**FHSST Authors** The Free High School Science Texts: Textbooks for High School Students Studying the Sciences Physics Grades 10 - 12 > Version 0 November 9, 2008 Copyright 2007 "Free High School Science Texts" Permission **is** granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". # Did you notice the **FREEDOMS** we've granted you? Our copyright license is **different!** It grants freedoms rather than just imposing restrictions like all those other textbooks you probably own or use. - We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally! - Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide we DARE you! - Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want! - Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents. - So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair. - These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community. ## **FHSST Core Team** Mark Horner; Samuel Halliday; Sarah Blyth; Rory Adams; Spencer Wheaton # FHSST Editors Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan Whitfield # FHSST Contributors Rory Adams; Prashant Arora; Richard Baxter; Dr. Sarah Blyth; Sebastian Bodenstein; Graeme Broster; Richard Case; Brett Cocks; Tim Crombie; Dr. Anne Dabrowski; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez; Hemant Gopal; Umeshree Govender; Heather Gray; Lynn Greeff; Dr. Tom Gutierrez; Brooke Haag; Kate Hadley; Dr. Sam Halliday; Asheena Hanuman; Neil Hart; Nicholas Hatcher; Dr. Mark Horner; Robert Hovden; Mfandaidza Hove; Jennifer Hsieh; Clare Johnson; Luke Jordan; Tana Joseph; Dr. Jennifer Klay; Lara Kruger; Sihle Kubheka; Andrew Kubik; Dr. Marco van Leeuwen; Dr. Anton Machacek; Dr. Komal Maheshwari; Kosma von Maltitz; Nicole Masureik; John Mathew; JoEllen McBride; Nikolai Meures; Riana Meyer; Jenny Miller; Abdul Mirza; Asogan Moodaly; Jothi Moodley; Nolene Naidu; Tyrone Negus; Thomas O'Donnell; Dr. Markus Oldenburg; Dr. Jaynie Padayachee; Nicolette Pekeur; Sirika Pillay; Jacques Plaut; Andrea Prinsloo; Joseph Raimondo; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle; Evan Robinson; Dr. Andrew Rose; Bianca Ruddy; Katie Russell; Duncan Scott; Helen Seals; Ian Sherratt; Roger Sieloff; Bradley Smith; Greg Solomon; Mike Stringer; Shen Tian; Robert Torregrosa; Jimmy Tseng; Helen Waugh; Dr. Dawn Webber; Michelle Wen; Dr. Alexander Wetzler; Dr. Spencer Wheaton; Vivian White; Dr. Gerald Wigger; Harry Wiggins; Wendy Williams; Julie Wilson; Andrew Wood; Emma Wormauld; Sahal Yacoob; Jean Youssef Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource! www.fhsst.org # **Contents** | ı | Inti | roduct | tion | 1 | |----|-------|----------------|--------------------------------------------------|--------------| | 1 | Wha | t is Ph | ysics? | 3 | | II | Gr | ade 1 | 0 - Physics | 5 | | 2 | Unit | s | | 9 | | | 2.1 | Introdu | uction | 9 | | | 2.2 | Unit S | ystems | 9 | | | | 2.2.1 | SI Units | 9 | | | | 2.2.2 | The Other Systems of Units | 10 | | | 2.3 | Writing | g Units as Words or Symbols | 10 | | | 2.4 | Combi | nations of SI Base Units | 12 | | | 2.5 | Roundi | ing, Scientific Notation and Significant Figures | 12 | | | | 2.5.1 | Rounding Off | 12 | | | | 2.5.2 | Error Margins | 13 | | | | 2.5.3 | Scientific Notation | 13 | | | | 2.5.4 | Significant Figures | 15 | | | 2.6 | Prefixe | s of Base Units | 15 | | | 2.7 | The Im | portance of Units | 17 | | | 2.8 | How to | Change Units | 17 | | | | 2.8.1 | Two other useful conversions | 19 | | | 2.9 | A sanit | ty test | 19 | | | 2.10 | Summa | ary | 19 | | | 2.11 | End of | Chapter Exercises | 21 | | 2 | N/1-4 | : : ( | One Diversity Code 10 | 22 | | 3 | 3.1 | | One Dimension - Grade 10 | <b>23</b> 23 | | | 3.2 | | nce Point, Frame of Reference and Position | 23 | | | 3.2 | 3.2.1 | Frames of Reference | | | | | 3.2.2 | | 23<br>25 | | | 2.2 | - | Position | | | | 3.3 | 3.3.1 | Interpreting Direction | 28<br>29 | | | | | Interpreting Direction | _ | | | 3.4 | 3.3.2<br>Speed | Differences between Distance and Displacement | 29<br>31 | | | 24 | 20000 | AVELANE VEIDLIN AUD INSTAULABEDUS VEIDLIN | 3 I | | | | 3.4.1 Differences between Speed and Velocity | 35 | |---|------|---------------------------------------------------------|----| | | 3.5 | Acceleration | 38 | | | 3.6 | Description of Motion | 39 | | | | 3.6.1 Stationary Object | 40 | | | | 3.6.2 Motion at Constant Velocity | 41 | | | | 3.6.3 Motion at Constant Acceleration | 46 | | | 3.7 | Summary of Graphs | 48 | | | 3.8 | Worked Examples | 49 | | | 3.9 | Equations of Motion | 54 | | | | 3.9.1 Finding the Equations of Motion | 54 | | | 3.10 | Applications in the Real-World | 59 | | | 3.11 | Summary | 61 | | | 3.12 | End of Chapter Exercises: Motion in One Dimension | 62 | | 4 | Grav | vity and Mechanical Energy - Grade 10 | 67 | | | | Weight | 67 | | | | 4.1.1 Differences between Mass and Weight | 68 | | | 4.2 | | 69 | | | | | 69 | | | | 4.2.2 Free fall | 69 | | | 4.3 | Potential Energy | 73 | | | 4.4 | Kinetic Energy | 75 | | | | 4.4.1 Checking units | 77 | | | 4.5 | Mechanical Energy | 78 | | | | 4.5.1 Conservation of Mechanical Energy | 78 | | | | 4.5.2 Using the Law of Conservation of Energy | 79 | | | 4.6 | Energy graphs | 82 | | | 4.7 | Summary | 83 | | | 4.8 | End of Chapter Exercises: Gravity and Mechanical Energy | 84 | | 5 | Tran | nsverse Pulses - Grade 10 | B7 | | | 5.1 | Introduction | 87 | | | 5.2 | | 87 | | | 5.3 | What is a <i>pulse</i> ? | 87 | | | | 5.3.1 Pulse Length and Amplitude | 88 | | | | 5.3.2 Pulse Speed | 89 | | | 5.4 | Graphs of Position and Velocity | 90 | | | | 5.4.1 Motion of a Particle of the Medium | 90 | | | | 5.4.2 Motion of the Pulse | 92 | | | 5.5 | Transmission and Reflection of a Pulse at a Boundary | 96 | | | 5.6 | Reflection of a Pulse from Fixed and Free Ends | 97 | | | | 5.6.1 Reflection of a Pulse from a Fixed End | 97 | | | | 5.6.2 Reflection of a Pulse from a Free End | 3 | |---|------|--------------------------------------------------------------|---| | | 5.7 | Superposition of Pulses | 9 | | | 5.8 | Exercises - Transverse Pulses | 2 | | 6 | Tran | sverse Waves - Grade 10 105 | 5 | | | 6.1 | Introduction | 5 | | | 6.2 | What is a <i>transverse wave</i> ? | 5 | | | | 6.2.1 Peaks and Troughs | 5 | | | | 6.2.2 Amplitude and Wavelength | 7 | | | | 