time-varying constraints require CNAB2 time-stepping. I haven’t yet figured out how to enforce
the constraints properly in RK3 substeps. Note also that the advance function distinguishes variable-
constraint timestepping from multistep time-stepping (Section 3.5.4 by the type of the third argument. If you
write

Real m = 10; // note the Real type
for (int n=0; n<N; ++n)

dns.advance(u, q, m); // enforce Ubulk or dPdx to 10!

advance() will interpret the m argument as a time-varying constraint to be enforced!
Start-up for CNAB2

One disadvantage of CNAB2 integration is that it requires the pressure and the nonlinear term from the
previous time-step for proper initialization. You can start CNAB2 integrations without them, if first-order
accuracy is acceptable for the first time step. For example, in

DNSFlags flags;
flags.timestepping = CNAB2;

FlowField u("u"); // load velocity from disk
FlowField q(u.Nx(), u.Ny(), u.Nz(), 1, u.Lx(), u.Lz(), u.a(), u.b);

NSIntegrator dns(u, U, nu, dt, flags);
for (Real t=0; t<T0; t += dt)

dns.advance(u, q, ubulk);

the NSIntegrator constructor uses the same value of u to compute the nonlinear terms for t = −dt and t = 0,
giving order-1 accuracy for the first time-step. The initial pressure field is set to zero, which is probably not
correct, further reducing accuracy.

Order-2 accuracy can be maintained by starting from two successive velocity fields and the current pres-
sure. For example,

DNSFlags flags;
flags.timestepping = CNAB2;

FlowField u1("u1"); // load t=-dt velocity data from disk
FlowField u("u"); // load t=0 velocity data from disk
FlowField q("q"); // load t=0 pressure data from disk

NSIntegrator dns(u1, U, nu, dt, flags);
for (Real t=0; t<T0; t += dt)

dns.advance(u, q, ubulk);
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Figure 3: Schematic of channel flow. Fluid flows between two rigid walls at y = a and y = b. The boundary
conditions are periodic in x and z and no-slip at the walls. The mean flow U(y) is driven in the x-direction
by a mean pressure gradient.

If a previous velocity field or the current pressure field is unavailable, you can generate them by integrating
a single timestep with RK3.

FlowField u("u"); // load t=0 velocity data from disk
FlowField q(u.Nx(), u.Ny(), u.Nz(), 1, u.Lx(), u.Lz(), u.a(), u.b);

DNSFlags flags;
flags.timestepping = CNAB2;
NSIntegrator dns(u, U, nu, dt, flags);

{
flags.timestepping = RK3;
NSIntegrator dns_rk3(u, U, nu, dt, flags);
dns rk3.advance(u,q,1)

}

for (Real t=0; t<T0; t += dt)
dns.advance(u, q, ubulk);

The braces around the RK3 integration make the dns rk3 object go out of scope and give up its memory.
Check that this correctly describes role of initial pressure field

4 Mathematical details
This section discusses in some detail the mathematics of the spectral channelflow algorithm, in order to
specify the consequences of configuration choices and to provide a point of reference for comments in the
source code.
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4.1 The Navier-Stokes equations
Consider an incompressible wall-bounded fluid flow in a rectangular domain Ω , LxT× [a, b]×LzT, where
T is the periodic unit interval. The fluid flow in Ω is governed by the incompressible Navier-Stokes equations,

∂utot

∂t
+ utot · ∇utot = −∇ptot + ν∇2utot, (26)

∇·utot = 0, (27)

a where utot(x, t) is the total fluid velocity field and ptot(x, t) is the total pressure field. The upper and
lower surfaces of Ω are rigid walls, giving rise to no-slip boundary conditions: u = 0 at y = a and y = b.
The boundary conditions in the x and z directions are periodic: utot(x + Lx, y, z, t) = utot(x, y, z, t) and
utot(x, y, z + Lz, t) = utot(x, y, z, t).2

4.2 Base-fluctuation decomposition
Channelflow allows the total velocity and pressure fields to be broken into constant and fluctuating parts. The
velocity field is the sum of the base velocity or base flow U(y)ex, and the fluctuating velocity u(x, t).

