FHSST Authors The Free High School Science Texts: Textbooks for High School Students Studying the Sciences Mathematics Grades 10 - 12 Version 0 September 17, 2008 Copyright 2007 "Free High School Science Texts" Permission **is** granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Did you notice the FREEDOMS we've granted you? Our copyright license is **different!** It grants freedoms rather than just imposing restrictions like all those other textbooks you probably own or use. - We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally! - Publishers revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide - we DARE you! - Ever wanted to change your textbook? Of course you have! Go ahead change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want! - Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends or alone but get involved! Together we can overcome the challenges our complex and diverse country presents. - So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair. - These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community. #### FHSST Core Team Mark Horner; Samuel Halliday; Sarah Blyth; Rory Adams; Spencer Wheaton #### FHSST Editors Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan Whitfield #### FHSST Contributors Rory Adams; Prashant Arora; Richard Baxter; Dr. Sarah Blyth; Sebastian Bodenstein; Graeme Broster; Richard Case; Brett Cocks; Tim Crombie; Dr. Anne Dabrowski; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez; Hemant Gopal; Umeshree Govender; Heather Gray; Lynn Greeff; Dr. Tom Gutierrez; Brooke Haag; Kate Hadley; Dr. Sam Halliday; Asheena Hanuman; Neil Hart; Nicholas Hatcher; Dr. Mark Horner; Mfandaidza Hove; Robert Hovden; Jennifer Hsieh; Clare Johnson; Luke Jordan; Tana Joseph; Dr. Jennifer Klay; Lara Kruger; Sihle Kubheka; Andrew Kubik; Dr. Marco van Leeuwen; Dr. Anton Machacek; Dr. Komal Maheshwari; Kosma von Maltitz; Nicole Masureik; John Mathew; JoEllen McBride; Nikolai Meures; Riana Meyer; Jenny Miller; Abdul Mirza; Asogan Moodaly; Jothi Moodley; Nolene Naidu; Tyrone Negus; Thomas O'Donnell; Dr. Markus Oldenburg; Dr. Jaynie Padayachee; Nicolette Pekeur; Sirika Pillay; Jacques Plaut; Andrea Prinsloo; Joseph Raimondo; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle; Evan Robinson; Dr. Andrew Rose; Bianca Ruddy; Katie Russell; Duncan Scott; Helen Seals; Ian Sherratt; Roger Sieloff; Bradley Smith; Greg Solomon; Mike Stringer; Shen Tian; Robert Torregrosa; Jimmy Tseng; Helen Waugh; Dr. Dawn Webber; Michelle Wen; Dr. Alexander Wetzler; Dr. Spencer Wheaton; Vivian White; Dr. Gerald Wigger; Harry Wiggins; Wendy Williams; Julie Wilson; Andrew Wood; Emma Wormauld; Sahal Yacoob; Jean Youssef Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource! www.fhsst.org # **Contents** | ı | Bas | sics | | | | | | | | | | | | | 1 | |----|-------|------------|-----------|----------|---------|-------|-------|-----|------|--|------|--|--|--|----| | 1 | Intro | duction | to Boo | k | | | | | | | | | | | 3 | | | 1.1 | The Lan | guage of | . Mathe | ematic | S | | |
 | |
 | | | | 3 | | II | Gr | ade 10 | | | | | | | | | | | | | 5 | | 2 | Revi | ew of Pa | ast Worl | « | | | | | | | | | | | 7 | | | 2.1 | Introduc | tion | | | | | |
 | |
 | | | | 7 | | | 2.2 | What is | a numbe | er? | | | | |
 | |
 | | | | 7 | | | 2.3 | Sets | | | | | | |
 | |
 | | | | 7 | | | 2.4 | Letters a | and Arith | ımetic | | | | |
 | |
 | | | | 8 | | | 2.5 | Addition | and Sub | otractio | n | | | |
 | |
 | | | | 9 | | | 2.6 | Multiplic | cation an | d Divis | ion . | | | |
 | |
 | | | | 9 | | | 2.7 | Brackets | 5 | | | | | |
 | |
 | | | | 9 | | | 2.8 | Negative | e Numbe | rs | | | | |
 | |
 | | | | 10 | | | | 2.8.1 V | What is a | a negat | ive nu | mber | ? . | |
 | |
 | | | | 10 | | | | 2.8.2 V | Working | with N | egative | e Nun | nbers | S . |
 | |
 | | | | 11 | | | | 2.8.3 L | Living W | ithout t | the Nu | ımber | Line | · . |
 | |
 | | | | 12 | | | 2.9 | Rearrang | ging Equ | ations | | | | |
 | |
 | | | | 13 | | | 2.10 | Fractions | s and De | cimal N | Vumbe | ers . | | |
 | |
 | | | | 15 | | | 2.11 | Scientific | c Notatio | on | | | | |
 | |
 | | | | 16 | | | 2.12 | Real Nur | mbers . | | | | | |
 | |
 | | | | 16 | | | | 2.12.1 N | Natural N | Number | 's | | | |
 | |
 | | | | 17 | | | | 2.12.2 l | ntegers | | | | | |
 | |
 | | | | 17 | | | | 2.12.3 F | Rational | Numbe | rs | | | |
 | |
 | | | | 17 | | | | 2.12.4 l | rrational | Numb | ers . | | | |
 | |
 | | | | 19 | | | 2.13 | Mathema | atical Sy | mbols | | | | |
 | |
 | | | | 20 | | | 2.14 | Infinity . | | | | | | |
 | |
 | | | | 20 | | | 2.15 | End of C | Chapter E | Exercise | es | | | |
 | |
 | | | | 21 | | 3 | Rati | onal Nun | mbers - | Grade | 10 | | | | | | | | | | 23 | | | 3.1 | Introduc | tion | | | | | |
 | |
 | | | | 23 | | | 3.2 | The Big | Picture | of Num | nbers | | | |
 | |
 | | | | 23 | | | 3 3 | Definitio | | | | | | | | | | | | | 23 | | | 3.4 | Forms of Rational Numbers | 24 | |---|-------|---|----| | | 3.5 | Converting Terminating Decimals into Rational Numbers | 25 | | | 3.6 | Converting Repeating Decimals into Rational Numbers | 25 | | | 3.7 | Summary | 26 | | | 3.8 | End of Chapter Exercises | 27 | | 4 | Exp | onentials - Grade 10 | 29 | | | 4.1 | Introduction | 29 | | | 4.2 | Definition | 29 | | | 4.3 | Laws of Exponents | 30 | | | | 4.3.1 Exponential Law 1: $a^0=1$ | 30 | | | | 4.3.2 Exponential Law 2: $a^m \times a^n = a^{m+n}$ | 30 | | | | 4.3.3 Exponential Law 3: $a^{-n} = \frac{1}{a^n}, a \neq 0 \dots$ | 31 | | | | 4.3.4 Exponential Law 4: $a^m \div a^n = a^{m-n}$ | 32 | | | | 4.3.5 Exponential Law 5: $(ab)^n = a^nb^n$ | 32 | | | | 4.3.6 Exponential Law 6: $(a^m)^n = a^{mn}$ | 33 | | | 4.4 | End of Chapter Exercises | 34 | | 5 | Esti | mating Surds - Grade 10 | 37 | | | 5.1 | Introduction | 37 | | | 5.2 | Drawing Surds on the Number Line (Optional) | 38 | | | 5.3 | End of Chapter Excercises | 39 | | 6 | Irrat | ional Numbers and Rounding Off - Grade 10 | 41 | | | 6.1 | Introduction | 41 | | | 6.2 | Irrational Numbers | 41 | | | 6.3 | Rounding Off | 42 | | | 6.4 | End of Chapter Exercises | 43 | | 7 | Nun | nber Patterns - Grade 10 | 45 | | | 7.1 | Common Number Patterns | 45 | | | | 7.1.1 Special Sequences | 46 | | | 7.2 | Make your own Number Patterns | 46 | | | 7.3 | Notation | 47 | | | | 7.3.1 Patterns and Conjecture | 49 | | | 7.4 | Exercises | 50 | | 8 | Fina | nce - Grade 10 | 53 | | | 8.1 | Introduction | 53 | | | 8.2 | Foreign Exchange Rates | 53 | | | | 8.2.1 How much is R1 really worth? | 53 | | | | 8.2.2 Cross Currency Exchange Rates | 56 | | | | 8.2.3 Enrichment: Fluctuating exchange rates | 57 | | | 8.3 | Being Interested in Interest | 58 | | | 8.4 | Simple Interest | | |----|------|--|---| | | | 8.4.1 Other Applications of the Simple Interest Formula 61 | | | | 8.5 | Compound Interest | | | | | 8.5.1 Fractions add up to the Whole | | | | | 8.5.2 The Power of Compound Interest | | | | | 8.5.3 Other Applications of Compound Growth 67 | | | | 8.6 | Summary | | | | | 8.6.1 Definitions | , | | | | 8.6.2 Equations | ; | | | 8.7 | End of Chapter Exercises | | | 9 | Drod | ducts and Factors - Grade 10 71 | | | 9 | 9.1 | | | | | - | | | | | 9.2 | Recap of Earlier Work | | | | | 9.2.1 Parts of an Expression | | | | | 9.2.2 Product of Two Binomials | | | | | 9.2.3 Factorisation | | | | 9.3 | More Products | | | | 9.4 | Factorising a Quadratic | | | | 9.5 | Factorisation by Grouping | | | | 9.6 | Simplification of Fractions | | | | 9.7 | End of Chapter Exercises | | | 10 | Equa | ations and Inequalities - Grade 10 83 | | | | 10.1 | Strategy for Solving Equations | | | | 10.2 | Solving Linear Equations | | | | 10.3 | Solving Quadratic Equations | | | | 10.4 | Exponential Equations of the form $ka^{(x+p)}=m$ | į | | | | 10.4.1 Algebraic Solution | | | | 10.5 | Linear Inequalities | | | | 10.6 | Linear Simultaneous Equations | | | | | 10.6.1 Finding solutions | | | | | 10.6.2 Graphical Solution | | | | | 10.6.3 Solution by Substitution | | | | 10.7 | Mathematical Models | | | | | 10.7.1 Introduction | | | | | 10.7.2 Problem Solving Strategy | | | | | 10.7.3 Application of Mathematical Modelling | | | | | 10.7.4 End of Chapter Exercises | | | | 10.8 | Introduction to
