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Chapter 37

Finance - Grade 12

37.1 Introduction

In earlier grades simple interest and compound interest were studied, together with the concept
of depreciation. Nominal and effective interest rates were also described. Since this chapter
expands on earlier work, it would be best if you revised the work done in Chapters 8 and 21.

If you master the techniques in this chapter, when you start working and earning you will be
able to apply the techniques in this chapter to critically assess how to invest your money. And
when you are looking at applying for a bond from a bank to buy a home, you will confidently be
able to get out the calculator and work out with amazement how much you could actually save
by making additional repayments. Indeed, this chapter will provide you with the fundamental
concepts you will need to confidently manage your finances and with some successful investing,
sit back on your yacht and enjoy the millionaire lifestyle.

37.2 Finding the Length of the Investment or Loan

In Grade 11, we used the formula A = P (1 + i)n to determine the term of the investment or
loan, by trial and error. In other words, if we know what the starting sum of money is and what
it grows to, and if we know what interest rate applies - then we can work out how long the
money needs to be invested for all those other numbers to tie up.

Now, that you have learnt about logarithms, you are ready to work out the proper algebraic
solution. If you need to remind yourself how logarithms work, go to Chapter 35 (on page 445).

The basic finance equation is:
A = P · (1 + i)n

If you don’t know what A, P , i and n represent, then you should definitely revise the work from
Chapters 8 and 21.

Solving for n:

A = P (1 + i)n

(1 + i)n = (A/P )

log((1 + i)n) = log(A/P )

n log(1 + i) = log(A/P )

n = log(A/P )/ log(1 + i)

Remember, you do not have to memorise this formula. It is very easy to derive any time you
need it. It is simply a matter of writing down what you have, deciding what you need, and
solving for that variable.
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37.3 CHAPTER 37. FINANCE - GRADE 12

Worked Example 162: Term of Investment - Logarithms

Question: If we invested R3 500 into a savings account which pays 7,5% compound
interest for an unknown period of time, at the end of which our account is worth
R4 044,69. How long did we invest the money? How does this compare with the
trial and error answer from Chapters 21.

Answer

Step 1 : Determine what is given and what is required

• P=R3 500

• i=7,5%

• A=R4 044,69

We are required to find n.

Step 2 : Determine how to approach the problem

We know that:

A = P (1 + i)n

(1 + i)n = (A/P )

log((1 + i)n) = log(A/P )

n log(1 + i) = log(A/P )

n = log(A/P )/ log(1 + i)

Step 3 : Solve the problem

n = log(A/P )/ log(1 + i)

=
log(R4 044,69

R3 500 )

log(1 + 7,5%)

= 2.0

Step 4 : Write final answer

The R3 500 was invested for 2 years.

37.3 A Series of Payments

By this stage, you know how to do calculations such as ”If I want R1 000 in 3 years’ time, how
much do I need to invest now at 10% ?”

But what if we extend this as follows: If I want R1 000 next year and R1 000 the year after that
and R1 000 after three years ... how much do I need to put into a bank account earning 10%
p.a. right now to be able to afford that?”

The obvious way of working that out is to work out how much you need now to afford the
payments individually and sum them. We’ll work out how much is needed now to afford the
payment of R1 000 in a year (= R1 000× (1,10)−1 = R909,0909), the amount needed now for
the following year’s R1 000 (= R1 000 × (1,10)−2 = R826,4463) and the amount needed now
for the R1 000 after 3 years (= R1 000× (1,10)−3 = R751,3148). Add these together gives you
the amount needed to afford all three payments and you get R2486,85.

So, if you put R2486,85 into a 10% bank account now, you will be able to draw out R1 000 in a
year, R1 000 a year after that, and R1 000 a year after that - and your bank account will come
down to R0. You would have had exactly the right amount of money to do that (obviously!).

You can check this as follows:
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Amount at Time 0 (i.e. Now) = R2486,85
Amount at Time 1 (i.e. a year later) = 2486,85(1+10%) = R2735,54
Amount after the R1 000 = 2735,54 - 1 000 = R1735,54
Amount at Time 2 (i.e. a year later) = 1735,54(1+10%) = R1909,09
Amount after the R1 000 = R1909,09 - 1 000 = R909,09
Amount at Time 3 (i.e. a year later) = 909,09(1+10%) = R1 000
Amount after the R1 000 = 1 000 - 1 000 = R0

Perfect! Of course, for only three years, that was not too bad. But what if I asked you how
much you needed to put into a bank account now, to be able to afford R100 a month for the
next 15 years. If you used the above approach you would still get the right answer, but it would
take you weeks!