utot(x, t) = U(y) ex + u(x, t). (28)

The total pressure field is the sum of a linear-in-x term Πx(t) x and a periodic fluctuating pressure p(x, t).
The gradient of this decomposition relates the total pressure gradient to a spatially-constant base pressure
gradient Πxex and a fluctuating pressure gradient∇p(x, t).

ptot(x, t) = Πx(t) x+ p(x, t) (29)
∇ptot(x, t) = Πx(t) ex +∇p(x, t) (30)

These forms for the base flow and pressure gradient are general enough to represent cases like Poisseuille,
Couette, and turbulent mean profiles. Note that channelflow does not require the base velocity and base
pressure gradient to satisfy the Navier-Stokes equations themselves. Substituting eqns. 28 and 30 into eqn.
26 gives

∂u

∂t
+∇p = ν∇2u− utot · ∇utot +

[
ν
∂2U

∂y2
−Πx

]
ex (31)

4.3 Forms for the nonlinear term
There are several different forms for the term of form utot · ∇utot in eqn. 31 that are identical in continuous
mathematics but have different properties when discretized. These are

the convection form utot · ∇utot (32)
the divergence form ∇ · (utotutot) (33)

the skew-symmetric form
1

2
utot · ∇utot +

1

2
∇ · (utotutot) (34)

the rotational form (∇× utot)× utot +
1

2
∇(utot · utot) (35)

2Components of vector variables are written several ways: x = (x, y, z) or x = (x0, x1, x2), and u = (u, v, w) or (u0, u1, u2).
A unit vector in the x (or x0) direction is ex (or e0).
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These expressions are identically equal, assuming ∇ · utot = 0. When discretized, the rotational form is the
least expensive to compute, but it introduces errors in the high spatial frequencies unless dealiased transforms
are used. The skew-symmetric form produces no such errors but is roughly twice as expensive to compute.
Note that the skew-symmetric form is the average of the convection and divergence forms. One can simu-
late this averaging by alternating between the convection and divergence forms on successive timesteps. In
practice the alternating method is as well-behaved as the skewsymmetric and almost as fast as the rotational.
Zang recommends using the skew-symmetric or alternating forms with aliased transforms or the rotational
form with dealiased transforms. See Zang ([7]) for further details. Channelflow implements the rotational,
convection, divergence, skew-symmetric, and alternating forms. The form is chosen by setting the DNSFlags
nonlinearity variable –see Section 3.5.1.

For historical reasons, the Channelflow does not compute the rotational form exactly as shown above;
rather, the nonlinear term is first expanded with the base-fluctuation decomposition and then the rotational
form is applied to u · ∇u:

utot · ∇utot = U
∂u

∂x
+ v

∂U

∂y
ex + u · ∇u (36)

= U
∂u

∂x
+ v

∂U

∂y
ex + (∇× u)× u +

1

2
∇(u · u) (37)

NSIntegrator computes the nonlinear term according to the value of flags.nonlinearity. Here
we list the form of the Navier-Stokes equation solved by NSIntegrator with various values of the flags (with
utot = u + Uex and U fixed).
Rotational:

∂u

∂t
+∇

[
p+

1

2
u · u

]
= ν∇2u−

[
(∇× u)× u + U

∂u

∂x
+ v

∂U

∂y
ex

]
+

[
ν
∂2U

∂y2
−Πx

]
ex (38)

Convection:

∂u

∂t
+∇p = ν∇2u− utot · ∇utot +

[
ν
∂2U

∂y2
−Πx

]
ex (39)

Divergence:

∂u

∂t
+∇p = ν∇2u−∇(utot · utot) +

[
ν
∂2U

∂y2
−Πx

]
ex (40)

Skew-symmetric:

∂u

∂t
+∇p = ν∇2u−

[
1

2
utot · ∇utot +

1

2
∇(utot · utot)

]
+

[
ν
∂2U

∂y2
−Πx

]
ex (41)

Linearized:

∂u

∂t
+∇p = ν∇2u−

[
U
∂u

∂x
+ v

∂U

∂y
ex

]
+

[
ν
∂2U

∂y2
−Πx

]
ex (42)