Functions and Graphs | | | | | Functions and Graphs in the Real-World | | | | | ORecap | | | | | | | | | 10.10.1 Variables and Constants | |---|---| | | 10.10.2 Relations and Functions | | | 10.10.3 The Cartesian Plane | | | 10.10.4 Drawing Graphs | | | 10.10.5Notation used for Functions | | 10.1 | 1Characteristics of Functions - All Grades | | | $10.11.1 Dependent and Independent Variables \ldots \ldots \ldots \ldots \ldots \ldots \ldots $ | | | 10.11.2 Domain and Range | | | 10.11.3 Intercepts with the Axes | | | 10.11.4 Turning Points | | | 10.11.5 Asymptotes | | | 10.11.6 Lines of Symmetry | | | 10.11.7 Intervals on which the Function Increases/Decreases | | | 10.11.8 Discrete or Continuous Nature of the Graph | | 10.1 | 2Graphs of Functions | | | 10.12.1 Functions of the form $y=ax+q$ | | | 10.12.2 Functions of the Form $y=ax^2+q$ | | | 10.12.3 Functions of the Form $y= rac{a}{x}+q$ | | | 10.12.4 Functions of the Form $y=ab^{(x)}+q$ | | 10.1 | 3End of Chapter Exercises | | | | | | | | | rage Gradient - Grade 10 Extension 135 | | 11.1 | Introduction | | 11.1
11.2 | Introduction | | 11.1
11.2
11.3 | Introduction | | 11.1
11.2
11.3 | Introduction | | 11.1
11.2
11.3
11.4 | Introduction | | 11.1
11.2
11.3
11.4
12 Geo | Introduction | | 11.1
11.2
11.3
11.4
12 Geo | Introduction135Straight-Line Functions135Parabolic Functions136End of Chapter Exercises138metry Basics139 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2 | Introduction135Straight-Line Functions135Parabolic Functions136End of Chapter Exercises138metry Basics139Introduction139 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2 | Introduction135Straight-Line Functions135Parabolic Functions136End of Chapter Exercises138metry Basics139Introduction139Points and Lines139 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 12.3.2 Special Angles 141 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2
12.3 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 12.3.2 Special Angles 141 12.3.3 Special Angle Pairs 143 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2
12.3 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 12.3.2 Special Angles 141 12.3.3 Special Angle Pairs 143 12.3.4 Parallel Lines intersected by Transversal Lines 143 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2
12.3 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 12.3.2 Special Angles 141 12.3.3 Special Angle Pairs 143 12.3.4 Parallel Lines intersected by Transversal Lines 143 Polygons 147 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2
12.3 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 12.3.2 Special Angles 141 12.3.3 Special Angle Pairs 143 12.3.4 Parallel Lines intersected by Transversal Lines 143 Polygons 147 12.4.1 Triangles 147 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2
12.3 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 12.3.2 Special Angles 141 12.3.3 Special Angle Pairs 143 12.3.4 Parallel Lines intersected by Transversal Lines 143 Polygons 147 12.4.1 Triangles 147 12.4.2 Quadrilaterals 152 | | 11.1
11.2
11.3
11.4
12 Geo
12.1
12.2
12.3 | Introduction 135 Straight-Line Functions 135 Parabolic Functions 136 End of Chapter Exercises 138 metry Basics 139 Introduction 139 Points and Lines 139 Angles 140 12.3.1 Measuring angles 141 12.3.2 Special Angles 141 12.3.3 Special Angle Pairs 143 12.3.4 Parallel Lines intersected by Transversal Lines 143 Polygons 147 12.4.1 Triangles 147 12.4.2 Quadrilaterals 152 12.4.3 Other polygons 155 | | 12 | C | orator. Con de 10 | 161 | |----|----------|--|-----| | 13 | | , | 161 | | | | Introduction | | | | 13.2 | Right Prisms and Cylinders | | | | | 13.2.1 Surface Area | 162 | | | | 13.2.2 Volume | 164 | | | 13.3 | Polygons | 167 | | | | 13.3.1 Similarity of Polygons | 167 | | | 13.4 | Co-ordinate Geometry | 171 | | | | 13.4.1 Introduction | 171 | | | | 13.4.2 Distance between Two Points | 172 | | | | $13.4.3 \ \ {\sf Calculation} \ \ {\sf of} \ \ {\sf the} \ \ {\sf Gradient} \ \ {\sf of} \ \ {\sf a} \ \ {\sf Line} \ \ . \
\ . \ \ \ \ \ \ \ \ . \$ | 173 | | | | 13.4.4 Midpoint of a Line $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 174 | | | 13.5 | Transformations | 177 | | | | 13.5.1 Translation of a Point | 177 | | | | 13.5.2 Reflection of a Point | 179 | | | 13.6 | End of Chapter Exercises | 185 | | | | | | | 14 | • | , | 189 | | | | Introduction | | | | | Where Trigonometry is Used | | | | 14.3 | Similarity of Triangles | 190 | | | 14.4 | Definition of the Trigonometric Functions | 191 | | | 14.5 | Simple Applications of Trigonometric Functions | 195 | | | | 14.5.1 Height and Depth | 195 | | | | 14.5.2 Maps and Plans | 197 | | | 14.6 | Graphs of Trigonometric Functions | 199 | | | | 14.6.1 Graph of $\sin \theta$ | 199 | | | | 14.6.2 Functions of the form $y = a \sin(x) + q$ | 200 | | | | 14.6.3 Graph of $\cos \theta$ | 202 | | | | 14.6.4 Functions of the form $y = a\cos(x) + q$ | 202 | | | | 14.6.5 Comparison of Graphs of $\sin \theta$ and $\cos \theta$ | 204 | | | | 14.6.6 Graph of $ an heta$ | 204 | | | | 14.6.7 Functions of the form $y = a \tan(x) + q$ | 205 | | | 14.7 | End of Chapter Exercises | 208 | | | _ | | | | 15 | | | 211 | | | | Introduction | | | | 15.2 | Recap of Earlier Work | | | | | 15.2.1 Data and Data Collection | | | | | 15.2.2 Methods of Data Collection | 212 | | | | 15.2.3 Samples and Populations | 213 | | | 15.3 | Example Data Sets | 213 | | | | 15.3.1 Data Set 1: Tossing a Coin | 213 | |-----|---|--|--| | | | 15.3.2 Data Set 2: Casting a die | 213 | | | | 15.3.3 Data Set 3: Mass of a Loaf of Bread | 214 | | | | 15.3.4 Data Set 4: Global Temperature | 214 | | | | 15.3.5 Data Set 5: Price of Petrol | 215 | | | 15.4 | Grouping Data | 215 | | | | 15.4.1 Exercises - Grouping Data | 216 | | | 15.5 | Graphical Representation of Data | 217 | | | | 15.5.1 Bar and Compound Bar Graphs | 217 | | | | 15.5.2 Histograms and Frequency Polygons | 217 | | | | 15.5.3 Pie Charts | 219 | | | | 15.5.4 Line and Broken Line Graphs | 220 | | | | 15.5.5 Exercises - Graphical Representation of Data | 221 | | | 15.6 | Summarising Data | 222 | | | | 15.6.1 Measures of Central Tendency | 222 | | | | 15.6.2 Measures of Dispersion | 225 | | | | 15.6.3 Exercises - Summarising Data | 228 | | | 15.7 | Misuse of Statistics | 229 | | | | 15.7.1 Exercises - Misuse of Statistics | 230 | | | 15.8 | Summary of Definitions | 232 | | | 15.9 | Exercises | 232 | | 16 | Prob | pability - Grade 10 | 235 | | | | Introduction | | | | | Random Experiments | | | | 10.2 | | ソスト | | | | | | | | 16 3 | 16.2.1 Sample Space of a Random Experiment | 235 | | | 16.3 | 16.2.1 Sample Space of a Random Experiment | 235
238 | | | | 16.2.1 Sample Space of a Random Experiment 2 Probability Models 2 16.3.1 Classical Theory of Probability 2 | 235
238
239 | | | 16.4 | 16.2.1 Sample Space of a Random Experiment 2 Probability Models 2 16.3.1 Classical Theory of Probability 2 Relative Frequency vs. Probability 2 | 235
238
239
240 | | | 16.4
16.5 | 16.2.1 Sample Space of a Random Experiment 2 Probability Models 3 16.3.1 Classical Theory of Probability 3 Relative Frequency vs. Probability 3 Project Idea 3 | 235
238
239
240
242 | | | 16.4
16.5
16.6 | 16.2.1 Sample Space of a Random Experiment Probability Models | 235
238
239
240
242
242 | | | 16.4
16.5
16.6
16.7 | 16.2.1 Sample Space of a Random Experiment Probability Models | 235
238
239
240
242
242
243 | | | 16.4
16.5
16.6
16.7
16.8 | 16.2.1 Sample Space of a Random Experiment Probability Models | 235
238
239
240
242
242
243
244 | | | 16.4
16.5
16.6
16.7
16.8 | 16.2.1 Sample Space of a Random Experiment Probability Models | 235
238
239
240
242
242
243
244 | | | 16.4
16.5
16.6
16.7
16.8
16.9 | 16.2.1 Sample Space of a Random Experiment Probability Models | 235
238
239
240
2242
2242
2243
2244
2246 | | | 16.4
16.5
16.6
16.7
16.8
