FHSST Authors The Free High School Science Texts: Textbooks for High School Students Studying the Sciences Physics Grades 10 - 12 > Version 0 November 9, 2008 Copyright 2007 "Free High School Science Texts" Permission **is** granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". ## Did you notice the **FREEDOMS** we've granted you? Our copyright license is **different!** It grants freedoms rather than just imposing restrictions like all those other textbooks you probably own or use. - We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally! - Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide we DARE you! - Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want! - Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents. - So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair. - These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community. ### **FHSST Core Team** Mark Horner; Samuel Halliday; Sarah Blyth; Rory Adams; Spencer Wheaton ## FHSST Editors Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan Whitfield ## FHSST Contributors Rory Adams; Prashant Arora; Richard Baxter; Dr. Sarah Blyth; Sebastian Bodenstein; Graeme Broster; Richard Case; Brett Cocks; Tim Crombie; Dr. Anne Dabrowski; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez; Hemant Gopal; Umeshree Govender; Heather Gray; Lynn Greeff; Dr. Tom Gutierrez; Brooke Haag; Kate Hadley; Dr. Sam Halliday; Asheena Hanuman; Neil Hart; Nicholas Hatcher; Dr. Mark Horner; Robert Hovden; Mfandaidza Hove; Jennifer Hsieh; Clare Johnson; Luke Jordan; Tana Joseph; Dr. Jennifer Klay; Lara Kruger; Sihle Kubheka; Andrew Kubik; Dr. Marco van Leeuwen; Dr. Anton Machacek; Dr. Komal Maheshwari; Kosma von Maltitz; Nicole Masureik; John Mathew; JoEllen McBride; Nikolai Meures; Riana Meyer; Jenny Miller; Abdul Mirza; Asogan Moodaly; Jothi Moodley; Nolene Naidu; Tyrone Negus; Thomas O'Donnell; Dr. Markus Oldenburg; Dr. Jaynie Padayachee; Nicolette Pekeur; Sirika Pillay; Jacques Plaut; Andrea Prinsloo; Joseph Raimondo; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle; Evan Robinson; Dr. Andrew Rose; Bianca Ruddy; Katie Russell; Duncan Scott; Helen Seals; Ian Sherratt; Roger Sieloff; Bradley Smith; Greg Solomon; Mike Stringer; Shen Tian; Robert Torregrosa; Jimmy Tseng; Helen Waugh; Dr. Dawn Webber; Michelle Wen; Dr. Alexander Wetzler; Dr. Spencer Wheaton; Vivian White; Dr. Gerald Wigger; Harry Wiggins; Wendy Williams; Julie Wilson; Andrew Wood; Emma Wormauld; Sahal Yacoob; Jean Youssef Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource! www.fhsst.org # **Contents** | ı | Inti | roduct | tion | 1 | |----|-------|----------------|--|--------------| | 1 | Wha | t is Ph | ysics? | 3 | | II | Gr | ade 1 | 0 - Physics | 5 | | 2 | Unit | s | | 9 | | | 2.1 | Introdu | uction | 9 | | | 2.2 | Unit S | ystems | 9 | | | | 2.2.1 | SI Units | 9 | | | | 2.2.2 | The Other Systems of Units | 10 | | | 2.3 | Writing | g Units as Words or Symbols | 10 | | | 2.4 | Combi | nations of SI Base Units | 12 | | | 2.5 | Roundi | ing, Scientific Notation and Significant Figures | 12 | | | | 2.5.1 | Rounding Off | 12 | | | | 2.5.2 | Error Margins | 13 | | | | 2.5.3 | Scientific Notation | 13 | | | | 2.5.4 | Significant Figures | 15 | | | 2.6 | Prefixe | s of Base Units | 15 | | | 2.7 | The Im | portance of Units | 17 | | | 2.8 | How to | Change Units | 17 | | | | 2.8.1 | Two other useful conversions | 19 | | | 2.9 | A sanit | ty test | 19 | | | 2.10 | Summa | ary | 19 | | | 2.11 | End of | Chapter Exercises | 21 | | 2 | N/1-4 | : : (| One Diversity Code 10 | 22 | | 3 | 3.1 | | One Dimension - Grade 10 | 23 23 | | | 3.2 | | nce Point, Frame of Reference and Position | 23 | | | 3.2 | 3.2.1 | Frames of Reference | | | | | 3.2.2 | | 23
25 | | | 2.2 | - | Position | | | | 3.3 | 3.3.1 | Interpreting Direction | 28
29 | | | | | Interpreting Direction | _ | | | 3.4 | 3.3.2
Speed | Differences between Distance and Displacement | 29
31 | | | 24 | 211664 | AVELANE VEIDLIN AUD INSTAULABEDUS VEIDLIN | 3 I | | | | 3.4.1 Differences between Speed and Velocity | 35 | |---|------|---|----| | | 3.5 | Acceleration | 38 | | | 3.6 | Description of Motion | 39 | | | | 3.6.1 Stationary Object | 40 | | | | 3.6.2 Motion at Constant Velocity | 41 | | | | 3.6.3 Motion at Constant Acceleration | 46 | | | 3.7 | Summary of Graphs | 48 | | | 3.8 | Worked Examples | 49 | | | 3.9 | Equations of Motion | 54 | | | | 3.9.1 Finding the Equations of Motion | 54 | | | 3.10 | Applications in the Real-World | 59 | | | 3.11 | Summary | 61 | | | 3.12 | End of Chapter Exercises: Motion in One Dimension | 62 | | 4 | Grav | vity and Mechanical Energy - Grade 10 | 67 | | | | Weight | 67 | | | | 4.1.1 Differences between Mass and Weight | 68 | | | 4.2 | | 69 | | | | | 69 | | | | 4.2.2 Free fall | 69 | | | 4.3 | Potential Energy | 73 | | | 4.4 | Kinetic Energy | 75 | | | | 4.4.1 Checking units | 77 | | | 4.5 | Mechanical Energy | 78 | | | | 4.5.1 Conservation of Mechanical Energy | 78 | | | | 4.5.2 Using the Law of Conservation of Energy | 79 | | | 4.6 | Energy graphs | 82 | | | 4.7 | Summary | 83 | | | 4.8 | End of Chapter Exercises: Gravity and Mechanical Energy | 84 | | 5 | Tran | nsverse Pulses - Grade 10 | B7 | | | 5.1 | Introduction | 87 | | | 5.2 | | 87 | | | 5.3 | What is a <i>pulse</i> ? | 87 | | | | 5.3.1 Pulse Length and Amplitude | 88 | | | | 5.3.2 Pulse Speed | 89 | | | 5.4 | Graphs of Position and Velocity | 90 | | | | 5.4.1 Motion of a Particle of the Medium | 90 | | | | 5.4.2 Motion of the Pulse | 92 | | | 5.5 | Transmission and Reflection of a Pulse at a Boundary | 96 | | | 5.6 | Reflection of a Pulse from Fixed and Free Ends | 97 | | | | 5.6.1 Reflection of a Pulse from a Fixed End | 97 | | | | 5.6.2 Reflection of a Pulse from a Free End | 3 | |---|------|--|---| | | 5.7 | Superposition of Pulses | 9 | | | 5.8 | Exercises - Transverse Pulses | 2 | | 6 | Tran | sverse Waves - Grade 10 105 | 5 | | | 6.1 | Introduction | 5 | | | 6.2 | What is a <i>transverse wave</i> ? | 5 | | | | 6.2.1 Peaks and Troughs | 5 | | | | 6.2.2 Amplitude and Wavelength | 7 | | | | 6.2.3 Points in Phase | 9 | | | | 6.2.4 Period and Frequency | C | | | | 6.2.5 Speed of a Transverse Wave | 1 | | | 6.3 | Graphs of Particle Motion | 5 | | | 6.4 | Standing Waves and Boundary Conditions | 3 | | | | 6.4.1 Reflection of a Transverse Wave from a Fixed End | 3 | | | | 6.4.2 Reflection of a Transverse Wave from a Free End | 3 | | | | 6.4.3 Standing Waves | 3 | | | | 6.4.4 Nodes and anti-nodes | 2 | | | | 6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends | 2 | | | | 6.4.6 Superposition and Interference | 5 | | | 6.5 | Summary | 7 | | | 6.6 | Exercises | 7 | | 7 | Geo | netrical Optics - Grade 10 129 | 9 | | | 7.1 | Introduction | 9 | | | 7.2 | Light Rays | 9 | | | | 7.2.1 Shadows | 2 | | | | 7.2.2 Ray Diagrams | 2 | | | 7.3 | Reflection | 2 | | | | 7.3.1 Terminology | 3 | | | | 7.3.2 Law of Reflection | 3 | | | | 7.3.3 Types of Reflection | 5 | | | 7.4 | Refraction | 7 | | | | 7.4.1 Refractive Index | 9 | | | | 7.4.2 Snell's Law | 9 | | | | 7.4.3 Apparent Depth | 3 | | | 7.5 | Mirrors | 5 | | | | 7.5.1 Image Formation | 5 | | | | 7.5.2 Plane Mirrors | 7 | | | | 7.5.3 Ray Diagrams | 3 | | | | 7.5.4 Spherical Mirrors | Э | | | | 7.5.5 Concave Mirrors | ^ | | | | 7.5.6 | Convex Mirrors | 153 | |----|-------|--------------------|---|-----| | | | 7.5.7 | Summary of Properties of Mirrors | 154 | | | | 7.5.8 | Magnification | 154 | | | 7.6 | Total I | nternal Reflection and Fibre Optics | 156 | | | | 7.6.1 | Total Internal Reflection | 156 | | | | 7.6.2 | Fibre Optics | 161 | | | 7.7 | Summa | ary | 163 | | | 7.8 | Exercis | es | 164 | | 8 | Mag | netism | - Grade 10 | 167 | | | 8.1 | Introdu | uction | 167 | | | 8.2 | Magne ⁻ | tic fields | 167 | | | 8.3 | Permar | nent magnets | 169 | | | | 8.3.1 | The poles of permanent magnets | 169 | | | | 8.3.2 | Magnetic attraction and repulsion | 169 | | | | 8.3.3 | Representing magnetic fields | 170 | | | 8.4 | The co | ompass and the earth's magnetic field | 173 | | | | 8.4.1 | The earth's magnetic field | 175 | | | 8.5 | Summa | ary | 175 | | | 8.6 | End of | chapter
exercises | 176 | | 9 | Flect | trostati | ics - Grade 10 | 177 | | | 9.1 | | uction | | | | 9.2 | | nds of charge | | | | 9.3 | | f charge | | | | 9.4 | | vation of charge | | | | 9.5 | Force b | petween Charges | 178 | | | 9.6 | Conduc | ctors and insulators | 181 | | | | 9.6.1 | The electroscope | 182 | | | 9.7 | Attract | tion between charged and uncharged objects | 183 | | | | 9.7.1 | Polarisation of Insulators | | | | 9.8 | Summa | ary | 184 | | | 9.9 | End of | chapter exercise | 184 | | 10 | Floci | tric Cir | cuits - Grade 10 | 187 | | 10 | | | Circuits | | | | 10.1 | | Closed circuits | | | | | | Representing electric circuits | | | | 10.2 | | ial Difference | | | | 10.2 | | Potential Difference | | | | | | Potential Difference and Parallel Resistors | | | | | | Potential Difference and Series Resistors | | | | | | Ohm's Law | | | | | 1∪.∠.4 | UIIII 3 LdW | エガサ | | | | 10.2.5 EMF | |-----|------|---| | | 10.3 | Current | | | | 10.3.1 Flow of Charge | | | | 10.3.2 Current | | | | 10.3.3 Series Circuits | | | | 10.3.4 Parallel Circuits | | | 10.4 | Resistance | | | | 10.4.1 What causes resistance? | | | | 10.4.2 Resistors in electric circuits | | | 10.5 | Instruments to Measure voltage, current and resistance | | | | 10.5.1 Voltmeter | | | | 10.5.2 Ammeter | | | | 10.5.3 Ohmmeter | | | | 10.5.4 Meters Impact on Circuit | | | 10.6 | Exercises - Electric circuits | | | | | | 111 | G | rade 11 - Physics 209 | | | | | | 11 | Vect | | | | | Introduction | | | | Scalars and Vectors | | | 11.3 | Notation | | | | 11.3.1 Mathematical Representation | | | | 11.3.2 Graphical Representation | | | 11.4 | Directions | | | | 11.4.1 Relative Directions | | | | 11.4.2 Compass Directions | | | | 11.4.3 Bearing | | | 11.5 | Drawing Vectors | | | 11.6 | Mathematical Properties of Vectors | | | | 11.6.1 Adding Vectors | | | | 11.6.2 Subtracting Vectors | | | | 11.6.3 Scalar Multiplication | | | 11.7 | Techniques of Vector Addition | | | | 11.7.1 Graphical Techniques | | | | 11.7.2 Algebraic Addition and Subtraction of Vectors | | | 11.8 | Components of Vectors | | | | 11.8.1 Vector addition using components | | | | 11.8.2 Summary | | | | 11.8.3 End of chapter exercises: Vectors | | | | 11.8.4 End of chapter exercises: Vectors - Long questions | | 12 Force | e, Momentum and Impulse - Grade 11 | 239 | |----------|--|-----| | 12.1 | Introduction | 239 | | 12.2 | Force | 239 | | | 12.2.1 What is a <i>force</i> ? | 239 | | | 12.2.2 Examples of Forces in Physics | 240 | | | 12.2.3 Systems and External Forces | 241 | | | 12.2.4 Force Diagrams | 242 | | | 12.2.5 Free Body Diagrams | 243 | | | 12.2.6 Finding the Resultant Force | 244 | | | 12.2.7 Exercise | 246 | | 12.3 | Newton's Laws | 246 | | | 12.3.1 Newton's First Law | 247 | | | 12.3.2 Newton's Second Law of Motion | 249 | | | 12.3.3 Exercise | 261 | | | 12.3.4 Newton's Third Law of Motion | 263 | | | 12.3.5 Exercise | 267 | | | 12.3.6 Different types of forces | 268 | | | 12.3.7 Exercise | 275 | | | 12.3.8 Forces in equilibrium | 276 | | | 12.3.9 Exercise | 279 | | 12.4 | Forces between Masses | 282 | | | 12.4.1 Newton's Law of Universal Gravitation | 282 | | | 12.4.2 Comparative Problems | 284 | | | 12.4.3 Exercise | 286 | | 12.5 | Momentum and Impulse | 287 | | | 12.5.1 Vector Nature of Momentum | 290 | | | 12.5.2 Exercise | 291 | | | 12.5.3 Change in Momentum | 291 | | | 12.5.4 Exercise | 293 | | | 12.5.5 Newton's Second Law revisited | 293 | | | 12.5.6 Impulse | 294 | | | 12.5.7 Exercise | 296 | | | 12.5.8 Conservation of Momentum | 297 | | | 12.5.9 Physics in Action: Impulse | | | | 12.5.10 Exercise | 301 | | 12.6 | Torque and Levers | | | | 12.6.1 Torque | | | | 12.6.2 Mechanical Advantage and Levers | | | | 12.6.3 Classes of levers | | | | 12.6.4 Exercise | | | | Summary | | | 12.8 | End of Chapter exercises | 310 | | 13 | Geor | metrical Optics - Grade 11 | 327 | |----|------|--|-----| | | 13.1 | Introduction | 327 | | | 13.2 | Lenses | 327 | | | | 13.2.1 Converging Lenses | 329 | | | | 13.2.2 Diverging Lenses | 340 | | | | 13.2.3 Summary of Image Properties | 343 | | | 13.3 | The Human Eye | 344 | | | | 13.3.1 Structure of the Eye | 345 | | | | 13.3.2 Defects of Vision | 346 | | | 13.4 | Gravitational Lenses | 347 | | | 13.5 | Telescopes | 347 | | | | 13.5.1 Refracting Telescopes | 347 | | | | 13.5.2 Reflecting Telescopes | 348 | | | | 13.5.3 Southern African Large Telescope | 348 | | | 13.6 | Microscopes | 349 | | | 13.7 | Summary | 351 | | | 13.8 | Exercises | 352 | | 14 | Long | gitudinal Waves - Grade 11 | 355 | | | 14.1 | Introduction | 355 | | | 14.2 | What is a longitudinal wave? | 355 | | | 14.3 | Characteristics of Longitudinal Waves | 356 | | | | 14.3.1 Compression and Rarefaction | 356 | | | | 14.3.2 Wavelength and Amplitude | 357 | | | | 14.3.3 Period and Frequency | 357 | | | | 14.3.4 Speed of a Longitudinal Wave | 358 | | | 14.4 | Graphs of Particle Position, Displacement, Velocity and Acceleration | 359 | | | 14.5 | Sound Waves | 360 | | | 14.6 | Seismic Waves | 361 | | | 14.7 | Summary - Longitudinal Waves | 361 | | | 14.8 | Exercises - Longitudinal Waves | 362 | | 15 | Sour | nd - Grade 11 | 363 | | | 15.1 | Introduction | 363 | | | 15.2 | Characteristics of a Sound Wave | 363 | | | | 15.2.1 Pitch | 364 | | | | 15.2.2 Loudness | 364 | | | | 15.2.3 Tone | 364 | | | 15.3 | Speed of Sound | 365 | | | 15.4 | Physics of the Ear and Hearing | 365 | | | | 15.4.1 Intensity of Sound | 366 | | | 15.5 | Ultrasound | 367 | | CONTENTS | CONTENTS | |----------|----------| | | | | | 15.6 | SONAR | |----|-------|--| | | | 15.6.1 Echolocation | | | 15.7 | Summary | | | 15.8 | Exercises | | 16 | The | Physics of Music - Grade 11 373 | | | | Introduction | | | | Standing Waves in String Instruments | | | | Standing Waves in Wind Instruments | | | | Resonance | | | | Music and Sound Quality | | | | Summary - The Physics of Music | | | | End of Chapter Exercises | | | | | | 17 | | trostatics - Grade 11 387 | | | | Introduction | | | | Forces between charges - Coulomb's Law | | | 17.3 | Electric field around charges | | | | 17.3.1 Electric field lines | | | | 17.3.2 Positive charge acting on a test charge | | | | 17.3.3 Combined charge distributions | | | | 17.3.4 Parallel plates | | | 17.4 | Electrical potential energy and potential | | | | 17.4.1 Electrical potential | | | | 17.4.2 Real-world application: lightning | | | 17.5 | Capacitance and the parallel plate capacitor | | | | 17.5.1 Capacitors and capacitance | | | | 17.5.2 Dielectrics | | | | 17.5.3 Physical properties of the capacitor and capacitance 404 | | | | 17.5.4 Electric field in a capacitor | | | 17.6 | Capacitor as a circuit device | | | | $17.6.1 \ A \ capacitor \ in \ a \ circuit \ \ldots $ | | | | $17.6.2 \ \ Real\text{-world\ applications:\ capacitors}\ \ldots \ldots$ | | | 17.7 | Summary | | | 17.8 | Exercises - Electrostatics | | 18 | Elect | tromagnetism - Grade 11 413 | | | 18.1 | Introduction | | | 18.2 | Magnetic field associated with a current | | | | 18.2.1 Real-world applications | | | 18.3 | Current induced by a changing magnetic field | | | | 18.3.1 Real-life applications | | | 18.4 | Transformers | | | | | | | | 18.4.1 Real-world applications | 425 | |----|-------|--|-----| | | 18.5 | Motion of a charged particle in a magnetic field | 425 | | | | 18.5.1 Real-world applications | 426 | | | 18.6 | Summary | 427 | | | 18.7 | End of chapter exercises | 427 | | 19 | Elect | tric Circuits - Grade 11 | 429 | | | 19.1 | Introduction | 429 | | | 19.2 | Ohm's Law | 429 | | | | 19.2.1 Definition of Ohm's Law | 429 | | | | 19.2.2 Ohmic and non-ohmic conductors | 431 | | | | 19.2.3 Using Ohm's Law | 432 | | | 19.3 | Resistance | 433 | | | | 19.3.1 Equivalent resistance | 433 | | | | 19.3.2 Use of Ohm's Law in series and parallel Circuits | 438 | | | | 19.3.3 Batteries and internal resistance | 440 | | | 19.4 | Series and parallel networks of resistors | 442 | | | 19.5 | Wheatstone bridge | 445 | | | 19.6 | Summary | 447 | | | 19.7 | End of chapter exercise | 447 | | 20 | Elect | tronic Properties of Matter - Grade 11 | 451 | | | 20.1 | Introduction | 451 | | | 20.2 | Conduction | 451 | | | | 20.2.1 Metals | 453 | | | | 20.2.2 Insulator | 453 | | | | 20.2.3 Semi-conductors | 454 | | | 20.3 | Intrinsic Properties and Doping | 454 | | | | 20.3.1 Surplus | 455 | | | | 20.3.2 Deficiency | 455 | | | 20.4 | The p-n junction | 457 | | | | 20.4.1 Differences between p- and n-type semi-conductors | 457 | | | | 20.4.2 The p-n Junction | 457 | | | | 20.4.3 Unbiased | 457 | | | | 20.4.4 Forward biased | 457 | | | | 20.4.5 Reverse biased | 