Alternating: eqns. 39 and 40 on alternating time steps.
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Eqns. 41-42 can be reunited with notation. With U fixed and utot defined as u+Uex, define the nonlinear
term N(u) by

N(u) ,





(∇× u)× u + U ∂u
∂x + v ∂U∂y ex Rotational

utot · ∇utot Convection
1
2∇(utot · utot) Divergence
1
2utot · ∇utot + 1

2∇(utot · utot) Skew-symmetric
U ∂u
∂x + v ∂U∂y ex Linearized

(43)

and the modified pressure q by

q ,





p+ 1
2u · u Rotational

p else (44)

Define also the linear term L(u) and the constant term C by

Lu , ν∇2u (45)

C ,
[
ν
∂2U

∂y2
−Πx

]
ex (46)

Note that the constant term is constant in u, but it may vary in time, since it contains the mean pressure
gradient, which is a potentially time-varying external forcing parameter. With these definitions eqns. 41 and
38 can be written

∂u

∂t
+∇q = Lu−N(u) + C (47)

The NSIntegrator advance(u,q) function advances the FlowFields u and q to their (approximate) values
at the next time step, according to eqn. 47 and the constraint∇·u = 0. Note that the meaning of the returned
value of q depends on the choice of nonlinearity, according to eqn. 44.

The next step in the derivation is to Fourier-transform eqn. 31. We apply the continuous Fourier transform
(eqn. 17) since eqn. 31 is continuous and introduce truncation later. The Fourier-transformed operators for
the gradient, the Laplacian, and the linear operator L are

∇̃kxkz , 2πi
kx
Lx

ex +
∂

∂y
ey + 2πi

kz
Lz

ez, (48)

∇̃2
kxkz ,

∂2

∂y2
− 4π2

(
k2
x

L2
x

+
k2
z

L2
z

)
, (49)

L̃kxkz , ν∇̃2
kxkz (50)

With these definitions, ∇̃q = ∇̃q̃ and L̃u = L̃ũ. Here and onwards kxkz subscripts will often be suppressed,
to reduce clutter. The Fourier transform of eqn. 31 can then be written

∂ũ

∂t
+ ∇̃q̃ = L̃ũ− Ñ(u) + C̃ (51)

Note that since C is spatially constant, so C̃ = C δkx0 δkz0.
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4.4 Time-stepping algorithms
NSIntegrator currently offers two time-integration schemes: CNAB2, a mixed Crank-Nicolson/Adams-Bashforth
scheme, and RK3, a mixed 3rd-order Runge-Kutta scheme. Both schemes treat the linear term implicitly and
the nonlinear term explicitly. CNAB is simpler so let’s begin there. Let ũn be the approximation of ũ at time
t = n∆t, and let Ñn , Ñ(un). Then we approximate terms in eqn. 51 at t = (n− 1/2)∆t with

∂

∂t
ũn+1/2 =

ũn+1 − ũn

∆t
+O(∆t2) (52)

L̃ũn+1/2 =
1

2
L̃ũn+1 +

1

2
L̃ũn +O(∆t2) (53)

∇̃q̃n+1/2 =
1

2
∇̃q̃n+1 +

1

2
∇̃q̃n +O(∆t2) (54)

Ñn+1/2 =
3

2
Ñn − 1

2
Ñn−1 +O(∆t2) (55)

C̃n+1/2 =
1

2
C̃n+1 +

1

2
C̃n +O(∆t2) (56)

The time-derivative approximation is obvious, the approximation for the linear term is called Crank-Nicolson,
and that of the nonlinear term is Adams-Bashforth (see CHQZ section 4.3). Plugging those into eqn. 51 and
rearranging gives
[

1

∆t
− 1

2
L̃

]
ũn+1 +

1

2
∇̃qn+1 =

[
1

∆t
+

1

2
L̃

]
ũn − 1

2
∇̃qn +

3

2
Ñn − 1

2
Ñn−1 +

1

2
C̃n+1 +

1

2
C̃n (57)

At this point we drop the O(∆t2) notation and take eqn. 57 as an update rule for an approximate solution
ũn+1. Eqn. 57 has several notable properties: (1) it is linear in the unknowns ũn+1 and q̃n+1, (2) its right-
hand side can be computed directly from velocity and pressure fields at previous time-steps and the external
mean-pressure parameter, and (3) the linear equations for each Fourier mode kxkz are independent.