16.9 | 16.2.1 Sample Space of a Random Experiment Probability Models | 235
238
239
240
242
242
243
244 | | | 16.4
16.5
16.6
16.7
16.8
16.9 | 16.2.1 Sample Space of a Random Experiment Probability Models 16.3.1 Classical Theory of Probability Relative Frequency vs. Probability Project Idea Probability Identities Mutually Exclusive Events Complementary Events End of Chapter Exercises | 235
238
239
240
2242
2242
2243
2244
2246 | | | 16.4
16.5
16.6
16.7
16.8
16.9 | 16.2.1 Sample Space of a Random Experiment Probability Models | 235
238
239
240
242
242
243
244
246
49 | | 111 | 16.4
16.5
16.6
16.7
16.8
16.9 | 16.2.1 Sample Space of a Random Experiment Probability Models 16.3.1 Classical Theory of Probability Relative Frequency vs. Probability Project Idea Probability Identities Mutually Exclusive Events Complementary Events End of Chapter Exercises 2 probability Identities 2 complementary Events 2 complementary Events 2 complementary Events 3 complementary Events 4 complementary Events 5 complementary Events 6 complementary Events 7 complementary Events 8 complementary Events 9 co | 235
238
239
240
242
242
243
244
246
49
251 | | | 16.4
16.5
16.6
16.7
16.8
16.9 | 16.2.1 Sample Space of a Random Experiment Probability Models 16.3.1 Classical Theory of Probability Relative Frequency vs. Probability Project Idea Probability Identities Mutually Exclusive Events Complementary Events End of Chapter Exercises rade 11 Introduction | 235
238
239
240
242
243
244
246
49
251
251 | | | 16.4
16.5
16.6
16.7
16.8
16.9
G
Expo
17.1
17.2 | 16.2.1 Sample Space of a Random Experiment Probability Models 16.3.1 Classical Theory of Probability Relative Frequency vs. Probability Project Idea Probability Identities Mutually Exclusive Events Complementary Events End of Chapter Exercises rade 11 pnents - Grade 11 Introduction Laws of Exponents | 235
238
239
240
242
242
243
244
246
49
251
251
251 | | 18 Surds - Grade 11 2 | 255 | |--|-----| | 18.1 Surd Calculations | 255 | | 18.1.1 Surd Law 1: $\sqrt[n]{a}\sqrt[n]{b}=\sqrt[n]{ab}$ | 255 | | 18.1.2 Surd Law 2: $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ | 255 | | 18.1.3 Surd Law 3: $\sqrt[n]{a^m}=a^{ rac{m}{n}}$ | 256 | | 18.1.4 Like and Unlike Surds | 256 | | 18.1.5 Simplest Surd form | 257 | | 18.1.6 Rationalising Denominators | 258 | | 18.2 End of Chapter Exercises | 259 | | 19 Error Margins - Grade 11 | 261 | | 20 Quadratic Sequences - Grade 11 2 | 265 | | 20.1 Introduction | 265 | | 20.2 What is a quadratic sequence? | 265 | | 20.3 End of chapter Exercises | 269 | | 21 Finance - Grade 11 2 | 271 | | 21.1 Introduction | 271 | | 21.2 Depreciation | | | 21.3 Simple Depreciation (it really is simple!) | | | 21.4 Compound Depreciation | | | 21.5 Present Values or Future Values of an Investment or Loan | | | 21.5.1 Now or Later | 276 | | 21.6 Finding <i>i</i> | 278 | | 21.7 Finding n - Trial and Error | 279 | | 21.8 Nominal and Effective Interest Rates | 280 | | 21.8.1 The General Formula | 281 | | 21.8.2 De-coding the Terminology | 282 | | 21.9 Formulae Sheet | 284 | | 21.9.1 Definitions | 284 | | 21.9.2 Equations | 285 | | 21.10End of Chapter Exercises | 285 | | 22 Solving Quadratic Equations - Grade 11 2
| 287 | | 22.1 Introduction | 287 | | 22.2 Solution by Factorisation | 287 | | 22.3 Solution by Completing the Square | 290 | | 22.4 Solution by the Quadratic Formula | 293 | | 22.5 Finding an equation when you know its roots | 296 | | 22.6 End of Chapter Exercises | 299 | | 23 | Solv | ing Quadratic Inequalities - Grade 11 | 301 | |------------|--------|--|-----| | | 23.1 | Introduction | 301 | | | 23.2 | Quadratic Inequalities | 301 | | | 23.3 | End of Chapter Exercises | 304 | | 24 | C a la | ing Signalhamana Equations - Condo 11 | 207 | | 24 | | ing Simultaneous Equations - Grade 11 Graphical Solution | 307 | | | | Algebraic Solution | | | | 24.2 | Algebraic Solution | 309 | | 25 | Mat | hematical Models - Grade 11 | 313 | | | 25.1 | Real-World Applications: Mathematical Models | 313 | | | 25.2 | End of Chatpter Exercises | 317 | | | _ | | | | 26 | | | 321 | | | | Introduction | | | | 26.2 | Functions of the Form $y = a(x+p)^2 + q$ | | | | | 26.2.1 Domain and Range | | | | | 26.2.2 Intercepts | | | | | 26.2.3 Turning Points | | | | | 26.2.4 Axes of Symmetry | | | | | 26.2.5 Sketching Graphs of the Form $f(x) = a(x+p)^2 + q$ | | | | | 26.2.6 Writing an equation of a shifted parabola | | | | 26.3 | End of Chapter Exercises | 327 | | 27 | Hvn | erbolic Functions and Graphs - Grade 11 | 329 | | | | Introduction | | | | | Functions of the Form $y=\frac{a}{x+p}+q$ | | | | 21.2 | 27.2.1 Domain and Range \dots | | | | | 27.2.2 Intercepts | | | | | 27.2.3 Asymptotes | | | | | 27.2.4 Sketching Graphs of the Form $f(x) = \frac{a}{x+p} + q$ | | | | 27 3 | End of Chapter Exercises | | | | 21.5 | End of Chapter Excloses | 555 | | 28 | Ехр | onential Functions and Graphs - Grade 11 | 335 | | | 28.1 | Introduction | 335 | | | 28.2 | Functions of the Form $y=ab^{(x+p)}+q$ | 335 | | | | 28.2.1 Domain and Range | 336 | | | | 28.2.2 Intercepts | 337 | | | | 28.2.3 Asymptotes | 338 | | | | 28.2.4 Sketching Graphs of the Form $f(x) = ab^{(x+p)} + q$ | 338 | | | 28.3 | End of Chapter Exercises | 339 | | . - | _ | | | | 29 | | | 341 | | | | Introduction | | | | | Average Gradient | | | | 29.3 | End of Chapter Exercises | 344 | | 30 | Line | ar Programming - Grade 11 | 345 | |----|-------|---|-----| | | | Introduction | 345 | | | 30.2 | Terminology | 345 | | | | 30.2.1 Decision Variables | | | | | 30.2.2 Objective Function | | | | | 30.2.3 Constraints | | | | | 30.2.4 Feasible Region and Points | | | | | 30.2.5 The Solution | | | | 30.3 | Example of a Problem | | | | | Method of Linear Programming | | | | | Skills you will need | | | | | 30.5.1 Writing Constraint Equations | | | | | 30.5.2 Writing the Objective Function | | | | | 30.5.3 Solving the Problem | | | | 30.6 | End of Chapter Exercises | | | | 30.0 | Zila of Citapter Exercises | 332 | | 31 | Geor | metry - Grade 11 | 357 | | | 31.1 | Introduction | 357 | | | 31.2 | Right Pyramids, Right Cones and Spheres | 357 | | | 31.3 | Similarity of Polygons | 360 | | | 31.4 | Triangle Geometry | 361 | | | | 31.4.1 Proportion | 361 | | | 31.5 | Co-ordinate Geometry | 368 | | | | 31.5.1 Equation of a Line between Two Points | 368 | | | | 31.5.2 Equation of a Line through One Point and Parallel or Perpendicular to Another Line | 371 | | | | 31.5.3 Inclination of a Line | 371 | | | 31.6 | Transformations | 373 | | | | 31.6.1 Rotation of a Point | 373 | | | | 31.6.2 Enlargement of a Polygon 1 | 376 | | 32 | Trigo | onometry - Grade 11 | 381 | | | | History of Trigonometry | 381 | | | | Graphs of Trigonometric Functions | | | | | 32.2.1 Functions of the form $y=\sin(k\theta)$ | | | | | 32.2.2 Functions of the form $y = \cos(k\theta)$ | | | | | 32.2.3 Functions of the form $y = \tan(k\theta)$ | | | | | 32.2.4 Functions of the form $y = \sin(\theta + p)$ | | | | | 32.2.5 Functions of the form $y = \cos(\theta + p)$ | | | | | 32.2.6 Functions of the form $y = \tan(\theta + p)$ | | | | 32.3 | Trigonometric Identities | | | | - | 32.3.1 Deriving Values of Trigonometric Functions for 30°, 45° and 60° 3 | | | | | | 301 | | | | 32.3.3 A Trigonometric Identity | 392 | |-----------------|------|---|-----| | | | 32.3.4 Reduction Formula | 394 | | | 32.4 | Solving Trigonometric Equations | 399 | | | | 32.4.1 Graphical Solution | 399 | | | | 32.4.2 Algebraic Solution | 401 | | | | 32.4.3 Solution using CAST diagrams | 403 | | | | 32.4.4 General Solution Using Periodicity | 405 | | | | 32.4.5 Linear Trigonometric Equations | 406 | | | | 32.4.6 Quadratic and Higher Order Trigonometric Equations | 406 | | | | 32.4.7 More Complex Trigonometric Equations | 407 | | | 32.5 | Sine and Cosine Identities | 409 | | | | 32.5.1 The Sine Rule | 409 | | | | 32.5.2 The Cosine Rule | 412 | | | | 32.5.3 The Area Rule | 414 | | | 32.6 | Exercises | 416 | | | _ | | ••• | | 33 | | istics - Grade 11 | 419 | | | | Introduction | | | | 33.2 | Standard Deviation