There is - I’m sure you guessed - an easier way! This section will focus on describing how to
work with:

• annuities - a fixed sum payable each year or each month either to provide a pre-determined
sum at the end of a number of years or months (referred to as a future value annuity) or
a fixed amount paid each year or each month to repay (amortise) a loan (referred to as a
present value annuity).

• bond repayments - a fixed sum payable at regular intervals to pay off a loan. This is an
example of a present value annuity.

• sinking funds - an accounting term for cash set aside for a particular purpose and invested
so that the correct amount of money will be available when it is needed. This is an example
of a future value annuity

37.3.1 Sequences and Series

Before we progress, you need to go back and read Chapter 36 (from page 457) to revise sequences
and series.

In summary, if you have a series of n terms in total which looks like this:

a + ar + ar2 + ... + arn−1 = a[1 + r + r2 + ...rn−1]

this can be simplified as:

a(rn − 1)

r − 1
useful when r > 1

a(1 − rn)

1 − r
useful when 0 ≤ r < 1

37.3.2 Present Values of a series of Payments

So having reviewed the mathematics of Sequences and Series, you might be wondering how this
is meant to have any practical purpose! Given that we are in the finance section, you would be
right to guess that there must be some financial use to all this Here is an example which happens
in many people’s lives - so you know you are learning something practical

Let us say you would like to buy a property for R300 000, so you go to the bank to apply for
a mortgage bond. The bank wants it to be repaid by annually payments for the next 20 years,
starting at end of this year. They will charge you 15% per annum. At the end of the 20 years
the bank would have received back the total amount you borrowed together with all the interest
they have earned from lending you the money. You would obviously want to work out what the
annual repayment is going to be!

Let X be the annual repayment, i is the interest rate, and M is the amount of the mortgage
bond you will be taking out.

Time lines are particularly useful tools for visualizing the series of payments for calculations, and
we can represent these payments on a time line as:
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0 1 2 18 19 20

X X X X X
Cash Flows

Time

Figure 37.1: Time Line for an annuity (in arrears) of X for n periods.

The present value of all the payments (which includes interest) must equate to the (present)
value of the mortgage loan amount.

Mathematically, you can write this as:

M = X(1 + i)−1 + X(1 + i)−2 + X(1 + i)−3 + ... + X(1 + i)−20

The painful way of solving this problem would be to do the calculation for each of the terms
above - which is 20 different calculations. Not only would you probably get bored along the way,
but you are also likely to make a mistake.

Naturally, there is a simpler way of doing this! You can rewrite the above equation as follows:

M = X(v1 + v2 + v3 + ... + v20)

where v = (1 + i)−1 = 1/(1 + i)

Of course, you do not have to use the method of substitution to solve this. We just find this a
useful method because you can get rid of the negative exponents - which can be quite confusing!
As an exercise - to show you are a real financial whizz - try to solve this without substitution. It
is actually quite easy.

Now, the item in square brackets is the sum of a geometric sequence, as discussion in section 36.
This can be re-written as follows, using what we know from Chapter 36 of this text book:

v1 + v2 + v3 + ... + vn = v(1 + v + v2 + ... + vn−1)

= v(
1 − vn

1 − v
)

=
1 − vn

1/v − 1

=
1 − (1 + i)−n

i

Note that we took out a common factor of v before using the formula for the geometric sequence.

So we can write:

M = X [
(1 − (1 + i)−n)

i
]

This can be re-written:

X =
M

[ (1−(1+i)−n)
i

]

So, this formula is useful if you know the amount of the mortgage bond you need and want to
work out the repayment, or if you know how big a repayment you can afford and want to see
what property you can buy.

For example, if I want to buy a house for R300 000 over 20 years, and the bank is going to
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charge me 15% per annum, then the annual repayment is:

X =
M

[ (1−(1+i)−n)
i

]

=
R300 000

[ (1−(1,15)−20)
0,15 ]

= R47 928,44

This means, each year for the next 20 years, I need to pay the bank R47 928,44 per year before
I have paid off the mortgage bond.