Channelflow’s 3rd-order Runge-Kutta scheme, based on [5], is similar in principle but involves three
substeps for each timestep of length ∆t, with different coefficients αi, βi, γi, and ζi for each substep.

[
1

∆t
− βiL̃

]
ũn,i+1 + βi∇̃q̃n,i+1

=

[
1

∆t
+ αiL̃

]
ũn,i − αi∇̃q̃n + γiÑ

n,i + ζiÑ
n,i−1 + βiC̃

n+1 + αiC̃
n (58)

The second superscript indicates the Runge-Kutta substeps. For example, a three-substep follows the se-
quence ũn,0, ũn,1, ũn,2, ũn+1,0. RK3 is a particularly convenient time-stepping scheme because ζ0 = 0
eliminates the previous-step nonlinear term Ñn,i−1 when i = 0. Consequently the time-stepping can be
started from a single instantaneous velocity field. For CNAB, both Ñn and Ñn−1 are always required, so
two consecutive velocity fields are needed for starting the time-stepping. The CNAB time-stepping algorithm
can also be expressed in a form like eqn. 58, so we’ll proceed using this as the general form.

Expanding L̃ on the left-hand side of eqn. 58 results in an equation of the form

νũ′′ n,i+1 − λũ n,i+1 − ∇̃q̃n,i+1 = −R̃n,i (59)
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Table 4: Time-stepping coefficients
i αi βi γi ζi

CNAB 0 1/2 1/2 3/2 -1/2

0 29/96 37/160 8/15 0

RK3 1 -3/40 5/24 5/12 -17/60

2 1/6 1/6 3/4 -5/12

where

λ , 1

βi∆t
+ 4π2ν

(
k2
x

L2
x

+
k2
z

L2
z

)
(60)

R̃n,i ,
[

1

βi∆t
+
αi
βi

L̃

]
ũn,i +

αi
βi
∇̃q̃n,i +

γi
βi

Ñn,i +
ζi
βi

Ñn,i−1 + C̃n,i+1 +
αi
βi

C̃n,i (61)

ũ′′ , d2

dy2
ũ (62)

Thus, at each timestep or substep, we need to solve eqn. 59 for each Fourier mode. The complete system
of equations to be solved is

νũ′′ − λũ− ∇̃q̃ = −R̃ (63)

∇̃ · ũ = 0 (64)
ũ(a) = ũ = 0 (65)

From here on the time superscripts are suppressed. For lack of a better term, we call eqns. 63–65 the tau
equations. The name derives from the need to add a tau correction to the solution of the equations in their
discretized form. See CHQZ Section 7.3.1 and Section 4.5.2.

The bulk of the NSIntegrator advance() is concerned with looping over the Fourier modes and cal-
culating R̃ in preparation for solving the tau equations. The actual solution is computed by TauSolver and
related classes, discussed in Section 4.5. If xz-dealiasing is set in the DNSFlags, this loop excludes the
highest one-third of Fourier modes and sets those modes to zero.

4.5 TauSolver
The TauSolver class solves equations of the form of eqns. 63–65. An NSIntegrator object contains an Nx ×
(Nz/2 + 1) array of TauSolvers, each one configured solving eqns. 63–65 for a given kx, kz pair. The
TauSolver’s solution method is as follows.

4.5.1 The influence-matrix method.

Eqns. 63–65 constitute three coupled differential equations in four unknowns (ũ, ṽ, w̃, q̃), with one constraint
equation and three boundary conditions. CHQZ, following Klieser and Schumann ([3]), show how to de-
compose these coupled equations into independent one-dimensional Helmholtz equations. For simplicity of
presentation in this section we assume the walls are at y = ±1. We can isolate a system of equations in q̃

34



and ṽ by taking the divergence of eqn. 63, the ṽ-component of the same, and evaluating ∇̃ · ũ = 0 at the two
walls. This gives

q̃′′ − κ2q̃ = −∇̃ · R̃ ṽ′(±1) = 0 (66)

νṽ′′ − λṽ − q̃ ′ = −R̂y ṽ(±1) = 0 (67)

Eqns. 66 and 67 form a complete system for q̃ and ṽ. Call this the A-problem. The A-problem is tricky to
solve because q̃ appears in the ṽ differential equation while ṽ appears in the boundary condition.