458 | | | | 20.4.6 Real-World Applications of Semiconductors | 458 | | | 20.5 | End of Chapter Exercises | 459 | | | | | | | IV | G | rade 12 - Physics 4 | 61 | | 21 | Mot | ion in Two Dimensions - Grade 12 | 463 | | | 21.1 | Introduction | 463 | | | 21.2 | Vertical Projectile Motion | |----|------|--| | | | 21.2.1 Motion in a Gravitational Field | | | | 21.2.2 Equations of Motion | | | | 21.2.3 Graphs of Vertical Projectile Motion | | | 21.3 | Conservation of Momentum in Two Dimensions | | | 21.4 | Types of Collisions | | | | 21.4.1 Elastic Collisions | | | | 21.4.2 Inelastic Collisions | | | 21.5 | Frames of Reference | | | | 21.5.1 Introduction | | | | 21.5.2 What is a <i>frame of reference</i> ? | | | | 21.5.3 Why are frames of reference important? | | | | 21.5.4 Relative Velocity | | | 21.6 | Summary | | | 21.7 | End of chapter exercises | | 22 | N4 | haviad Danastia of Matter Conda 12 | | 22 | | hanical Properties of Matter - Grade 12 503
| | | | Introduction | | | 22.2 | Deformation of materials | | | | 22.2.1 Hooke's Law | | | 22.2 | 22.2.2 Deviation from Hooke's Law | | | 22.3 | Elasticity, plasticity, fracture, creep | | | | 22.3.1 Elasticity and plasticity | | | | 22.3.2 Fracture, creep and fatigue | | | 22.4 | Failure and strength of materials | | | | 22.4.1 The properties of matter | | | | 22.4.2 Structure and failure of materials | | | | 22.4.3 Controlling the properties of materials | | | | 22.4.4 Steps of Roman Swordsmithing | | | | Summary | | | 22.6 | End of chapter exercise | | 23 | Worl | c, Energy and Power - Grade 12 513 | | | 23.1 | Introduction | | | 23.2 | Work | | | 23.3 | Energy | | | | 23.3.1 External and Internal Forces | | | | 23.3.2 Capacity to do Work | | | 23.4 | Power | | | 23.5 | Important Equations and Quantities | | | 23.6 | End of Chapter Exercises | | | | | | 24 | Dop | pler Effect - Grade 12 | 533 | |----|------|--|-----| | | 24.1 | Introduction | 533 | | | 24.2 | The Doppler Effect with Sound and Ultrasound | 533 | | | | 24.2.1 Ultrasound and the Doppler Effect | 537 | | | 24.3 | The Doppler Effect with Light | 537 | | | | 24.3.1 The Expanding Universe | 538 | | | 24.4 | Summary | 539 | | | 24.5 | End of Chapter Exercises | 539 | | 25 | Colo | our - Grade 12 | 541 | | | 25.1 | Introduction | 541 | | | 25.2 | Colour and Light | 541 | | | | 25.2.1 Dispersion of white light | 544 | | | 25.3 | Addition and Subtraction of Light | 544 | | | | 25.3.1 Additive Primary Colours | 544 | | | | 25.3.2 Subtractive Primary Colours | 545 | | | | 25.3.3 Complementary Colours | 546 | | | | 25.3.4 Perception of Colour | 546 | | | | 25.3.5 Colours on a Television Screen | 547 | | | 25.4 | Pigments and Paints | 548 | | | | 25.4.1 Colour of opaque objects | 548 | | | | 25.4.2 Colour of transparent objects | 548 | | | | 25.4.3 Pigment primary colours | 549 | | | 25.5 | End of Chapter Exercises | 550 | | 26 | 2D a | and 3D Wavefronts - Grade 12 | 553 | | | 26.1 | Introduction | 553 | | | 26.2 | Wavefronts | 553 | | | 26.3 | The Huygens Principle | 554 | | | 26.4 | Interference | 556 | | | 26.5 | Diffraction | 557 | | | | 26.5.1 Diffraction through a Slit | 558 | | | 26.6 | Shock Waves and Sonic Booms | 562 | | | | 26.6.1 Subsonic Flight | 563 | | | | 26.6.2 Supersonic Flight | 563 | | | | 26.6.3 Mach Cone | 566 | | | 26.7 | End of Chapter Exercises | 568 | | 27 | Wav | ve Nature of Matter - Grade 12 | 571 | | | 27.1 | Introduction | 571 | | | 27.2 | de Broglie Wavelength | 571 | | | 27.3 | The Electron Microscope | 574 | | | | 27.3.1 Disadvantages of an Electron Microscope | 577 | | | | 27.3.2 Uses of Electron Microscopes | | | | | | | | |----|-------|--|--|--|--|--|--|--|--| | | 27.4 | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | 27.4 | End of Chapter Exercises | | | | | | | | | 28 | Elect | Electrodynamics - Grade 12 57 | | | | | | | | | | 28.1 | Introduction | | | | | | | | | | 28.2 | Electrical machines - generators and motors | | | | | | | | | | | 28.2.1 Electrical generators | | | | | | | | | | | 28.2.2 Electric motors | | | | | | | | | | | 28.2.3 Real-life applications | | | | | | | | | | | 28.2.4 Exercise - generators and motors | | | | | | | | | | 28.3 | Alternating Current | | | | | | | | | | | 28.3.1 Exercise - alternating current | | | | | | | | | | 28.4 | Capacitance and inductance | | | | | | | | | | | 28.4.1 Capacitance | | | | | | | | | | | 28.4.2 Inductance | | | | | | | | | | | 28.4.3 Exercise - capacitance and inductance | | | | | | | | | | 28.5 | Summary | | | | | | | | | | 28.6 | End of chapter exercise | 29 | Elect | tronics - Grade 12 591 | | | | | | | | | | 29.1 | Introduction | | | | | | | | | | 29.2 | Capacitive and Inductive Circuits | | | | | | | | | | 29.3 | Filters and Signal Tuning | | | | | | | | | | | 29.3.1 Capacitors and Inductors as Filters | | | | | | | | | | | 29.3.2 LRC Circuits, Resonance and Signal Tuning 596 | | | | | | | | | | 29.4 | Active Circuit Elements | | | | | | | | | | | 29.4.1 The Diode | | | | | | | | | | | 29.4.2 The Light Emitting Diode (LED) | | | | | | | | | | | 29.4.3 Transistor | | | | | | | | | | | 29.4.4 The Operational Amplifier | | | | | | | | | | 29.5 | The Principles of Digital Electronics | | | | | | | | | | | 29.5.1 Logic Gates | | | | | | | | | | 29.6 | Using and Storing Binary Numbers | | | | | | | | | | | 29.6.1 Binary numbers | | | | | | | | | | | 29.6.2 Counting circuits | | | | | | | | | | | 29.6.3 Storing binary numbers | | | | | | | | | 20 | | | | | | | | | | | 30 | | Radiation 625 | | | | | | | | | | | Introduction | | | | | | | | | | | Particle/wave nature of electromagnetic radiation | | | | | | | | | | | The wave nature of electromagnetic radiation | | | | | | | | | | | Electromagnetic spectrum | | | | | | | | | | 30.5 | The particle nature of electromagnetic radiation | | | | | | | | | CONTENTS | CONTENTS | |---------------------|----------| | / 1 N I I L N I I C | 7 / 18/1 | | .