6.2.3 Points in Phase | 9 | | | | 6.2.4 Period and Frequency | C | | | | 6.2.5 Speed of a Transverse Wave | 1 | | | 6.3 | Graphs of Particle Motion | 5 | | | 6.4 | Standing Waves and Boundary Conditions | 3 | | | | 6.4.1 Reflection of a Transverse Wave from a Fixed End | 3 | | | | 6.4.2 Reflection of a Transverse Wave from a Free End | 3 | | | | 6.4.3 Standing Waves | 3 | | | | 6.4.4 Nodes and anti-nodes | 2 | | | | 6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends | 2 | | | | 6.4.6 Superposition and Interference | 5 | | | 6.5 | Summary | 7 | | | 6.6 | Exercises | 7 | | 7 | Geo | netrical Optics - Grade 10 129 | 9 | | | 7.1 | Introduction | 9 | | | 7.2 | Light Rays | 9 | | | | 7.2.1 Shadows | 2 | | | | 7.2.2 Ray Diagrams | 2 | | | 7.3 | Reflection | 2 | | | | 7.3.1 Terminology | 3 | | | | 7.3.2 Law of Reflection | 3 | | | | 7.3.3 Types of Reflection | 5 | | | 7.4 | Refraction | 7 | | | | 7.4.1 Refractive Index | 9 | | | | 7.4.2 Snell's Law | 9 | | | | 7.4.3 Apparent Depth | 3 | | | 7.5 | Mirrors | 5 | | | | 7.5.1 Image Formation | 5 | | | | 7.5.2 Plane Mirrors | 7 | | | | 7.5.3 Ray Diagrams | 3 | | | | 7.5.4 Spherical Mirrors | Э | | | | 7.5.5 Concave Mirrors | ^ | | | | 7.5.6 | Convex Mirrors | 153 | |----|-------|--------------------|---------------------------------------------|-----| | | | 7.5.7 | Summary of Properties of Mirrors | 154 | | | | 7.5.8 | Magnification | 154 | | | 7.6 | Total I | nternal Reflection and Fibre Optics | 156 | | | | 7.6.1 | Total Internal Reflection | 156 | | | | 7.6.2 | Fibre Optics | 161 | | | 7.7 | Summa | ary | 163 | | | 7.8 | Exercis | es | 164 | | 8 | Mag | netism | - Grade 10 | 167 | | | 8.1 | Introdu | uction | 167 | | | 8.2 | Magne <sup>-</sup> | tic fields | 167 | | | 8.3 | Permar | nent magnets | 169 | | | | 8.3.1 | The poles of permanent magnets | 169 | | | | 8.3.2 | Magnetic attraction and repulsion | 169 | | | | 8.3.3 | Representing magnetic fields | 170 | | | 8.4 | The co | ompass and the earth's magnetic field | 173 | | | | 8.4.1 | The earth's magnetic field | 175 | | | 8.5 | Summa | ary | 175 | | | 8.6 | End of | chapter exercises | 176 | | 9 | Flect | trostati | ics - Grade 10 | 177 | | | 9.1 | | uction | | | | 9.2 | | nds of charge | | | | 9.3 | | f charge | | | | 9.4 | | vation of charge | | | | 9.5 | Force b | petween Charges | 178 | | | 9.6 | Conduc | ctors and insulators | 181 | | | | 9.6.1 | The electroscope | 182 | | | 9.7 | Attract | tion between charged and uncharged objects | 183 | | | | 9.7.1 | Polarisation of Insulators | | | | 9.8 | Summa | ary | 184 | | | 9.9 | End of | chapter exercise | 184 | | 10 | Floci | tric Cir | cuits - Grade 10 | 187 | | 10 | | | Circuits | | | | 10.1 | | Closed circuits | | | | | | Representing electric circuits | | | | 10.2 | | ial Difference | | | | 10.2 | | Potential Difference | | | | | | Potential Difference and Parallel Resistors | | | | | | Potential Difference and Series Resistors | | | | | | Ohm's Law | | | | | 1∪.