and Variance | | | | | 33.2.1 Variance | | | | | 33.2.2 Standard Deviation | | | | | 33.2.3 Interpretation and Application | | | | | 33.2.4 Relationship between Standard Deviation and the Mean | | | | 33.3 | Graphical Representation of Measures of Central Tendency and Dispersion | | | | | 33.3.1 Five Number Summary | 424 | | | | 33.3.2 Box and Whisker Diagrams | 425 | | | | 33.3.3 Cumulative Histograms | 426 | | | 33.4 | Distribution of Data | | | | | 33.4.1 Symmetric and Skewed Data | 428 | | | | 33.4.2 Relationship of the Mean, Median, and Mode | 428 | | | 33.5 | Scatter Plots | 429 | | | 33.6 | Misuse of Statistics | 432 | | | 33.7 | End of Chapter Exercises | 435 | | 34 | Indo | pendent and Dependent Events - Grade 11 | 437 | | J -1 | | Introduction | | | | | Definitions | | | | J4.Z | 34.2.1 Identification of Independent and Dependent Events | | | | 212 | | | | | 34.3 | End of Chapter Exercises | 441 | | IV | G | rade 12 | 443 | | 35 | Loga | arithms - Grade 12 | 445 | | J J | • | Definition of Logarithms | 445 | | | 35.2 | Logarithm Bases | 446 | |----|-------|--|-----| | | 35.3 | Laws of Logarithms | 447 | | | 35.4 | Logarithm Law 1: $\log_a 1 = 0$ | 447 | | | 35.5 | Logarithm Law 2: $\log_a(a) = 1$ | 448 | | | 35.6 | Logarithm Law 3: $\log_a(x\cdot y) = \log_a(x) + \log_a(y)$ | 448 | | | 35.7 | Logarithm Law 4: $\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$ | 449 | | | 35.8 | Logarithm Law 5: $\log_a(x^b) = b \log_a(x) \dots \dots \dots \dots \dots \dots$ | 450 | | | 35.9 | Logarithm Law 6: $\log_a \left(\sqrt[b]{x} \right) = \frac{\log_a(x)}{b}$ | 450 | | | 35.10 | OSolving simple log equations | 452 | | | | 35.10.1 Exercises | 454 | | | 35.11 | 1Logarithmic applications in the Real World | 454 | | | | 35.11.1 Exercises | 455 | | | 35.12 | 2End of Chapter Exercises | 455 | | 36 | Sequ | uences and Series - Grade 12 | 457 | | | 36.1 | Introduction | 457 | | | 36.2 | Arithmetic Sequences | 457 | | | | 36.2.1 General Equation for the n^{th} -term of an Arithmetic Sequence $\ \ldots \ \ldots$ | 458 | | | 36.3 | Geometric Sequences | 459 | | | | 36.3.1 Example - A Flu Epidemic | 459 | | | | 36.3.2 General Equation for the n^{th} -term of a Geometric Sequence $\ \ldots \ \ldots$ | 461 | | | | 36.3.3 Exercises | 461 | | | 36.4 | Recursive Formulae for Sequences | 462 | | | 36.5 | Series | 463 | | | | 36.5.1 Some Basics | 463 | | | | 36.5.2 Sigma Notation | 463 | | | 36.6 | Finite Arithmetic Series | 465 | | | | 36.6.1 General Formula for a Finite Arithmetic Series | 466 | | | | 36.6.2 Exercises | 467 | | | 36.7 | Finite Squared Series | 468 | | | 36.8 | Finite Geometric Series | 469 | | | | 36.8.1 Exercises | 470 | | | 36.9 | Infinite Series | 471 | | | | 36.9.1 Infinite Geometric Series | 471 | | | | 36.9.2 Exercises | 472 | | | 36.10 | DEnd of Chapter Exercises | 472 | | 37 | Fina | nce - Grade 12 | 477 | | | 37.1 | Introduction | 477 | | | 37.2 | Finding the Length of the Investment or Loan | 477 | | | 37.3 | A Series of Payments | 478 | | | | 37.3.1 Sequences and Series | 479 | | | | 37.3.2 Present Values of a series of Payments | |----|-------|---| | | | 37.3.3 Future Value of a series of Payments | | | | 37.3.4 Exercises - Present and Future Values | | | 37.4 | Investments and Loans | | | | 37.4.1 Loan Schedules | | | | 37.4.2 Exercises - Investments and Loans | | | | 37.4.3 Calculating Capital Outstanding | | | 37.5 | Formulae Sheet | | | | 37.5.1 Definitions | | | | 37.5.2 Equations | | | 37.6 | End of Chapter Exercises | | 38 | Fact | orising Cubic Polynomials - Grade 12 493 | | | 38.1 | Introduction | | | 38.2 | The Factor Theorem | | | 38.3 | Factorisation of Cubic Polynomials | | | 38.4 | Exercises - Using Factor Theorem | | | 38.5 | Solving Cubic Equations | | | | 38.5.1 Exercises - Solving of Cubic Equations | | | 38.6 | End of Chapter Exercises | | 39 | Func | etions and Graphs - Grade 12 501 | | | 39.1 | Introduction | | | 39.2 | Definition of a Function | | | | 39.2.1 Exercises | | | 39.3 | Notation used for Functions | | | 39.4 | Graphs of Inverse Functions | | | | 39.4.1 Inverse Function of $y = ax + q$ | | | | 39.4.2 Exercises | | | | 39.4.3 Inverse Function of $y = ax^2$ | | | | 39.4.4 Exercises | | | | 39.4.5 Inverse Function of $y = a^x$ | | | | 39.4.6 Exercises | | | 39.5 | End of Chapter Exercises | | 40 | Diffe | erential Calculus - Grade 12 509 | | | 40.1 | Why do I have to learn this stuff? | | | | Limits | | | | 40.2.1 A Tale of Achilles and the Tortoise | | | | 40.2.2 Sequences, Series and Functions | | | | 40.2.3 Limits | | | | 40.2.4 Average Gradient and Gradient at a Point | | | 40.3 | Differentiation from First Principles | | | | 1 | | 40.4 | Rules of Differentiation | | | |-------
--|--|--| | | 40.4.1 Summary of Differentiation Rules | | | | 40.5 | Applying Differentiation to Draw Graphs | | | | | 40.5.1 Finding Equations of Tangents to Curves $\dots \dots \dots$ | | | | | 40.5.2 Curve Sketching | | | | | 40.5.3 Local minimum, Local maximum and Point of Inflextion 529 | | | | 40.6 | Using Differential Calculus to Solve Problems | | | | | 40.6.1 Rate of Change problems | | | | 40.7 | End of Chapter Exercises | | | | Linea | ear Programming - Grade 12 539 | | | | 41.1 | Introduction | | | | 41.2 | Terminology | | | | | 41.2.1 Feasible Region and Points | | | | 41.3 | Linear Programming and the Feasible Region | | | | | End of Chapter Exercises | | | | | | | | | | metry - Grade 12 549 | | | | 42.1 | Introduction | | | | 42.2 | Circle Geometry | | | | | 42.2.1 Terminology | | | | | 42.2.2 Axioms | | | | | 42.2.3 Theorems of the Geometry of Circles | | | | 42.3 | Co-ordinate Geometry | | | | | 42.3.1 Equation of a Circle | | | | | 42.3.2 Equation of a Tangent to a Circle at a Point on the Circle 569 | | | | 42.4 | Transformations | | | | | 42.4.1 Rotation of a Point about an angle θ | | | | | 42.4.2 Characteristics of Transformations | | | | | 42.4.3 Characteristics of Transformations | | | | 42.5 | Exercises | | | | Trigo | onometry - Grade 12 577 | | | | 43.1 | Compound Angle Identities | | | | | 43.1.1 Derivation of $\sin(\alpha+\beta)$ | | | | | 43.1.2 Derivation of $\sin(\alpha - \beta)$ | | | | | 43.1.3 Derivation of $\cos(\alpha + \beta)$ | | | | | 43.1.4 Derivation of $\cos(\alpha - \beta)$ | | | | | 43.1.5 Derivation of $\sin 2\alpha$ | | | | | 43.1.6 Derivation of $\cos 2\alpha$ | | | | | 43.1.7 Problem-solving Strategy for Identities | | | | 43.2 | Applications of Trigonometric Functions | | | | | 43.2.1 Problems in Two Dimensions | | | | | 40.5 40.6 40.7 Line: 41.1 41.2 41.3 41.4 Geor 42.1 42.2 42.3 42.4 42.5 Trige: 43.1 | | | | CONTENTS | CONTENTS | |----------|----------| | | | | | | 43.2.2 Problems in 3 dimensions | . 584 | |----|------|--|-------| | | 43.3 | Other Geometries | . 586 | | | | 43.3.1 Taxicab Geometry | . 586 | | | | 43.3.2 Manhattan distance | . 586 | | | | 43.3.3 Spherical Geometry | . 587 | | | | 43.3.4 Fractal Geometry | . 588 | | | 43.4 | End of Chapter Exercises | . 589 | | 44 | Stat | istics - Grade 12 | 591 | | | 44.1 | Introduction | . 591 | | | 44.2 | A Normal Distribution | . 591 | | | 44.3 | Extracting a Sample Population | . 593 | | | 44.4 | Function Fitting and Regression Analysis | . 594 | | | | 44.4.1 The Method of Least Squares | . 596 | | | | 44.4.2 Using a calculator | . 597 | | | | 44.4.3 Correlation coefficients | . 599 | | | 44.5 | Exercises | . 600 | | 45 | Com | binations and Permutations - Grade 12 | 603 | | | 45.1 | Introduction | . 603 | | | 45.2 | Counting | . 603 | | | | 45.2.1 Making a List | . 603 | | | | 45.2.2 Tree Diagrams | . 604 | | | 45.3 | Notation | . 604 | | | | 45.3.1 The Factorial Notation | . 604 | | | 45.4 | The Fundamental Counting Principle | . 604 | | | 45.5 | Combinations | . 605 | | | | 45.5.1 Counting Combinations | . 605 | | | | 45.5.2 Combinatorics and Probability | . 606 | | | 45.6 | Permutations | . 606 | | | | 45.6.1 Counting Permutations | . 607 | | | 45.7 | Applications | . 608 | | | 45.8 | Exercises | . 