To solve the A-problem, consider the inhomogeneous B-problem:

q̃′′ − κ2q̃ = −∇̃ · R̃ q̃(±1) = Q± (68)

νṽ′′ − λṽ − q̃ ′ = −R̂y ṽ(±1) = 0 (69)

The proper values Q± for the modified-pressure boundary conditions are unknown but will be determined
from the requirement that ṽ′(a) = ṽ′(b) = 0. First let (q̃p, ṽp) be the particular solution to the A-problem
with homogeneous Dirichlet boundary conditions, i.e.

q̃′′p − κ2q̃p = −∇̃ · R̃ q̃′p(±1) = 0 (70)

νṽ′′p − λṽp − q̃′p = −R̂y ṽp(±1) = 0 (71)

Next solve the B+-problem,

q̃′′+ − κ2q̃+ = 0 q̃+(−1) = 0, q̃+(1) = 1 (72)
νṽ′′+ − λṽ+ − q̃+

′ = 0 ṽ+(±1) = 0 (73)

and the B−-problem,

q̃′′− − κ2q̃− = 0 q̃−(−1) = 1, q̃−(1) = 0 (74)
νṽ′′− − λṽ− − q̃− ′ = 0 ṽ−(±1) = 0 (75)

Then the solution to the A-problem can be formed from the solutions to the particular A-problem and the
homogeneousB±-problems, by

(
q̃

ṽ

)
=

(
q̃p
ṽp

)
+ δ+

(
q̃+

ṽ+

)
+ δ−

(
q̃−
ṽ−

)
, (76)

The boundary conditions on (q̃, ṽ) for the A-problem are satisfied if

ṽ
′
+(+1) ṽ′−(+1)

ṽ+(−1) ṽ−(−1)




δ+

δ−


 = −


ṽp(+1)

ṽp(−1)


 (77)

Eqn. 77 is known as the influence-matrix equation. Solving it for δ± produces the proper boundary conditions
for the B-problem, and the consequent solution to the B-problem then satisfies the original A-problem. Al-
ternatively, one can construct the solution to the A-problem directly from 76. Note that the B±-problems are
independent of the velocity and pressure fields, so their solutions can be precomputed and stored. This saves
two complex Helmholtz computations per timestep for each Fourier mode. Channelflow takes this approach.
An alternative is to determine boundary conditions q̃(±1) = Q± from δ± and eqn. 76, and use this to solve
eqns. 68 and 69. This would save memory at the expense two complex Helmholtz solutions per timestep. In
the future channelflow might allow this as an option.
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4.5.2 The tau correction

To be written.

4.6 HelmholtzSolver
The differential equations to be solved in Section 4.5 are all Helmholtz equations of the form

νu′′ − λu = f u(±1) = u± (78)

where u is unknown, ν and λ are given parameters, and the right-hand-sides f and u± are given. The
Chebyshev tau approximation of eqn. 78 is

νû(2)
n − λûn = f̂n 0 ≤ n ≤ N − 3 (79)
N−1∑

n=0

ûn = u+ (80)

N−1∑

n=0

(−1)nûn = u− (81)

where û(2)
n , ûn, and f̂n, are the Chebyshev expansion coefficients of u′′, u, and f . CHQZ show how to

express eqns. 79–81 as two independent banded tridiagonal matrix equations.