On the other hand, if I know I will only have R30 000 a year to repay my bond, then how big a
house can I buy? That is easy ....

M = X [
(1 − (1 + i)−n)

i
]

= R30 000[
(1 − (1,15)−20)

0,15
]

= R187 779,90

So, for R30 000 a year for 20 years, I can afford to buy a house of R187 800 (rounded to the
nearest hundred).

The bad news is that R187 800 does not come close to the R300 000 you wanted to buy! The
good news is that you do not have to memorise this formula. In fact , when you answer questions
like this in an exam, you will be expected to start from the beginning - writing out the opening
equation in full, showing that it is the sum of a geometric sequence, deriving the answer, and
then coming up with the correct numerical answer.

Worked Example 163: Monthly mortgage repayments

Question: Sam is looking to buy his first flat, and has R15 000 in cash savings
which he will use as a deposit. He has viewed a flat which is on the market for
R250 000, and he would like to work out how much the monthly repayments would
be. He will be taking out a 30 year mortgage with monthly repayments. The annual
interest rate is 11%.

Answer

Step 1 : Determine what is given and what is needed

The following is given:

• Deposit amount = R15 000

• Price of flat = R250 000

• interest rate, i = 11%

We are required to find the monthly repayment for a 30-year mortgage.

Step 2 : Determine how to approach the problem

We know that:

X =
M

[ (1−(1+i)−n)
i

]

. In order to use this equation, we need to calculate M , the amount of the mortgage
bond, which is the purchase price of property less the deposit which Sam pays up-
front.

M = R250 000 − R15 000

= R235 000
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Now because we are considering monthly repayments, but we have been given an
annual interest rate, we need to convert this to a monthly interest rate, i12. (If you
are not clear on this, go back and revise section 21.8.)

(1 + i12)12 = (1 + i)

(1 + i12)12 = 1,11

i12 = 0,873459%

We know that the mortgage bond is for 30 years, which equates to 360 months.

Step 3 : Solve the problem

Now it is easy, we can just plug the numbers in the formula, but do not forget that
you can always deduce the formula from first principles as well!

X =
M

[ (1−(1+i)−n)
i

]

=
R235 000

[ (1−(1.00876459)−360)
0,008734594 ]

= R2 146,39

Step 4 : Write the final answer

That means that to buy a house for R300 000, after Sam pays a R15 000 deposit,
he will make repayments to the bank each month for the next 30 years equal to
R2 146,39.

Worked Example 164: Monthly mortgage repayments

Question: You are considering purchasing a flat for R200 000 and the bank’s mort-
gage rate is currently 9% per annum payable monthly. You have savings of R10 000
which you intend to use for a deposit. How much would your monthly mortgage
payment be if you were considering a mortgage over 20 years.

Answer

Step 1 : Determine what is given and what is required

The following is given:

• Deposit amount = R10 000

• Price of flat = R200 000

• interest rate, i = 9%

We are required to find the monthly repayment for a 20-year mortgage.

Step 2 : Determine how to approach the problem

We are consider monthly mortgage repayments, so it makes sense to use months as
our time period.

The interest rate was quoted as 9% per annum payable monthly, which means that
the monthly effective rate = 9%/12 = 0,75% per month. Once we have converted
20 years into 240 months, we are ready to do the calculations!

First we need to calculate M , the amount of the mortgage bond, which is the
purchase price of property less the deposit which Sam pays up-front.

M = R200 000 − R10 000

= R190 000
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The present value of our mortgage payments, X, must equate to the mortgage
amount that we borrow today, so

X × (1 + 0,75%)−1 +

X × (1 + 0,75%)−2 +

X × (1 + 0,75%)−3 +

X × (1 + 0,75%)−4 + . . .

X × (1 + 0,75%)−239 + X × (1 + 0,75%)−240

But it is clearly much easier to use our formula that work out 240 factors and add
them all up!
Step 3 : Solve the problem

X × 1 − (1 + 0,75%)−240

0,75%
= R190 000

X × 111,14495 = R190 000

X = R1 709,48

Step 4 : Write the final answer

So to repay a R190 000 mortgage over 20 years, at 9% interest payable monthly,
will cost you R1 709,48 per month for 240 months.