610 | | | | | | | V | Ex | rercises | 613 | | 46 | Gene | eral Exercises | 615 | | 47 | Exer | cises - Not covered in Syllabus | 617 | | Α | GNU | J Free Documentation License | 619 | # Chapter 21 # Finance - Grade 11 #### 21.1 Introduction In Grade 10, the ideas of simple and compound interest was introduced. In this chapter we will be extending those ideas, so it is a good idea to go back to Chapter 8 and revise what you learnt in Grade 10. If you master the techniques in this chapter, you will understand about depreciation and will learn how to determine which bank is offering the better interest rate. # 21.2 Depreciation It is said that when you drive a new car out of the dealership, it loses 20% of its value, because it is now "second-hand". And from there on the value keeps falling, or *depreciating*. Second hand cars are cheaper than new cars, and the older the car, usually the cheaper it is. If you buy a second hand (or should we say *pre-owned*!) car from a dealership, they will base the price on something called *book value*. The book value of the car is the value of the car taking into account the loss in value due to wear, age and use. We call this loss in value *depreciation*, and in this section we will look at two ways of how this is calculated. Just like interest rates, the two methods of calculating depreciation are *simple* and *compound* methods. The terminology used for simple depreciation is **straight-line depreciation** and for compound depreciation is **reducing-balance depreciation**. In the straight-line method the value of the asset is reduced by the same constant amount each year. In the compound depreciation method the value of the asset is reduced by the same percentage each year. This means that the value of an asset does not decrease by a constant amount each year, but the decrease is most in the first year, then by a smaller amount in the second year and by even a smaller amount in the third year, and so on. #### Extension: Depreciation You may be wondering why we need to calculate depreciation. Determining the value of assets (as in the example of the second hand cars) is one reason, but there is also a more financial reason for calculating depreciation - tax! Companies can take depreciation into account as an expense, and thereby reduce their taxable income. A lower taxable income means that the company will pay less income tax to the Revenue Service. # 21.3 Simple Depreciation (it really is simple!) Let us go back to the second hand cars. One way of calculating a depreciation amount would be to assume that the car has a limited useful life. Simple depreciation assumes that the value of the car decreases by an equal amount each year. For example, let us say the limited useful life of a car is 5 years, and the cost of the car today is R60 000. What we are saying is that after 5 years you will have to buy a new car, which means that the old one will be valueless at that point in time. Therefore, the amount of depreciation is calculated: $$\frac{R60\ 000}{5\ years} = R12\ 000$$ per year. The value of the car is then: This looks similar to the formula for simple interest: Total Interest after $$n$$ years $= n \times (P \times i)$ where i is the annual percentage interest rate and P is the principal amount. If we replace the word *interest* with the word *depreciation* and the word *principal* with the words *initial value* we can use the same formula: Total depreciation after $$n$$ years $= n \times (P \times i)$ Then the book value of the asset after n years is: Initial Value - Total depreciation after $$n$$ years $= P - n \times (P \times i)$ $= P(1 - n \times i)$ For example, the book value of the car after two years can be simply calculated as follows: Book Value after 2 years $$= P(1 - n \times i)$$ $= R60\ 000(1 - 2 \times 20\%)$ $= R60\ 000(1 - 0.4)$ $= R60\ 000(0.6)$ $= R36\ 000$ as expected. Note that the difference between the simple interest calculations and the simple depreciation calculations is that while the interest adds value to the principal amount, the depreciation amount reduces value! #### Worked Example 96: Simple Depreciation method **Question:** A car is worth R240~000 now. If it depreciates at a rate of 15% p.a. on a staight-line depreciation, what is it worth in 5 years' time ? **Answer** #### Step 1: Determine what has been provided and what is required $$P = R240\ 000$$ $$i = 0.15$$ $$n = 5$$ $$A is required$$ $$272$$ #### Step 2: Determine how to approach the problem $$A = 240\ 000(1 - 0.15 \times 5)$$ #### Step 3: Solve the problem $A = 240\ 000(1 - 0.75)$ $= 240\ 000 \times 0.25$ $= 60\ 000$ #### Step 4: Write the final answer In 5 years' time the car is worth $R60\ 000$ #### Worked Example 97: Simple Depreciation **Question:** A small business buys a photocopier for R 12 000. For the tax return the owner depreciates this asset over 3 years using a straight-line depreciation method. What amount will he fill in on his tax form after 1 year, after 2 years and then after 3 years? #### Answer #### Step 1: Understanding the question The owner of the business wants the photocopier to depreciates to R0 after 3 years. Thus, the value of the photocopier will go down by $12\ 000 \div 3 = R4\ 000$ per year. Step 2: Value of the photocopier after 1 year $12\ 000 - 4\ 000 = R8\ 000$ Step 3: Value of the machine after 2 years $8\ 000 - 4\ 000 = R4\ 000$ Step 4: Write the final answer $4\ 000 - 4\ 000 = 0$ After 3 years the photocopier is worth nothing Extension: Salvage Value Looking at the same example of our car with an initial value of R60 000, what if we suppose that we think we would be able to sell the car at the end of the 5 year period for R10 000? We call this amount the "Salvage Value" We are still assuming simple depreciation over a useful life of 5 years, but now instead of depreciating the full value of the asset, we will take into account the salvage value, and will only apply the depreciation to the value of the asset that we expect not to recoup, i.e. $R60\ 000 - R10\ 000 = R50\ 000$. The annual depreciation amount is then calculated as (R60 000 - R10 000) / 5 = R10 000 In general, the for simple (straight line) depreciation: $$\mbox{Annual Depreciation} = \frac{\mbox{Initial Value - Salvage Value}}{\mbox{Useful Life}}$$? #### **Exercise: Simple Depreciation** - 1. A business buys a truck for R560 000. Over a period of 10 years the value of the truck depreciates to R0 (using the straight-line method). What is the value of the truck
after 8 years? - 2. Shrek wants to buy his grandpa's donkey for R800. His grandpa is quite pleased with the offer, seeing that it only depreciated at a rate of 3% per year using the straight-line method. Grandpa bought the donkey 5 years ago. What did grandpa pay for the donkey then ? - 3. Seven years ago, Rocco's drum kit cost him R 12 500. It has now been valued at R2 300. What rate of simple depreciation does this represent ? - 4. Fiona buys a DsTV satellite dish for R3 000. Due to weathering, its value depreciates simply at 15% per annum. After how long will the satellite dish be worth nothing ? # 21.4 Compound Depreciation The second method of calculating depreciation is to assume that the value of the asset decreases at a certain annual rate, but that the initial value of the asset this year, is the book value of the asset at the end of last year. For example, if our second hand car has a limited useful life of 5 years and it has an initial value of R60 000, then the interest rate of depreciation is 20% (100%/5 years). After 1 year, the car is worth: Book Value after first year $$= P(1-n \times i)$$ $= R60\ 000(1-1 \times 20\%)$ $= R60\ 000(1-0.2)$ $= R60\ 000(0.8)$ $= R48\ 000$ At the beginning of the second year, the car is now worth R48 000, so after two years, the car is worth: ``` Book Value after second year = P(1-n \times i) = R48\ 000(1-1 \times 20\%) = R48\ 000(1-0.2) = R48\ 000(0.8) = R38\ 400 ``` We can tabulate these values. We can now write a general formula for the book value of an asset if the depreciation