∠.4 | UIIII 3 LdW | エガサ | | | | 10.2.5 EMF | |-----|------|-----------------------------------------------------------| | | 10.3 | Current | | | | 10.3.1 Flow of Charge | | | | 10.3.2 Current | | | | 10.3.3 Series Circuits | | | | 10.3.4 Parallel Circuits | | | 10.4 | Resistance | | | | 10.4.1 What causes resistance? | | | | 10.4.2 Resistors in electric circuits | | | 10.5 | Instruments to Measure voltage, current and resistance | | | | 10.5.1 Voltmeter | | | | 10.5.2 Ammeter | | | | 10.5.3 Ohmmeter | | | | 10.5.4 Meters Impact on Circuit | | | 10.6 | Exercises - Electric circuits | | | | | | 111 | G | rade 11 - Physics 209 | | | | | | 11 | Vect | | | | | Introduction | | | | Scalars and Vectors | | | 11.3 | Notation | | | | 11.3.1 Mathematical Representation | | | | 11.3.2 Graphical Representation | | | 11.4 | Directions | | | | 11.4.1 Relative Directions | | | | 11.4.2 Compass Directions | | | | 11.4.3 Bearing | | | 11.5 | Drawing Vectors | | | 11.6 | Mathematical Properties of Vectors | | | | 11.6.1 Adding Vectors | | | | 11.6.2 Subtracting Vectors | | | | 11.6.3 Scalar Multiplication | | | 11.7 | Techniques of Vector Addition | | | | 11.7.1 Graphical Techniques | | | | 11.7.2 Algebraic Addition and Subtraction of Vectors | | | 11.8 | Components of Vectors | | | | 11.8.1 Vector addition using components | | | | 11.8.2 Summary | | | | 11.8.3 End of chapter exercises: Vectors | | | | 11.8.4 End of chapter exercises: Vectors - Long questions | | 12 Force | e, Momentum and Impulse - Grade 11 | 239 | |----------|----------------------------------------------|-----| | 12.1 | Introduction | 239 | | 12.2 | Force | 239 | | | 12.2.1 What is a <i>force</i> ? | 239 | | | 12.2.2 Examples of Forces in Physics | 240 | | | 12.2.3 Systems and External Forces | 241 | | | 12.2.4 Force Diagrams | 242 | | | 12.2.5 Free Body Diagrams | 243 | | | 12.2.6 Finding the Resultant Force | 244 | | | 12.2.7 Exercise | 246 | | 12.3 | Newton's Laws | 246 | | | 12.3.1 Newton's First Law | 247 | | | 12.3.2 Newton's Second Law of Motion | 249 | | | 12.3.3 Exercise | 261 | | | 12.3.4 Newton's Third Law of Motion | 263 | | | 12.3.5 Exercise | 267 | | | 12.3.6 Different types of forces | 268 | | | 12.3.7 Exercise | 275 | | | 12.3.8 Forces in equilibrium | 276 | | | 12.3.9 Exercise | 279 | | 12.4 | Forces between Masses | 282 | | | 12.4.1 Newton's Law of Universal Gravitation | 282 | | | 12.4.2 Comparative Problems | 284 | | | 12.4.3 Exercise | 286 | | 12.5 | Momentum and Impulse | 287 | | | 12.5.1 Vector Nature of Momentum | 290 | | | 12.5.2 Exercise | 291 | | | 12.5.3 Change in Momentum | 291 | | | 12.5.4 Exercise | 293 | | | 12.5.5 Newton's Second Law revisited | 293 | | | 12.5.6 Impulse | 294 | | | 12.5.7 Exercise | 296 | | | 12.5.8 Conservation of Momentum | 297 | | | 12.5.9 Physics in Action: Impulse | | | | 12.5.10 Exercise | 301 | | 12.6 | Torque and Levers | | | | 12.6.1 Torque | | | | 12.6.2 Mechanical Advantage and Levers | | | | 12.6.3 Classes of levers | | | | 12.6.4 Exercise | | | | Summary | | | 12.8 | End of Chapter exercises | 310 | | 13 | Geor | metrical Optics - Grade 11 | 327 | |----|------|----------------------------------------------------------------------|-----| | | 13.1 | Introduction | 327 | | | 13.2 | Lenses | 327 | | | | 13.2.1 Converging Lenses | 