Show me the money

Now that you’ve done the calculations for the worked example and know what the monthly
repayments are, you can work out some surprising figures. For example, R1 709,48 per month
for 240 month makes for a total of R410 275,20 (=R1 709,48 × 240). That is more than
double the amount that you borrowed! This seems like a lot. However, now that you’ve studied
the effects of time (and interest) on money, you should know that this amount is somewhat
meaningless. The value of money is dependant on its timing.

Nonetheless, you might not be particularly happy to sit back for 20 years making your R1 709,48
mortgage payment every month knowing that half the money you are paying are going toward
interest. But there is a way to avoid those heavy interest charges. It can be done for less than
R300 extra every month...

So our payment is now R2 000. The interest rate is still 9% per annum payable monthly (0,75%
per month), and our principal amount borrowed is R190 000. Making this higher repayment
amount every month, how long will it take to pay off the mortgage?

The present value of the stream of payments must be equal to R190 000 (the present value of
the borrowed amount). So we need to solve for n in:

R2 000 × [1 − (1 + 0,75%)−n]/0,75% = R190 000

1 − (1 + 0,75%)−n = (R190 000/2 000)× 0,75%

log(1 + 0,75%)−n = log[(1 − (R190 000/R2 000)× 0,75%]

−n × log(1 + 0,75%) = log[(1 − (R190 000/R2 000)× 0,75%]

−n × 0,007472 = −1,2465

n = 166,8 months

= 13,9 years

So the mortgage will be completely repaid in less than 14 years, and you would have made a
total payment of 166,8× R2 000 = R333 600.

Can you see what is happened? Making regular payments of R2 000 instead of the required
R1,709,48, you will have saved R76 675,20 (= R410 275,20 - R333 600) in interest, and yet you
have only paid an additional amount of R290,52 for 166,8 months, or R48 458,74. You surely
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know by now that the difference between the additional R48 458,74 that you have paid and
the R76 675,20 interest that you have saved is attributable to, yes, you have got it, compound
interest!

37.3.3 Future Value of a series of Payments

In the same way that when we have a single payment, we can calculate a present value or a
future value - we can also do that when we have a series of payments.

In the above section, we had a few payments, and we wanted to know what they are worth now
- so we calculated present values. But the other possible situation is that we want to look at
the future value of a series of payments.

Maybe you want to save up for a car, which will cost R45 000 - and you would like to buy it in
2 years time. You have a savings account which pays interest of 12% per annum. You need to
work out how much to put into your bank account now, and then again each month for 2 years,
until you are ready to buy the car.

Can you see the difference between this example and the ones at the start of the chapter where
we were only making a single payment into the bank account - whereas now we are making a
series of payments into the same account? This is a sinking fund.

So, using our usual notation, let us write out the answer. Make sure you agree how we come up
with this. Because we are making monthly payments, everything needs to be in months. So let
A be the closing balance you need to buy a car, P is how much you need to pay into the bank
account each month, and i12 is the monthly interest rate. (Careful - because 12% is the annual
interest rate, so we will need to work out later what the month interest rate is!)

A = P (1 + i12)24 + P (1 + i12)23 + ... + P (1 + i12)1

Here are some important points to remember when deriving this formula:

1. We are calculating future values, so in this example we use (1+ i12)n and not (1+ i12)−n.
Check back to the start of the chapter is this is not obvious to you by now.

2. If you draw a timeline you will see that the time between the first payment and when you
buy the car is 24 months, which is why we use 24 in the first exponent.

3. Again, looking at the timeline, you can see that the 24th payment is being made one
month before you buy the car - which is why the last exponent is a 1.

4. Always check that you have got the right number of payments in the equation. Check
right now that you agree that there are 24 terms in the formula above.

So, now that we have the right starting point, let us simplify this equation:

A = P [(1 + i12)24 + (1 + i12)23 + . . . + (1 + i12)1]

= P [X24 + X23 + . . . + X1] using X = (1 + i12)

Note that this time X has a positive exponent not a negative exponent, because we are doing
future values. This is not a rule you have to memorise - you can see from the equation what the
obvious choice of X should be.

Let us reorder the terms:

A = P [X1 + X2 + . . . + X24] = P · X [1 + X + X2 + . . . + X23]

This is just another sum of a geometric sequence, which as you know can be simplified as:

A = P · X [Xn − 1]/((1 + i12) − 1)

= P · X [Xn − 1]/i12
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So if we want to use our numbers, we know that A = R45 000, n=24 (because we are looking
at monthly payments, so there are 24 months involved) and i = 12% per annum.