is compounded. Initial Value - Total depreciation after $$n$$ years = $P(1-i)^n$ (21.1) For example, the book value of the car after two years can be simply calculated as follows: Book Value after 2 years $$= P(1-i)^n$$ $= R60\ 000(1-20\%)^2$ $= R60\ 000(1-0.2)^2$ $= R60\ 000(0.8)^2$ $= R38\ 400$ as expected. Note that the difference between the compound interest calculations and the compound depreciation calculations is that while the interest adds value to the principal amount, the depreciation amount reduces value! #### Worked Example 98: Compound Depreciation **Question:** The Flamingo population of the Bergriver mouth is depreciating on a reducing balance at a rate of 12% p.a. If there is now 3 200 flamingos in the wetlands of the Bergriver mouth, how many will there be in 5 years' time? Answer to three significant numbers. #### Answer #### Step 1: Determine what has been provided and what is required $$P = R3 200$$ $$i = 0.12$$ $$n = 5$$ $$A is required$$ #### Step 2: Determine how to approach the problem $$A = 3 \ 200(1 - 0.12)^5$$ #### Step 3: Solve the problem $$A = 3 200(0.88)^{5}$$ $$= 3 200 \times 0.527731916$$ $$= 1688.742134$$ #### Step 4: Write the final answer There would be approximately 1 690 flamingos in 5 years' time. #### Worked Example 99: Compound Depreciation **Question:** Farmer Brown buys a tractor for R250 000 and depreciates it by 20% per year using the compound depreciation method. What is the depreciated value of the tractor after 5 years? #### Answer Step 1: Determine what has been provided and what is required $P = R250\ 000$ i = 0.2 n = 5 A is required Step 2: Determine how to approach the problem $$A = 250\ 000(1-0.2)^5$$ #### Step 3: Solve the problem $A = 250 \ 000(0.8)^5$ $= 250 \ 000 \times 0.32768$ $= 81 \ 920$ Step 4: Write the final answer Depreciated value after 5 years is R 81 920 ? #### **Exercise: Compound Depreciation** - 1. On January 1, 2008 the value of my Kia Sorento is R320 000. Each year after that, the cars value will decrease 20% of the previous years value. What is the value of the car on January 1, 2012. - 2. The population of Bonduel decreases at a rate of 9,5% per annum as people migrate to the cities. Calculate the decrease in population over a period of 5 years if the initial population was 2 178 000. - 3. A 20 kg watermelon consists of 98% water. If it is left outside in the sun it loses 3% of its water each day. How much does in weigh after a month of 31 days ? - 4. A computer depreciates at x% per annum using the reducing-balance method. Four years ago the value of the computer was R10 000 and is now worth R4 520. Calculate the value of x correct to two decimal places. # 21.5 Present Values or Future Values of an Investment or Loan #### 21.5.1 Now or Later When we studied simple and compound interest we looked at having a sum of money now, and calculating what it will be worth in the future. Whether the money was borrowed or invested, the calculations examined what the total money would be at some future date. We call these future values. It is also possible, however, to look at a sum of money in the future, and work out what it is worth now. This is called a *present value*. For example, if R1 000 is deposited into a bank account now, the future value is what that amount will accrue to by some specified future date. However, if R1 000 is needed at some future time, then the present value can be found by working backwards - in other words, how much must be invested to ensure the money grows to R1 000 at that future date? The equation we have been using so far in compound interest, which relates the open balance (P), the closing balance (A), the interest rate (i as a rate per annum) and the term (n in years) is: $$A = P \cdot (1+i)^n \tag{21.2}$$ Using simple algebra, we can solve for P instead of A, and come up with: $$P = A \cdot (1+i)^{-n} \tag{21.3}$$ This can also be written as follows, but the first approach is usually preferred. $$P = A/(1+i)^n (21.4)$$ Now think about what is happening here. In Equation 21.2, we start off with a sum of money and we let it grow for n years. In Equation 21.3 we have a sum of money which we know in n years time, and we "unwind" the interest - in other words we take off interest for n years, until we see what it is worth right now. We can test this as follows. If I have R1 000 now and I invest it at 10% for 5 years, I will have: $$A = P \cdot (1+i)^n$$ = R1 000(1 + 10%)⁵ = R1 610.51 at the end. BUT, if I know I have to have R1 610,51 in 5 years time, I need to invest: $$P = A \cdot (1+i)^{-n}$$ = R1 610,51(1+10%)⁻⁵ = R1 000 We end up with R1 000 which - if you think about it for a moment - is what we started off with. Do you see that? Of course we could apply the same techniques to calculate a present value amount under simple interest rate assumptions - we just need to solve for the opening balance using the equations for simple interest. $$A = P(1 + i \times n) \tag{21.5}$$ Solving for P gives: $$P = A/(1+i \times n) \tag{21.6}$$ Let us say you need to accumulate an amount of R1 210 in 3 years time, and a bank account pays *Simple Interest* of 7%. How much would you need to invest in this bank account today? $$P = \frac{A}{1 + n \cdot i}$$ = \frac{\text{R1 210}}{1 + 3 \times 7\%} = \text{R1 000} Does this look familiar? Look back to the simple interest worked example in Grade 10. There we started with an amount of R1 000 and looked at what it would grow to in 3 years' time using simple interest rates. Now we have worked backwards to see what amount we need as an opening balance in order to achieve the closing balance of R1 210. In practice, however, present values are usually always calculated assuming compound interest. So unless you are explicitly asked to calculate a present value (or opening balance) using simple interest rates, make sure you use the compound interest rate formula! # ? #### **Exercise: Present and Future Values** - 1. After a 20-year period Josh's lump sum investment matures to an amount of R313 550. How much did he invest if his money earned interest at a rate of 13,65% p.a.compounded half yearly for the first 10 years, 8,4% p.a. compounded quarterly for the next five years and 7,2% p.a. compounded monthly for the remaining period ? - 2. A loan has to be returned in two equal semi-annual instalments. If the rate of interest is 16% per annum, compounded semi-annually and each instalment is R1 458, find the sum borrowed. # **21.6** Finding i By this stage in your studies of the mathematics of finance, you have always known what interest rate to use in the calculations, and how long the investment or loan will last. You have then either taken a known starting point and calculated a future value, or taken a known future value and calculated a present value. But here are other questions you might ask: - 1. I want to borrow R2 500 from my neighbour, who said I could pay back R3 000 in 8 months time. What interest is she charging me? - 2. I will need R450 for some university textbooks in 1,5 years time. I currently have R400. What interest rate do I need to earn to meet this goal? Each time that you see something different from what you have seen before, start off with the basic equation that you should recognise very well: $$A = P \cdot (1+i)^n$$ If this were an algebra problem, and you were told to "solve for i", you should be able to show that: $$A/P = (1+i)^n$$ $(1+i) = (A/P)^{1/n}$ $i = (A/P)^{1/n} - 1$ You do not need to memorise this equation, it is easy to derive any time you need it! So let us look at the two examples mentioned above. 1. Check that you agree that P=R2~500, A=R3~000, n=8/12=0,666667. This means that: $$i = (R3\ 000/R2\ 500)^{1/0,666667} - 1$$ = 31,45% Ouch! That is not a very generous neighbour you have. 2. Check that P=R400, A=R450, n=1.5 $$i = (R450/R400)^{1/1,5} - 1$$ = 8.17% This means that as long as you can find a bank which pays more than 8,17% interest, you should have the money you need! Note that in both examples, we expressed n as a number of years ($\frac{8}{12}$ years, not 8 because that is the number of months) which means i is the annual interest rate. Always keep this in mind keep years with years to avoid making silly mistakes. #### **Exercise:** Finding *i* - 1. A machine costs R45 000 and has a scrap value of R9 000 after 10 years. Determine the annual rate of depreciation if it is calculated on the reducing - 2. After 5 years