329 | | | | 13.2.2 Diverging Lenses | 340 | | | | 13.2.3 Summary of Image Properties | 343 | | | 13.3 | The Human Eye | 344 | | | | 13.3.1 Structure of the Eye | 345 | | | | 13.3.2 Defects of Vision | 346 | | | 13.4 | Gravitational Lenses | 347 | | | 13.5 | Telescopes | 347 | | | | 13.5.1 Refracting Telescopes | 347 | | | | 13.5.2 Reflecting Telescopes | 348 | | | | 13.5.3 Southern African Large Telescope | 348 | | | 13.6 | Microscopes | 349 | | | 13.7 | Summary | 351 | | | 13.8 | Exercises | 352 | | 14 | Long | gitudinal Waves - Grade 11 | 355 | | | 14.1 | Introduction | 355 | | | 14.2 | What is a longitudinal wave? | 355 | | | 14.3 | Characteristics of Longitudinal Waves | 356 | | | | 14.3.1 Compression and Rarefaction | 356 | | | | 14.3.2 Wavelength and Amplitude | 357 | | | | 14.3.3 Period and Frequency | 357 | | | | 14.3.4 Speed of a Longitudinal Wave | 358 | | | 14.4 | Graphs of Particle Position, Displacement, Velocity and Acceleration | 359 | | | 14.5 | Sound Waves | 360 | | | 14.6 | Seismic Waves | 361 | | | 14.7 | Summary - Longitudinal Waves | 361 | | | 14.8 | Exercises - Longitudinal Waves | 362 | | 15 | Sour | nd - Grade 11 | 363 | | | 15.1 | Introduction | 363 | | | 15.2 | Characteristics of a Sound Wave | 363 | | | | 15.2.1 Pitch | 364 | | | | 15.2.2 Loudness | 364 | | | | 15.2.3 Tone | 364 | | | 15.3 | Speed of Sound | 365 | | | 15.4 | Physics of the Ear and Hearing | 365 | | | | 15.4.1 Intensity of Sound | 366 | | | 15.5 | Ultrasound | 367 | | CONTENTS | CONTENTS | |----------|----------| | | | | | 15.6 | SONAR | |----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | 15.6.1 Echolocation | | | 15.7 | Summary | | | 15.8 | Exercises | | 16 | The | Physics of Music - Grade 11 373 | | | | Introduction | | | | Standing Waves in String Instruments | | | | Standing Waves in Wind Instruments | | | | Resonance | | | | Music and Sound Quality | | | | Summary - The Physics of Music | | | | End of Chapter Exercises | | | | | | 17 | | trostatics - Grade 11 387 | | | | Introduction | | | | Forces between charges - Coulomb's Law | | | 17.3 | Electric field around charges | | | | 17.3.1 Electric field lines | | | | 17.3.2 Positive charge acting on a test charge | | | | 17.3.3 Combined charge distributions | | | | 17.3.4 Parallel plates | | | 17.4 | Electrical potential energy and potential | | | | 17.4.1 Electrical potential | | | | 17.4.2 Real-world application: lightning | | | 17.5 | Capacitance and the parallel plate capacitor | | | | 17.5.1 Capacitors and capacitance | | | | 17.5.2 Dielectrics | | | | 17.5.3 Physical properties of the capacitor and capacitance | | | | 17.5.4 Electric field in a capacitor | | | 17.6 | Capacitor as a circuit device | | | | $17.6.1 \ A \ capacitor \ in \ a \ circuit \ \ldots $ | | | | $17.6.2 \ \ Real\text{-world\ applications:\ capacitors}\ \ldots \ldots$ | | | 17.7 | Summary | | | 17.8 | Exercises - Electrostatics | | 18 | Elect | tromagnetism - Grade 11 413 | | | 18.1 | Introduction | | | 18.2 | Magnetic field associated with a current | | | | 18.2.1 Real-world applications | | | 18.3 | Current induced by a changing magnetic field | | | | 