BUT (and it is a big but) we need a monthly interest rate. Do not forget that the trick is to
keep the time periods and the interest rates in the same units - so if we have monthly payments,
make sure you use a monthly interest rate! Using the formula from Section 21.8, we know that
(1 + i) = (1 + i12)12. So we can show that i12 = 0,0094888 = 0,94888%.

Therefore,

45 000 = P (1,0094888)[(1,0094888)24 − 1]/0,0094888

P = 1662,67

This means you need to invest R1 662,67 each month into that bank account to be able to pay
for your car in 2 years time.

There is another way of looking at this too - in terms of present values. We know that we need
an amount of R45 000 in 24 months time, and at a monthly interest rate of 0,94888%, the
present value of this amount is R35 873,72449. Now the question is what monthly amount at
0,94888% interest over 24 month has a present value of R35 873,72449? We have seen this
before - it is just like the mortgage questions! So let us go ahead and see if we get to the same
answer

P = M/[(1 − (1 + i)−n)/i]

= R35 873,72449[(1− (1,0094888)−24)/0,0094888]

= R1 662,67

37.3.4 Exercises - Present and Future Values

1. You have taken out a mortgage bond for R875 000 to buy a flat. The bond is for 30 years
and the interest rate is 12% per annum payable monthly.

A What is the monthly repayment on the bond?

B How much interest will be paid in total over the 30 years?

2. How much money must be invested now to obtain regular annuity payments of R 5 500
per month for five years ? The money is invested at 11,1% p.a., compounded monthly.
(Answer to the nearest hundred rand)

37.4 Investments and Loans

By now, you should be well equipped to perform calculations with compound interest. This
section aims to allow you to use these valuable skills to critically analyse investment and load
options that you will come across in your later life. This way, you will be able to make informed
decisions on options presented to you.

At this stage, you should understand the mathematical theory behind compound interest. How-
ever, the numerical implications of compound interest is often subtle and far from obvious.

Recall the example in section ??FIXTHIS. For an extra payment of R290,52 a month, we could
have paid off our loan in less than 14 years instead of 20 years. This provides a good illustration
of the long term effect of compound interest that is often surprising. In the following section,
we’ll aim to explain the reason for drastic deduction in times it takes to repay the loan.

37.4.1 Loan Schedules

So far, we have been working out loan repayment amounts by taking all the payments and
discounting them back to the present time. We are not considering the repayments individually.
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Think about the time you make a repayment to the bank. There are numerous questions that
could be raised: how much do you still owe them? Since you are paying off the loan, surely
you must owe them less money, but how much less? We know that we’ll be paying interest on
the money we still owe the bank. When exactly do we pay interest? How much interest are we
paying?

The answer to these questions lie in something called the load schedule.

We will continue to use the example from section ??FIXTHIS. There is a loan amount of
R190 000. We are paying it off over 20 years at an interest of 9% per annum payable monthly.
We worked out that the repayments should be R1 709,48.

Consider the first payment of R1 709,48 one month into the loan. First, we can work out how
much interest we owe the bank at this moment. We borrowed R190 000 a month ago, so we
should owe:

I = M × i12

= R190 000 × 0,75%

= R1 425

We are paying them R1 425 in interest. We calls this the interest component of the repayment.
We are only paying off R1 709,48 - R1 425 = R284.48 of what we owe! This is called the
capital component. That means we still owe R190 000 - R284,48 = R189 715,52. This is called
the capital outstanding. Let’s see what happens at end of the second month. The amount of
interest we need to pay is the interest on the capital outstanding.

I = M × i12

= R189 715,52× 0,75%

= R1 422,87

Since we don’t owe the bank as much as we did last time, we also owe a little less interest. The
capital component of the repayment is now R1 709,48 - R1 422,87 = R286,61. The capital
outstanding will be R189 715,52 - R286,61 = R189 428,91. This way, we can break each of our
repayments down into an interest part and the part that goes towards paying off the loan.

This is a simple and repetitive process. Table 37.1 is a table showing the breakdown of the first
12 payments. This is called a loan schedule.