(7) | | | | | 30.5.1 Exercise - particle nature of EM waves | . 630 | | | | | | | |--|--|--|-------|--|--|--|--|--|--| | | 30.6 | Penetrating ability of electromagnetic radiation | . 631 | | | | | | | | | | 30.6.1 Ultraviolet(UV) radiation and the skin | . 631 | | | | | | | | | | 30.6.2 Ultraviolet radiation and the eyes | . 632 | | | | | | | | | | 30.6.3 X-rays | . 632 | | | | | | | | | | 30.6.4 Gamma-rays | . 632 | | | | | | | | | | 30.6.5 Exercise - Penetrating ability of EM radiation | . 633 | | | | | | | | | 30.7 | Summary | . 633 | | | | | | | | | 30.8 | End of chapter exercise | . 633 | | | | | | | | 31 | Onti | ical Phenomena and Properties of Matter - Grade 12 | 635 | | | | | | | | - | _ | Introduction | | | | | | | | | | | The transmission and scattering of light | | | | | | | | | | 01.1 | 31.2.1 Energy levels of an electron | | | | | | | | | | | 31.2.2 Interaction of light with metals | | | | | | | | | | | 31.2.3 Why is the sky blue? | | | | | | | | | | 31.3 | The photoelectric effect | | | | | | | | | | 02.0 | 31.3.1 Applications of the photoelectric effect | | | | | | | | | | | 31.3.2 Real-life applications | | | | | | | | | | 31.4 | Emission and absorption spectra | | | | | | | | | | 02 | 31.4.1 Emission Spectra | | | | | | | | | | | 31.4.2 Absorption spectra | | | | | | | | | | | 31.4.3 Colours and energies of electromagnetic radiation | | | | | | | | | | | 31.4.4 Applications of emission and absorption spectra | | | | | | | | | | 31.5 | Lasers | | | | | | | | | | 02.0 | 31.5.1 How a laser works | | | | | | | | | | | 31.5.2 A simple laser | | | | | | | | | | | 31.5.3 Laser applications and safety | | | | | | | | | | 31.6 | Summary | | | | | | | | | | | End of chapter exercise | | | | | | | | | | •= | | | | | | | | | | V | Fx | xercises | 659 | | | | | | | | | | | | | | | | | | | 32 | Exer | rcises | 661 | | | | | | | | | | | | | | | | | | | VI | E | ssays | 663 | | | | | | | | Essay 1: Energy and electricity. Why the fuss? 665 | | | | | | | | | | | | • | | | | | | | | | | 33 Essay: How a cell phone works 671 | | | | | | | | | | | 34 | 34 Essay: How a Physiotherapist uses the Concept of Levers 673 | | | | | | | | | | 35 | 35 Essay: How a Pilot Uses Vectors 675 | | | | | | | | | | CONTENTS | CONTENTS | |----------|----------| | | | | Λ | CNIII | Fron | Documentation | Licone | |---|-------|------|---------------|--------| 677 # Chapter 9 # **Electrostatics - Grade 10** #### 9.1 Introduction Electrostatics is the study of electric charge which is static (not moving). #### 9.2 Two kinds of charge All objects surrounding us (including people!) contain large amounts of electric charge. There are two types of electric charge: positive charge and negative charge. If the same amounts of negative and positive charge are brought together, they neutralise each other and there is no net charge. Neutral objects are objects which contain positive and negative charges, but in equal numbers. However, if there is a little bit more of one type of charge than the other on the object then the object is said to be electrically charged. The picture below shows what the distribution of charges might look like for a neutral, positively charged and negatively charged object. There are: 6 positive charges and 6 negative charges There is zero net charge: The object is neutral 8 positive charges and 6 negative charges The net charge is +2 6 positive charges and 9 negative charges The net charge is -3 The object is positively charged The object is negatively charged #### 9.3 Unit of charge Charge is measured in units called **coulombs (C)**. A coulomb of charge is a very large charge. In electrostatics we therefore often work with charge in microcoulombs (1 μ C = 1×10^{-6} C) and nanocoulombs (1 nC = 1×10^{-9} C). #### 9.4 Conservation of charge Objects can become charged by contact or by rubbing them. This means that they can gain extra negative or positive charge. Charging happens when you, for example, rub your feet against the carpet. When you then touch something metallic or another person, you will feel a shock as the excess charge that you have collected is discharged. Important: Charge, just like energy, cannot be created or destroyed. We say that charge is conserved. When you rub your feet against the carpet, negative charge is transferred to you from the carpet. The carpet will then become positively charged by the same amount. Another example is to take two neutral objects such as a plastic ruler and a cotton cloth (handkerchief). To begin, the two objects are neutral (i.e. have the same amounts of positive and negative charge.) BEFORE rubbing: The ruler has 9 postive charges and 9 negative charges The neutral cotton cloth has positive charges and 5