an investment doubled in value. At what annual rate was interest compounded? #### 21.7 Finding n - Trial and Error By this stage you should be seeing a pattern. We have our standard formula, which has a number of variables: $$A = P \cdot (1+i)^n$$ We have solved for A (in section 8.5), P (in section 21.5) and i (in section 21.6). This time we are going to solve for n. In other words, if we know what the starting sum of money is and what it grows to, and if we know what interest rate applies - then we can work out how long the money needs to be invested for all those other numbers to tie up. This section will calculate n by trial and error and by using a calculator. The proper algebraic solution will be learnt in Grade 12. Solving for n, we can write: $$A = P(1+i)^n$$ $$\frac{A}{P} = (1+i)^n$$ $$\frac{A}{P} = (1+i)^n$$ Now we have to examine the numbers involved to try to determine what a possible value of nis. Refer to Table 5.1 (on page 38) for some ideas as to how to go about finding n. #### Worked Example 100: Term of Investment - Trial and Error Question: If we invest R3 500 into a savings account which pays 7,5% compound interest for an unknown period of time, at the end of which our account is worth R4 044,69. How long did we invest the money? Answer Step 1: Determine what is given and what is required - P=R3 500 - *i*=7,5% - A=R4 044,69 We are required to find n. Step 2: Determine how to approach the problem We know that: $$A = P(1+i)^n$$ $$\frac{A}{P} = (1+i)^n$$ Step 3: Solve the problem $$\frac{\text{R4 044,69}}{\text{R3 500}} = (1+7.5\%)^n$$ $$1,156 = (1,075)^n$$ We now use our calculator and try a few values for n. | Possible n | $1,075^n$ | |--------------|-----------| | 1,0 | 1,075 | | 1,5 | 1,115 | | 2,0 | 1,156 | | 2,5 | 1,198 | We see that n is close to 2. Step 4: Write final answer The R3 500 was invested for about 2 years. # ? #### Exercise: Finding n - Trial and Error - 1. A company buys two typs of motor cars: The Acura costs R80 600 and the Brata R101 700 VAT included. The Acura depreciates at a rate, compunded annually of 15,3% per year and the Brata at 19,7&, also compunded annually, per year. After how many years will the book value of the two models be the same ? - 2. The fuel in the tank of a truck decreases every minute by 5.5% of the amount in the tank at that point in time. Calculate after how many minutes there will be less than 30l in the tank if it originally held 200l. ### 21.8 Nominal and Effective Interest Rates So far we have discussed annual interest rates, where the interest is quoted as a per annum amount. Although it has not been explicitly stated, we have assumed that when the interest is quoted as a per annum amount it means that the interest is once a year. Interest however, may be paid more than just once a year, for example we could receive interest on a monthly basis, i.e. 12 times per year. So how do we compare a monthly interest rate, say, to an annual interest rate? This brings us to the concept of the effective annual interest rate. One way to compare different rates and methods of interest payments would be to compare the Closing Balances under the different options, for a given Opening Balance. Another, more widely used, way is to calculate and compare the "effective annual interest rate" on each option. This way, regardless of the differences in how frequently the interest is paid, we can compare apples-with-apples. For example, a savings account with an opening balance of R1 000 offers a compound interest rate of 1% per month which is paid at the end of every month. We can calculate the accumulated balance at the end of the year using the formulae from the previous section. But be careful our interest rate has been given as a monthly rate, so we need to use the same units (months) for our time period of measurement. So we can calculate the amount that would be accumulated by the end of 1-year as follows: Closing Balance after 12 months $$= P \times (1+i)^n$$ $$= R1 \ 000 \times (1+1\%)^{12}$$ $$= R1 \ 126.83$$ Note that because we are using a monthly time period, we have used n=12 months to calculate the balance at the end of one year. The effective annual interest rate is an annual interest rate which represents the equivalent per annum interest rate assuming compounding. It is the annual interest rate in our Compound Interest equation that equates to the same accumulated balance after one year. So we need to solve for the effective annual interest rate so that the accumulated balance is equal to our calculated amount of $R1\ 126,83$. We use i12 to denote the monthly interest rate. We have introduced this notation here to distinguish between the annual interest rate, i. Specifically, we need to solve for i in the following equation: $$P imes (1+i)^1 = P imes (1+i12)^{12}$$ $$(1+i) = (1+i12)^{12} \quad \text{divide both sides by } P$$ $$i = (1+i12)^{12} - 1 \quad \text{subtract 1 from both sides}$$ For the example, this means that the effective annual rate for a monthly rate i12=1% is: $$i = (1+i12)^{12} - 1$$ $$= (1+1\%)^{12} - 1$$ $$= 0.12683$$ $$= 12.683\%$$ If we recalculate the closing balance using this annual rate we get: Closing Balance after 1 year $$= P \times (1+i)^n$$ = R1 000 × $(1+12,683\%)^1$ = R1 126.83 which is the same as the answer obtained for 12 months. Note that this is greater than simply multiplying the monthly rate by 12 ($12 \times 1\% = 12\%$) due to the effects of compounding. The difference is due to interest on interest. We have seen this before, but it is an important point! #### 21.8.1 The General Formula So we know how to convert a monthly interest rate into an effective annual interest. Similarly, we can convert a quarterly interest, or a semi-annual interest rate or an interest rate of any frequency for that matter into an effective annual interest rate. Remember, the trick to using the formulae is to define the time period, and use the interest rate relevant to the time period. For a quarterly interest rate of say 3% per quarter, the interest will be paid four times per year (every three month). We can calculate the effective annual interest rate by solving for i: $$P(1+i) = P(1+i4)^4$$ where i4 is the quarterly interest rate. So $(1+i)=(1,03)^4$, and so i=12,55%. This is the effective annual interest rate. In general, for interest paid at a frequency of T times per annum, the follow equation holds: $$P(1+i) = P(1+iT)^{T}$$ (21.7) where iT is the interest rate paid T times per annum. #### 21.8.2 De-coding the Terminology Market convention however, is not to state the interest rate as say 1% per month, but rather to express this amount as an annual amount which in this example would be paid monthly. This annual amount is called the nominal amount. The market convention is to quote a nominal interest rate of "12% per annum paid monthly" instead of saying (an effective) 1% per month. We know from a previous example, that a nominal interest rate of 12% per annum paid monthly, equates to an effective annual interest rate of 12,68%, and the difference is due to the effects of interest-on-interest. So if you are given an interest rate expressed as an annual rate but paid more frequently than annual, we first need to calculate the actual interest paid per period in order to calculate the effective annual interest rate. monthly interest rate = $$\frac{\text{Nominal interest Rate per annum}}{\text{number of periods per year}}$$ (21.8) For example, the monthly interest rate on 12% interest per annum paid monthly, is: monthly interest rate $$= \frac{\text{Nominal interest Rate