Now, let’s see the same thing again, but with R2 000 being repaid each year. We expect the
numbers to change. However, how much will they change by? As before, we owe R1 425 in
interest in interest. After one month. However, we are paying R2 000 this time. That leaves
R575 that goes towards paying off the capital outstanding, reducing it to R189 425. By the end
of the second month, the interest owed is R1 420,69 (That’s R189 425×i12). Our R2 000 pays
for that interest, and reduces the capital amount owed by R2 000 - R1 420,69 = R579,31. This
reduces the amount outstanding to R188 845,69.

Doing the same calculations as before yields a new loan schedule shown in Table 37.2.

The important numbers to notice is the “Capital Component” column. Note that when we are
paying off R2 000 a month as compared to R1 709,48 a month, this column more than doubles?
In the beginning of paying off a loan, very little of our money is used to pay off the captital
outstanding. Therefore, even a small incread in repayment amounts can significantly increase
the speed at which we are paying off the capital.

Whatsmore, look at the amount we are still owing after one year (i.e. at time 12). When we were
paying R1 709,48 a month, we still owe R186 441,84. However, if we increase the repayments
to R2 000 a month, the amount outstanding decreases by over R3 000 to R182 808,14. This
means we would have paid off over R7 000 in our first year instead of less than R4 000. This
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Time Repayment Interest Com-
ponent

Capital Com-
ponent

Capital Out-
standing

0 R 190 000,00
1 R 1 709,48 R 1 425,00 R 284,48 R 189 715,52
2 R 1 709,48 R 1 422,87 R 286,61 R 189 428,91
3 R 1 709,48 R 1 420,72 R 288,76 R 189 140,14
4 R 1 709,48 R 1 418,55 R 290,93 R 188 849,21
5 R 1 709,48 R 1 416,37 R 293,11 R 188 556,10
6 R 1 709,48 R 1 414,17 R 295,31 R 188 260,79
7 R 1 709,48 R 1 411,96 R 297,52 R 187 963,27
8 R 1 709,48 R 1 409,72 R 299,76 R 187 663,51
9 R 1 709,48 R 1 407,48 R 302,00 R 187 361,51
10 R 1 709,48 R 1 405,21 R 304,27 R 187 057,24
11 R 1 709,48 R 1 402,93 R 306,55 R 186 750,69
12 R 1 709,48 R 1 400,63 R 308,85 R 186 441,84

Table 37.1: A loan schedule with repayments of R1 709,48 per month.

Time Repayment Interest Com-
ponent

Capital Com-
ponent

Capital Out-
standing

0 R 190 000,00
1 R 2 000,00 R 1 425,00 R 575,00 R 189 425,00
2 R 2 000,00 R 1 420,69 R 579,31 R 188 845,69
3 R 2 000,00 R 1 416,34 R 583,66 R 188 262,03
4 R 2 000,00 R 1 411,97 R 588,03 R 187 674,00
5 R 2 000,00 R 1 407,55 R 592,45 R 187 081,55
6 R 2 000,00 R 1 403,11 R 596,89 R 186 484,66
7 R 2 000,00 R 1 398,63 R 601,37 R 185 883,30
8 R 2 000,00 R 1 394,12 R 605,88 R 185 277,42
9 R 2 000,00 R 1 389,58 R 610,42 R 184 667,00
10 R 2 000,00 R 1 385,00 R 615,00 R 184 052,00
11 R 2 000,00 R 1 380,39 R 619,61 R 183 432,39
12 R 2 000,00 R 1 375,74 R 624,26 R 182 808,14

Table 37.2: A loan schedule with repayments of R2 000 per month.
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increased speed at which we are paying off the capital portion of the loan is what allows us to
pay off the whole load in around 14 years instead of the original 20. Note however, the effect
of paying R2 000 instead of R1 709,48 is more significant in be beginning of the loan than near
the end of the loan.

It is noted that in this instance, by paying slightly more than what the bank would ask you to
pay, you can pay off a loan a lot quicker. The natural question to ask here is: why are banks
asking us to pay the lower amount for much longer then? Are they trying to cheat us out of our
money?

There is no simple answer to this. Banks provide a service to us in return for a fee, so they are
out to make a profit. However, they need to be careful not to cheat their customers for fear
that they’ll simply use another bank. The central issue here is one of scale. For us, the changes
involved appear big. We are paying off our loan 6 years earlier by paying just a bit more a month.
To a bank, however, it doesn’t matter much either way. In all likelihoxod, it doesn’t affect their
profit margins one bit!