4.7 BandedTridiag
To be written.

5 Incidental classes

5.1 Real and Complex
Channelflow uses a tricks in mathdefs.h to simplify the declaration of double-precision floating point and
complex floating-point numbers. These are

typedef double Real;
typedef std::complex<double> Complex;
const Complex I (0.0, 1.0);

These definitions allows declarations like

Real x = 4.3;
Complex z = 0.6 + 3.2*I;

Like all software tricks, these are probably bad ideas that will cause other people no end of headaches. Please
let me know if you experience problems. Problems can probably be mitigated by use of namespaces.
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5.2 BasisFunc
BasisFunc was originally written to represent unit-normalized Complex, vector-valued functions of the
form

u(x) =

N−1∑

n=0

ûnT̄n(y)e2πi(kxx/Lx+kzz/Lz) (82)

with the vector dimension fixed at 3, for a particular purpose in my numerical research. Once written, how-
ever, BasisFunc objects became handy for representing single Fourier components of three-dimensional
FlowFields.

Typical usage is like this

BasisFunc f = u.profile(mx,mz); // u is a FlowField
f.makePhysical();
f.save("f"); // save to ASCII file
ComplexChebyCoeff f0 = f[0]; // extract u-component
ComplexChebyCoeff fu = f.u(); // extract u-component
Complex fu_b = f[0].eval_b(); // extract value of u-comp at b

5.3 TurbStats

5.4 PoissonSolver
To be written. See example of use in in tests/poissonTest.cpp.

5.5 PressureSolver
To be written. See example of use in in tests/pressureTest.cpp.

6 Design

6.1 Channelflow class heirarchy
To be written.

6.2 Extending channelflow
To be written.

7 Validation

7.1 Integration of Orr-Sommerfeld eigenfunctions

7.2 Law of the wall in a channel flow
Figure 5 compares the mean velocity profile of a turbulent channel flow computed with channelflow to the-
oretical and experimental scaling laws. The figure is plotted in “wall units”. Define the friction velocity u∗
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High-level objects
for simulation programs

DNSIntegrator
u(t) → u(t + ∆t)
p(t) → p(t + ∆t)

%%

TurbStats
〈u(x)u(x′)〉
〈u(x)〉, etc.

||TauSolver
νũ′′ − λũ − ∇̃p̃ = f̃

∇̃ · ũ = 0
ũ(±1) = 0

OO

FlowField u(x) =

ũkxkzne2πi(kxx+kzz)Tn(y)

ggOOOOOOOOOOOOOOOO

99
rrrrrrrrrrrrrrr

��
BasisFunc

u(y) = ûnTn(y)

OO
hhQQQQQQQQQQQQQQQ

��
HelmholtzSolver

u′′ − λu = f

OO

ComplexChebyCoeff
u(y) = ûnTn(y)

OO

��
BandedTridiag

Tijuj = fj

OO

ChebyCoeff
u(y) = ûnTn(y)

OOiiTTTTTTTTTTTTTTT

Low-level objects
for libraries

Array< type >

[xn]

iiTTTTTTTTTTTTTTT

OO

fftw-2.1.3
FFT libraries

hhQQQQQQQQQQQQQ

YY

Figure 4: Structure of Channelflow software.

38



10
0

10
1

10
2

10
3

0

5

10

15

20

25

2.5 ln y
+
 + 5y

+

U
+

y
+

U
+

Figure 5: The law of the wall. Mean velocity of a turbulent channelflow compared to scaling laws for the
viscous sublayer (U/u∗ ≈ y+) and the inertial layer (U/u∗ ≈ 2.5 ln y+ + 5).

by

u∗ ,
√
ν
dU

dy

∣∣∣∣
y=0

(83)

where U(y) is the mean velocity profile. The wall-units for lengths and velocities are then defined by

y+ , yu∗/ν (84)

U+ , U/u∗ (85)

In these units the mean flow of a turbulent channel flow obeys

U+ = y+ in the viscous sublayer y+ < 10 (86)
U+ = 2.5 ln y+ + 5 in the inertial layer y+ > 30 (87)

For a derivation of the scaling laws, see Tennekes and Lumley ([6]) Section 5.2. The mean velocity profile
shown in Figure 5 was computed by walllaw.cpp in the examples/source directory. The computa-
tion uses a 48×97×24 grid on a domain of size (Lx, Ly, Lz) = (4π/3, 2, 2π/3), with viscosity ν = 1/4000,
resulting in a centerline-velocity Reynolds number of Re = 3110 and u∗ = 0.0450. Integration was RK3
with rotational nonlinearity calculation and dealiasing in xz, with constant mass flux enforced.