negative charges The total number of charges is: (9+5)=14 positive charges (9+5)=14 negative charges Now, if the cotton cloth is used to rub the ruler, negative charge is transferred from the cloth to the ruler. The ruler is now negatively charged and the cloth is positively charged. If you count up all the positive and negative charges at the beginning and the end, there are still the same amount. i.e. total charge has been conserved! AFTER rubbing: The ruler has 9 postive charges and 12 negative charges It is now negatively charged. The cotton cloth has 5 positive charges and 2 negative charges. It is now positively charged. The total number of charges is: (9+5)=14 positive charges (12+2)=14 negative charges Charges have been transferred from the cloth to the ruler BUT total charge has been conserved! #### 9.5 Force between Charges The force exerted by non-moving (static) charges on each other is called the **electrostatic force**. The electrostatic force between: - like charges is repulsive - opposite (unlike) charges is attractive. In other words, like charges repel each other while opposite charges attract each other. This is different to the gravitational force which is only attractive. repulsive force repulsive force The closer together the charges are, the stronger the electrostatic force between them. #### Activity :: Experiment : Electrostatic Force You can easily test that like charges repel and unlike charges attract each other by doing a very simple experiment. Take a glass rod and rub it with a piece of silk, then hang it from its middle with a piece string so that it is free to move. If you then bring another glass rod which you have also charged in the same way next to it, you will see the rod on the string turn *away* from the rod in your hand i.e. it is **repelled**. If, however, you take a plastic rod, rub it with a piece of fur and then bring it close to the rod on the string, you will see the rod on the string turn *towards* the rod in your hand i.e. it is **attracted**. This happens because when you rub the glass with silk, tiny amounts of negative charge are transferred from the glass onto the silk, which causes the glass to have less negative charge than positive charge, making it **positively charged**. When you rub the plastic rod with the fur, you transfer tiny amounts of negative charge onto the rod and so it has more negative charge than positive charge on it, making it **negatively charged**. ## Worked Example 41: Application of electrostatic forces **Question:** Two charged metal spheres hang from strings and are free to move as shown in the picture below. The right hand sphere is positively charged. The charge on the left hand sphere is unknown. The left sphere is now brought close to the right sphere. - 1. If the left hand sphere swings towards the right hand sphere, what can you say about the charge on the left sphere and why? - 2. If the left hand sphere swings away from the right hand sphere, what can you say about the charge on the left sphere and why? #### Answer #### Step 1: Identify what is known and what question you need to answer: In the first case, we have a sphere with positive charge which is *attracting* the left charged sphere. We need to find the charge on the left sphere. #### Step 2: What concept is being used? We are dealing with electrostatic forces between charged objects. Therefore, we know that *like* charges *repel* each other and *opposite* charges *attract* each other. #### Step 3: Use the concept to find the solution - 1. In the first case, the positively charged sphere is attracting the left sphere. Since an electrostatic force between unlike charges is attractive, the left sphere must be *negatively* charged. - In the second case, the positively charged sphere repels the left sphere. Like charges repel each other. Therefore, the left sphere must now also be positively charged. Extension: Electrostatic Force The electrostatic force determines the arrangement of charge on the surface of conductors. When we place a charge on a spherical conductor the repulsive forces between the individual like charges cause them to spread uniformly over the surface of the sphere. However, for conductors with non-regular shapes, there is a concentration of charge near the point or points of the object. This collection of charge can actually allow charge to leak off the conductor if the point is sharp enough. It is for this reason that buildings often have a lightning rod on the roof to remove any charge the building has collected. This minimises the possibility of the building being struck by lightning. This "spreading out" of charge would not occur if we were to place the charge on an insulator since charge cannot move in insulators. The word 'electron' comes from the Greek word for amber. The ancient Greeks observed that if you rubbed a piece of amber, you could use it to pick up bits of straw. ## 9.6 Conductors and insulators All atoms are electrically neutral i.e. they have the same amounts of negative and positive charge inside them. By convention, the electrons carry negative charge and the protons carry positive charge. The basic unit of charge, called the elementary charge, e, is the amount of charge carried by one electron. All the matter and materials on earth are made up of atoms. Some materials allow electrons to move relatively freely through them (e.g. most metals, the human body). These materials are called **conductors**. Other materials do not allow the charge carriers, the electrons, to move through them (e.g. plastic, glass). The electrons are bound to the atoms in the material. These materials are called **non-conductors** or **insulators**. If an excess of charge is placed on an insulator, it will stay where it is put and there will be a concentration of charge in that area of the object. However, if an excess of charge is placed on a conductor, the like charges will repel each other and spread out over the surface of the object. When two conductors are made to touch, the total charge on them is shared between the two. If the two conductors are