Remember that a bank calculates repayment amount using the same methods as we’ve been
learning. Therefore, they are correct amounts for given interest rates and terms. As a result,
which amount is repaid does generally make a bank more or less money. It’s a simple matter
of less money now or more money later. Banks generally use a 20 year repayment period by
default.

Learning about financial mathematics enables you to duplicate these calculations for yourself.
This way, you can decide what’s best for you. You can decide how much you want to repay each
month and you’ll know of its effects. A bank wouldn’t care much either way, so you should pick
something that suits you.

Worked Example 165: Monthly Payments

Question: Stefan and Marna want to buy a house that costs R 1 200 000. Their
parents offer to put down a 20% payment towards the cost of the house. They need
to get a moratage for the balance. What are their monthly repayments if the term
of the home loan is 30 years and the interest is 7,5%, compounded monthly ?
Answer

Step 1 : Determine how much money they need to borrow

R1 200 00 − R240 000 = R960 000
Step 2 : Determine how to approach the problem

Use the formula:

P =
x[1 − (1 + i)−n]

i

Where
P = 960 000
n = 30 × 12 = 360months
i = 0,075÷ 12 = 0,00625
Step 3 : Solve the problem

R960 000 =
x[1 − (1 + 0,00625)−360]

0,00625

= x(143,017 627 3)

x = R6 712,46

Step 4 : Write the final answer

The monthly repayments = R6 712,46
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37.4.2 Exercises - Investments and Loans

1. A property costs R1 800 000. Calculate the monthly repayments if the interest rate is 14%
p.a. compounded monthly and the loan must be paid of in 20 years time.

2. A loan of R 4 200 is to be returned in two equal annual instalments. If the rate of interest
os 10% per annum, compounded annually, calculate the amount of each instalment.

37.4.3 Calculating Capital Outstanding

As defined in Section 37.4.1, Capital outstanding is the amount we still owe the people we
borrowed money from at a given moment in time. We also saw how we can calculate this using
loan schedules. However, there is a significant disadvantage to this method: it is very time
consuming. For example, in order to calculate how much capital is still outstanding at time 12
using the loan schedule, we’ll have to first calculate how much capital is outstanding at time
1 through to 11 as well. This is already quite a bit more work than we’d like to do. Can you
imagine calculating the amount outstanding after 10 years (time 120)?

Fortunately, there is an easier method. However, it is not immediately why this works, so let’s
take some time to examine the concept.

Prospective method for Capital Outstanding

Let’s say that after a certain number of years, just after we made a repayment, we still owe
amount Y . What do we know about Y ? We know that using the loan schedule, we can
calculate what it equals to, but that is a lot of repetitive work. We also know that Y is the
amount that we are still going to pay off. In other words, all the repayments we are still going
to make in the future will exactly pay off Y . This is true because in the end, after all the
repayments, we won’t be owing anything.

Therefore, the present value of all outstanding future payments equal the present amount out-
standing. This is the prospective method for calculating capital outstanding.

Let’s return to a previous example. Recall the case where we were trying to repay a loan
of R200 000 over 20 years. At an interested rate of 9% compounded monthly, the monthly
repayment is R1 709,48. In table 37.1, we can see that after 12 month, the amount outstanding
is R186 441,84. Let’s try to work this out using the the prospective method.

After time 12, there is still 19× 12 = 228 repayments left of R1 709,48 each. The present value
is:

n = 228

i = 0,75%

Y = R1 709,48× 1 − 1,0075−228

0,0075

= R186 441,92

Oops! This seems to be almost right, but not quite. We should have got R186 441,84. We
are 8 cents out. However, this is in fact not a mistake. Remember that when we worked out
the monthly repayments, we rounded to the nearest cents and arrived at R1 709,48. This was
because one cannot make a payment for a fraction of a cent. Therefore, the rounding off error
was carried through. That’s why the two figures don’t match exactly. In financial mathematics,
this is largely unavoidable.

37.5 Formulae Sheet

As an easy reference, here are the key formulae that we derived and used during this chapter.
While memorising them is nice (there are not many), it is the application that is useful. Financial

489



37.6 CHAPTER 37. FINANCE - GRADE 12

experts are not paid a salary in order to recite formulae, they are paid a salary to use the right
methods to solve financial problems.