8 Benchmarks

8.1 Speed
Channelflow owes its speed to Matteo Frigo and Steven G. Johnson’s powerful and elegant FFTW, the Fastest
Fourier Transform in the West ([2]). Comparisons to Fortran to be redone and written.
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8.2 Memory
There is some memory overhead associated with programming in C++. First, C++ programming style en-
courages use of class member data in order to make objects as independent and self-contained as possible.
Second, C++ compilers introduce extra data fields into objects for things like virtual function pointers. These
effects can compound quickly when objects contain other objects, or worse, arrays of other objects.

My policy in writing channelflow was to pay close attention to these effects on large or heavily used
objects, where there might be significant cost, but to incur small memory overhead when it resulted in bet-
ter modularization. The FlowField class, for example, has a array of Reals of length dN 3 for storing d-
dimensional real-valued data on an N × N × N grid. (For simplicity, let Nx = Ny = Nz in this section.)
But FlowField also has several small constant-length data members, which facilitate independence between
multiple FlowField objects, and a few N -length arrays, which cache precomputed trigonometric functions.
As as result, the size of a FlowField is roughly dN 3 + aN + b reals, where a and b are O(10). For typical
N , the aN + b overhead is negligible. Lastly, channelflow makes minimal use of inheritance and virtual
functions, because in my experience, those features make C++ code hard to understand.

To check that C++ memory overhead was in fact negligible, I compared the actual memory consumption
of running programs to scaling-law estimates. The scaling laws are derived from the formula

# megabytes = (# scalar fields)× N3 Reals
scalar field

× 8 bytes
Real

× 1 megabyte
220bytes

(88)

The minimal set of data for second-order time-stepping has 14 scalar fields, from the four three-dimensional
fields un+1,un, fn, fn−1, and the two scalar fields qn+1 and qn, giving a minimal estimate of 14× 2−17N3

MB.3 The CNAB TauSolver caches 6 additional precomputed scalar fields q0, v0, q+, v+, q−, v− for influence-
matrix calculations (as noted in Section 4.5.1), resulting in an CNAB estimate of 20 × 2−17N3. The RK3
TauSolver caches these 6 additional precomputed scalar fields for each of 3 Runge-Kutta substeps, resulting
in an RK3 estimate of 32× 2−17N3 MB.

Figure 6 compares the actual memory consumption measured by the GNU “top” utility to the scaling-law
estimates. The memory overhead is small for N = 32 and negligible beyond that. Note that the overhead
includes the C libraries, I/O facilities, etc., which accounts for the departure from estimates for small N .4

Note also, from the scaling-law formula and the figure, that the memory overhead for caching precomputed
(q, v) fields for the influence-matrix method is roughly a factor of 3/2 for CNAB and 2 for RK3. Future
releases will probably have an option to eliminate caching at the cost of speed.

9 Software issues

9.1 Installation

9.2 Debugging
The channelflow library code contains hundreds of safety checks on things like array bounds and Phys-
ical/Spectral states of ChebyCoeff and FlowFields. These safety checks are turned off in the optimized
libraries. If your channelflow program produces a segmentation violation or bizarre numerical results, you
should recompile your code with debugging flags on and relink to the debugging libraries. For example, for
the program foo.cpp, run “make foo.dx” and then either run foo.dx on the console or in a debugger such

3Clever use of memory during timestepping calculations could probably reduce the number of fields stored below fourteen, but
memory is cheap enough that the savings isn’t worth the cost to intelligibility of the code.

4For the truly pedantic, note that the estimates for CNAB and RK3 very slightly overestimate memory consumption for large N .
This is due to the lack of caching of precomputed (q, v) fields for aliased Fourier modes.
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Figure 6: Memory consumption as function of gridsize. Comparison of actual memory consumption to
scaling-law estimates.

as gdb. I often set “break exit” in gdb so that I can examine the stack at the moment of exit. For more
information on debugging, consult the gdb manual.
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