identical, then each conductor will be left with half of the total charge. ### Extension: Charge and electrons The basic unit of charge, namely the elementary charge is carried by the electron (equal to 1.602×10^{-19} C!). In a conducting material (e.g. copper), when the atoms bond to form the material, some of the outermost, loosely bound electrons become detached from the individual atoms and so become free to move around. The charge carried by these electrons can move around in the material. In insulators, there are very few, if any, free electrons and so the charge cannot move around in the material. ## Worked Example 42: Conducting spheres and movement of charge **Question:** I have 2 charged metal conducting spheres. Sphere A has a charge of -5 nC and sphere B has a charge of -3 nC. I then bring the spheres together so that they touch each other. Afterwards I move the two spheres apart so that they are no longer touching. - 1. What happens to the charge on the two spheres? - 2. What is the final charge on each sphere? #### **Answer** ## Step 1: Identify what is known and what question/s we need to answer: We have two identical negatively charged conducting spheres which are brought together to touch each other and then taken apart again. We need to explain what happens to the charge on each sphere and what the final charge on each sphere is after they are moved apart. #### Step 2: What concept is being used? We know that the charge carriers in conductors are free to move around and that charge on a conductor spreads itself out on the surface of the conductor. #### Step 3: Use the concept to find the answer - 1. When the two conducting spheres are brought together to touch, it is as though they become one single big conductor and the total charge of the two spheres spreads out across the whole surface of the touching spheres. When the spheres are moved apart again, each one is left with half of the total original charge. - 2. Before the spheres touch, the total charge is: -5 nC + (-3) nC = -8 nC. When they touch they share out the -8 nC across their whole surface. When they are removed from each other, each is left with half of the original charge: $$-8 \text{ nC} / 2 = -4 \text{ nC}$$ on each sphere. ### 9.6.1 The electroscope The electroscope is a very sensitive instrument which can be used to detect electric charge. A diagram of a gold leaf electroscope is shown the figure below. The electroscope consists of a glass container with a metal rod inside which has 2 thin pieces of gold foil attached. The other end of the metal rod has a metal plate attached to it outside the glass container. The electroscope detects charge in the following way: A charged object, like the positively charged rod in the picture, is brought close to (but not touching) the neutral metal plate of the electroscope. This causes negative charge in the gold foil, metal rod, and metal plate, to be attracted to the positive rod. Because the metal (gold is a metal too!) is a conductor, the charge can move freely from the foil up the metal rod and onto the metal plate. There is now more negative charge on the plate and more positive charge on the gold foil leaves. This is called *inducing* a charge on the metal plate. It is important to remember that the electroscope is still neutral (the total positive and negative charges are the same), the charges have just been induced to *move* to different parts of the instrument! The induced positive charge on the gold leaves forces them apart since like charges repel! This is how we can tell that the rod is charged. If the rod is now moved away from the metal plate, the charge in the electroscope will spread itself out evenly again and the leaves will fall down again because there will no longer be an induced charge on them. #### Grounding If you were to bring the charged rod close
to the uncharged electroscope, and then you touched the metal plate with your finger at the same time, this would cause charge to flow up from the ground (the earth), through your body onto the metal plate. This is called **grounding**. The charge flowing onto the plate is opposite to the charge on the rod, since it is attracted to the rod. Therefore, for our picture, the charge flowing onto the plate would be negative. Now charge has been added to the electroscope. It is no longer neutral, but has an excess of negative charge. Now if we move the rod away, the leaves will remain apart because they have an excess of negative charge and they repel each other. ## 9.7 Attraction between charged and uncharged objects #### 9.7.1 Polarisation of Insulators Unlike conductors, the electrons in insulators (non-conductors) are bound to the atoms of the insulator and cannot move around freely in the material. However, a charged object can still exert a force on a neutral insulator through the concept of **polarisation**. If a positively charged rod is brought close to a neutral insulator such as polystyrene, it can attract the bound electrons to move round to the side of the atoms which is closest to the rod and cause the positive nuclei to move slightly to the opposite side of the atoms. This process is called *polarisation*. Although it is a very small (microscopic) effect, if there are many atoms and the polarised object is light (e.g. a small polystyrene ball), it can add up to enough force to be attracted onto the charged rod. Remember, that the polystyrene is *only* polarised, *not charged*. The polystyrene ball is still neutral since no charge was added or removed from it. The picture shows