37.5.1 Definitions

P Principal (the amount of money at the starting point of the calculation)
i interest rate, normally the effective rate per annum
n period for which the investment is made

iT the interest rate paid T times per annum, i.e. iT = Nominal Interest Rate
T

37.5.2 Equations

Present Value - simple
Future Value - simple
Solve for i
Solve for n















= P (1 + i · n)

Present Value - compound
Future Value - compound
Solve for i
Solve for n















= P (1 + i)n

Important: Always keep the interest and the time period in the same units of time (e.g.
both in years, or both in months etc.).

37.6 End of Chapter Exercises

1. Thabo is about to invest his R8 500 bonus in a special banking product which will pay 1%
per annum for 1 month, then 2% per annum for the next 2 months, then 3% per annum
for the next 3 months, 4% per annum for the next 4 months, and 0% for the rest of the
year. The are going to charge him R100 to set up the account. How much can he expect
to get back at the end of the period?

2. A special bank account pays simple interest of 8% per annum. Calculate the opening
balance required to generate a closing balance of R5 000 after 2 years.

3. A different bank account pays compound interest of 8% per annum. Calculate the opening
balance required to generate a closing balance of R5 000 after 2 years.

4. Which of the two answers above is lower, and why?

5. After 7 months after an initial deposit, the value of a bank account which pays compound
interest of 7,5% per annum is R3 650,81. What was the value of the initial deposit?

6. Suppose you invest R500 this year compounded at interest rate i for a year in Bank T. In
the following year you invest the accumulation that you received for another year at the
same interest rate and on the third year, you invested the accumulation you received at
the same interest rate too. If P represents the present value (R500), find a pattern for
this investment. [Hint: find a formula]

7. Thabani and Lungelo are both using UKZN Bank for their saving. Suppose Lungelo makes
a deposit of X today at interest rate of i for six years. Thabani makes a deposit of 3X
at an interest rate of 0.05. Thabani made his deposit 3 years after Lungelo made his first
deposit. If after 6 years, their investments are equal, calculate the value of i and find X .
if the sum of their investment is R20 000, use X you got to find out how much Thabani
got in 6 years.
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8. Sipho invests R500 at an interest rate of log(1,12) for 5 years. Themba, Sipho’s sister
invested R200 at interest rate i for 10 years on the same date that her brother made his
first deposit. If after 5 years, Themba’s accumulation equals Sipho’s, find the interest rate
i and find out whether Themba will be able to buy her favorite cell phone after 10 years
which costs R2 000.

9. Moira deposits R20 000 in her saving account for 2 years at an interest rate of 0.05. After
2 years, she invested her accumulation for another 2 years, at the same interest rate. After
4 years, she invested her accumulation for which she got for another 2 years at an interest
rate of 5 %. After 6 years she choose to buy a car which costs R26 000. Her husband,
Robert invested the same amount at interest rate of 5 % for 6 years.

A Without using any numbers, find a pattern for Moira’s investment?

B How Moira’s investment differ from Robert’s?

10. Calculate the real cost of a loan of R10 000 for 5 years at 5% capitalised monthly and half
yearly.

11. Determine how long, in years, it will take for the value of a motor vehicle to decrease to
25% of its original value if the rate of depreciation, based on the reducing-balance method,
is 21% per annum.

12. André and Thoko, decided to invest their winnings (amounting to R10 000) from their
science project. They decided to divide their winnings according to the following: Because
Andr was the head of the project and he spent more time on it, André got 65,2 % of the
winnings and Thoko got 34,8%. So, Thoko decided to invest only 0,5 % of the share of her
sum and Andrédecided to invest 1,5 % of the share of his sum. When they calculated how
much each contributed in the investment, Thoko had 25 % and André had 75 % share.
They planned to invest their money for 20 years , but, as a result of Thoko finding a job in
Australia 7 years after their initial investment. They both decided to take whatever value
was there and split it according to their initial investment(in terms of percentages). Find
how much each will get after 7 years, if the interest rate is equal to the percentage that
Thoko invested (NOT the money but the percentage).
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Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non-commercially. Secondar-
ily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
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The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially,
provided that this License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
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you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections A and A above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

6. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
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10. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section A above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.
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COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section A. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section A) to Preserve its Title (section A) will typically require changing the actual
title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sub-license or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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