per annum}}{\text{number of periods per year}}$$ $$= \frac{12\%}{12 \text{ months}}$$ $$= 1\% \text{ per month}$$ The same principle apply to other frequencies of payment. ### Worked Example 101: Nominal Interest Rate **Question:** Consider a savings account which pays a nominal interest at 8% per annum, paid quarterly. Calculate (a) the interest amount that is paid each quarter, and (b) the effective annual interest rate. #### **Answer** ### Step 1: Determine what is given and what is required We are given that a savings account has a nominal interest rate of 8% paid quarterly. We are required to find: - the quarterly interest rate, i4 - the effective annual interest rate, i #### Step 2: Determine how to approach the problem We know that: and $$P(1+i) = P(1+iT)^T$$ where T is 4 because there are 4 payments each year. #### Step 3: Calculate the monthly interest rate quarterly interest rate $$=$$ $\frac{\text{Nominal interest Rate per annum}}{\text{number of periods per year}}$ $=$ $\frac{8\%}{4 \text{ quarters}}$ $=$ 2% per quarter #### Step 4: Calculate the effective annual interest rate The effective annual interest rate (i) is calculated as: $$(1+i) = (1+i4)^4$$ $$(1+i) = (1+2\%)^4$$ $$i = (1+2\%)^4 - 1$$ $$= 8,24\%$$ #### Step 5: Write the final answer The quarterly interest rate is 2% and the effective annual interest rate is 8,24%, for a nominal interest rate of 8% paid quarterly. #### Worked Example 102: Nominal Interest Rate **Question:** On their saving accounts, Echo Bank offers an interest rate of 18% nominal, paid monthly. If you save R100 in such an account now, how much would the amount have accumulated to in 3 years' time? #### **Answer** #### Step 1 : Determine what is given and what is required Interest rate is 18% nominal paid monthly. There are 12 months in a year. We are working with a yearly time period, so n=3. The amount we have saved is R100, so P=100. We need the accumulated value, A. #### Step 2: Recall relevant formulae We know that $$\label{eq:monthly interest rate} \text{monthly interest rate} = \frac{\text{Nominal interest Rate per annum}}{\text{number of periods per year}}$$ for converting from nominal interest rate to effective interest rate, we have $$1 + i = (1 + iT)^T$$ and for cacluating accumulated value, we have $$A = P \times (1+i)^n$$ #### Step 3: Calculate the effective interest rate There are 12 month in a
year, so $$i12$$ = $\frac{\text{Nominal annual interest rate}}{12}$ = $\frac{18\%}{12}$ = 1,5% per month and then, we have $$1+i = (1+i12)^{1}2$$ $$i = (1+i12)^{1}2 - 1$$ $$= (1+1.5\%)^{1}2 - 1$$ $$= (1.015)^{1}2 - 1$$ $$= 19.56\%$$ Step 4: Reach the final answer $$A = P \times (1+i)^{n}$$ $$= 100 \times (1+19,56\%)^{3}$$ $$= 100 \times 1,7091$$ $$= 170.91$$ #### Step 5: Write the final answer The accumulated value is R170,91. (Remember to round off to the the nearest cent.) ? #### **Exercise: Nominal and Effect Interest Rates** - 1. Calculate the effective rate equivalent to a nominal interest rate of 8,75% p.a. compounded monthly. - 2. Cebela is quoted a nominal interest rate of 9,15% per annum compounded every four months on her investment of R 85 000. Calculate the effective rate per annum. ## 21.9 Formulae Sheet As an easy reference, here are the key formulae that we derived and used during this chapter. While memorising them is nice (there are not many), it is the application that is useful. Financial experts are not paid a salary in order to recite formulae, they are paid a salary to use the right methods to solve financial problems. #### 21.9.1 Definitions - P Principal (the amount of money at the starting point of the calculation) - *i* interest rate, normally the effective rate per annum - n period for which the investment is made - iT —the interest rate paid T times per annum, i.e. $iT = \frac{\mbox{Nominal Interest Rate}}{T}$ #### 21.9.2 Equations $Simple\ Increase: A = P(1+i\times n)$ $Compound\ Increase: A = P(1+i)^n$ $Simple\ Decrease: A = P(1-i\times n)$ $Compound\ Decrease: A = P(1-i)^n$ $Effective\ Annual\ Interest\ Rate(i): (1+i) = (1+iT)^T$ # 21.10 End of Chapter Exercises - 1. Shrek buys a Mercedes worth R385 000 in 2007. What will the value of the Mercedes be at the end of 2013 if - A the car depreciates at 6% p.a. straight-line depreciation - B the car depreciates at 12% p.a. reducing-balance depreciation. - 2. Greg enters into a 5-year hire-purchase agreement to buy a computer for R8 900. The interest rate is quoted as 11% per annum based on simple interest. Calculate the required monthly payment for this contract. - 3. A computer is purchased for R16 000. It depreciates at 15% per annum. - A Determine the book value of the computer after 3 years if depreciation is calculated according to the straight-line method. - B Find the rate, according to the reducing-balance method, that would yield the same book value as in 3a after 3 years. - 4. Maggie invests R12 500,00 for 5 years at 12% per annum compounded monthly for the first 2 years and 14% per annum compounded semi-annually for the next 3 years. How much will Maggie receive in total after 5 years? - 5. Tintin invests R120 000. He is quoted a nominal interest rate of 7.2% per annum compounded monthly. - A Calculate the effective rate per annum correct to THREE decimal places. - B Use the effective rate to calculate the value of Tintin's investment if he invested the money for 3 years. - C Suppose Tintin invests his money for a total period of 4 years, but after 18 months makes a withdrawal of R20 000, how much will he receive at the end of the 4 years? - 6. Paris opens accounts at a number of clothing stores and spends freely. She gets heself into terrible debt and she cannot pay off her accounts. She owes Hilton Fashion world R5 000 and the shop agrees to let Paris pay the bill at a nominal interest rate of 24% compounded monthly. - A How much money will she owe Hilton Fashion World after two years? - B What is the effective rate of interest that Hilton Fashion World is charging her ? # Appendix A # **GNU Free Documentation License** Version 1.2, November 2002 Copyright © 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. ## **PREAMBLE** The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. ## APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. #### VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A. You may also lend copies, under the same conditions stated above, and you may publicly display copies. # **COPYING IN QUANTITY** If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. #### **MODIFICATIONS** You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: - 1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. - 2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. - 3. State on the Title page the name of the publisher of the Modified Version, as the publisher. - 4. Preserve all the copyright notices of the Document. - Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. - 6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. - 7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. - 8. Include an unaltered copy of this License. - 9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. - 10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. - 11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. - 12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. - 13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. - 14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. - 15. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. ## **COMBINING DOCUMENTS** You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements". #### COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. #### AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. #### **TRANSLATION** Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the actual title. # **TERMINATION** You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. #### FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. # ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.