a not-to-scale view of the polarised atoms in the polystyrene ball: Some materials are made up of molecules which are already polarised. These are molecules which have a more positive and a more negative side but are still neutral overall. Just as a polarised polystyrene ball can be attracted to a charged rod, these materials are also affected if brought close to a charged object. Water is an example of a substance which is made of polarised molecules. If a positively charged rod is brought close to a stream of water, the molecules can rotate so that the negative sides all line up towards the rod. The stream of water will then be attracted to the rod since opposite charges attract. ## 9.8 Summary - 1. Objects can be **positively** charged, **negatively** charged or **neutral**. - 2. Objects that are neutral have equal numbers of positive and negative charge. - 3. Unlike charges are attracted to each other and like charges are repelled from each other. - 4. Charge is neither created nor destroyed, it can only be transferred. - 5. Charge is measured in coulombs (C). - 6. Conductors allow charge to move through them easily. - 7. Insulators do not allow charge to move through them easily. ## 9.9 End of chapter exercise - 1. What are the two types of charge called? - 2. Provide evidence for the existence of two types of charge. - 3. The electrostatic force between like charges is ????? while the electrostatic force between opposite charges is ?????. - 4. I have two positively charged metal balls placed 2 m apart. - 4.1 Is the electrostatic force between the balls attractive or repulsive? - 4.2 If I now move the balls so that they are 1 m apart, what happens to the strength of the electrostatic force between them? - 5. I have 2 charged spheres each hanging from string as shown in the picture below. Choose the correct answer from the options below: The spheres will - 5.1 swing towards each other due to the attractive electrostatic force between them. - 5.2 swing away from each other due to the attractive electrostatic force between them. - 5.3 swing towards each other due to the repulsive electrostatic force between them. - 5.4 swing away from each other due to the repulsive electrostatic force between them. - 6. Describe how objects (insulators) can be charged by contact or rubbing. - 7. You are given a perspex ruler and a piece of cloth. - 7.1 How would you charge the perspex ruler? - 7.2 Explain how the ruler becomes charged in terms of charge. - 7.3 How does the charged ruler attract small pieces of paper? 8. [IEB 2005/11 HG] An uncharged hollow metal sphere is placed on an insulating stand. A positively charged rod is brought up to touch the hollow metal sphere at P as shown in the diagram below. It is then moved away from the sphere. Where is the excess charge distributed on the sphere after the rod has been removed? - 8.1 It is still located at point P where the rod touched the sphere. - 8.2 It is evenly distributed over the outer surface of the hollow sphere. - 8.3 It is evenly distributed over the outer and inner surfaces of the hollow sphere. - 8.4 No charge remains on the hollow sphere. - 9. What is the process called where molecules in an uncharged object are caused to align in a particular direction due to an external charge? - 10. Explain how an uncharged object can be attracted to a charged object. You should use diagrams to illustrate your answer. - 11. Explain how a stream of water can be attracted to a charged rod. # Appendix A # **GNU Free Documentation License** Version 1.2, November 2002 Copyright © 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. ## **PREAMBLE** The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. ## APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. ## VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A. You may also lend copies, under the same conditions stated above, and you may publicly display copies. ## **COPYING IN QUANTITY** If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. ## **MODIFICATIONS** You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: - 1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. - 2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. - 3. State on the Title page the name of the publisher of the Modified Version, as the publisher. - 4. Preserve all the copyright notices of the Document. - 5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. - 6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. - 7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. - 8. Include an unaltered copy of this License. - 9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. - 10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. - 11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. - 12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. - 13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. - 14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. - 15. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. ## **COMBINING DOCUMENTS** You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections
Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements". ## **COLLECTIONS OF DOCUMENTS** You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. ## AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. ## **TRANSLATION** Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the actual title. ### **TERMINATION** You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. ## FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. # ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.