18.3.1 Real-life applications | | | 18.4 | Transformers | | | | | | | | 18.4.1 Real-world applications | 425 | |----|-------|----------------------------------------------------------|-----| | | 18.5 | Motion of a charged particle in a magnetic field | 425 | | | | 18.5.1 Real-world applications | 426 | | | 18.6 | Summary | 427 | | | 18.7 | End of chapter exercises | 427 | | 19 | Elect | tric Circuits - Grade 11 | 429 | | | 19.1 | Introduction | 429 | | | 19.2 | Ohm's Law | 429 | | | | 19.2.1 Definition of Ohm's Law | 429 | | | | 19.2.2 Ohmic and non-ohmic conductors | 431 | | | | 19.2.3 Using Ohm's Law | 432 | | | 19.3 | Resistance | 433 | | | | 19.3.1 Equivalent resistance | 433 | | | | 19.3.2 Use of Ohm's Law in series and parallel Circuits | 438 | | | | 19.3.3 Batteries and internal resistance | 440 | | | 19.4 | Series and parallel networks of resistors | 442 | | | 19.5 | Wheatstone bridge | 445 | | | 19.6 | Summary | 447 | | | 19.7 | End of chapter exercise | 447 | | 20 | Elect | tronic Properties of Matter - Grade 11 | 451 | | | 20.1 | Introduction | 451 | | | 20.2 | Conduction | 451 | | | | 20.2.1 Metals | 453 | | | | 20.2.2 Insulator | 453 | | | | 20.2.3 Semi-conductors | 454 | | | 20.3 | Intrinsic Properties and Doping | 454 | | | | 20.3.1 Surplus | 455 | | | | 20.3.2 Deficiency | 455 | | | 20.4 | The p-n junction | 457 | | | | 20.4.1 Differences between p- and n-type semi-conductors | 457 | | | | 20.4.2 The p-n Junction | 457 | | | | 20.4.3 Unbiased | 457 | | | | 20.4.4 Forward biased | 457 | | | | 20.4.5 Reverse biased | 458 | | | | 20.4.6 Real-World Applications of Semiconductors | 458 | | | 20.5 | End of Chapter Exercises | 459 | | | | | | | IV | G | rade 12 - Physics 4 | 61 | | 21 | Mot | ion in Two Dimensions - Grade 12 | 463 | | | 21.1 | Introduction | 463 | | | 21.2 | Vertical Projectile Motion | |----|------|------------------------------------------------| | | | 21.2.1 Motion in a Gravitational Field | | | | 21.2.2 Equations of Motion | | | | 21.2.3 Graphs of Vertical Projectile Motion | | | 21.3 | Conservation of Momentum in Two Dimensions | | | 21.4 | Types of Collisions | | | | 21.4.1 Elastic Collisions | | | | 21.4.2 Inelastic Collisions | | | 21.5 | Frames of Reference | | | | 21.5.1 Introduction | | | | 21.5.2 What is a <i>frame of reference</i> ? | | | | 21.5.3 Why are frames of reference important? | | | | 21.5.4 Relative Velocity | | | 21.6 | Summary | | | 21.7 | End of chapter exercises | | 22 | N4 | haviad Danastia of Matter Conda 12 | | 22 | | hanical Properties of Matter - Grade 12 503 | | | | Introduction | | | 22.2 | Deformation of materials | | | | 22.2.1 Hooke's Law | | | 22.2 | 22.2.2 Deviation from Hooke's Law | | | 22.3 | Elasticity, plasticity, fracture, creep | | | | 22.3.1 Elasticity and plasticity | | | | 22.3.2 Fracture, creep and fatigue | | | 22.4 | Failure and strength of materials | | | | 22.4.1 The properties of matter | | | | 22.4.2 Structure and failure of materials | | | | 22.4.3 Controlling the properties of materials | | | | 22.4.4 Steps of Roman Swordsmithing | | | | Summary | | | 22.6 | End of chapter exercise | | 23 | Worl | c, Energy and Power - Grade 12 513 | | | 23.1 | Introduction | | | 23.2 | Work | | | 23.3 | Energy | | | | 23.3.1 External and Internal Forces | | | | 23.3.2 Capacity to do Work | | | 23.4 | Power | | | 23.5 | Important Equations and Quantities | | | 23.6 | End of Chapter Exercises | | | | | | 24 | Dop | pler Effect - Grade 12 | 533 | |----|------|------------------------------------------------|-----| | | 24.1 | Introduction | 533 | | | 24.2 | The Doppler Effect with Sound and Ultrasound | 533 | | | | 24.2.1 Ultrasound and the Doppler Effect | 537 | | | 24.3 | The Doppler Effect with Light | 537 | | | | 24.3.1 The Expanding Universe | 538 | | | 24.4 | Summary | 539 | | | 24.5 | End of Chapter Exercises | 539 | | 25 | Colo | our - Grade 12 | 541 | | | 25.1 | Introduction | 541 | | | 25.2 | Colour and Light | 541 | | | | 25.2.1 Dispersion of white light | 544 | | | 25.3 | Addition and Subtraction of Light | 544 | | | | 25.3.1 Additive Primary Colours | 544 | | | | 25.3.2 Subtractive Primary Colours | 545 | | | | 25.3.3 Complementary Colours | 546 | | | | 25.3.4 Perception of Colour | 546 | | | | 25.3.5 Colours on a Television Screen | 547 | | | 25.4 | Pigments and Paints | 548 | | | | 25.4.1 Colour of opaque objects | 548 | | | | 25.4.2 Colour of transparent objects | 548 | | | | 25.4.3 Pigment primary colours | 549 | | | 25.5 | End of Chapter Exercises | 550 | | 26 | 2D a | and 3D Wavefronts - Grade 12 | 553 | | | 26.1 | Introduction | 553 | | | 26.2 | Wavefronts | 553 | | | 26.3 | The Huygens Principle | 554 | | | 26.4 | Interference | 556 | | | 26.5 | Diffraction | 557 | | | | 26.5.1 Diffraction through a Slit | 558 | | | 26.6 | Shock Waves and Sonic Booms | 562 | | | | 26.6.1 Subsonic Flight | 563 | | | | 26.6.2 Supersonic Flight | 563 | | | | 26.6.3 Mach Cone | 566 | | | 26.7 | End of Chapter Exercises | 568 | | 27 | Wav | ve Nature of Matter - Grade 12 | 571 | | | 27.1 | Introduction | 571 | | | 27.2 | de Broglie Wavelength | 571 | | | 27.3 | The Electron Microscope | 574 | | | | 27.3.1 Disadvantages of an Electron Microscope | 577 | | | | 27.3.2 Uses of Electron Microscopes | |----|-------|------------------------------------------------------| | | 27.4 | · · · · · · · · · · · · · · · · · · · | | | 27.4 | End of Chapter Exercises | | 28 | Elect | trodynamics - Grade 12 579 | | | 28.1 | Introduction | | | 28.2 | Electrical machines - generators and motors | | | | 28.2.1 Electrical generators | | | | 28.2.2 Electric motors | | | | 28.2.3 Real-life applications | | | | 28.2.4 Exercise - generators and motors | | | 28.3 | Alternating Current | | | | 28.3.1 Exercise - alternating current | | | 28.4 | Capacitance and inductance | | | | 28.4.1 Capacitance | | | | 28.4.2 Inductance | | | | 28.4.3 Exercise - capacitance and inductance | | | 28.5 | Summary | | | 28.6 | End of chapter exercise | | | | | | 29 | Elect | tronics - Grade 12 591 | | | 29.1 | Introduction | | | 29.2 | Capacitive and Inductive Circuits | | | 29.3 | Filters and Signal Tuning | | | | 29.3.1 Capacitors and Inductors as Filters | | | | 29.3.2 LRC Circuits, Resonance and Signal Tuning 596 | | | 29.4 | Active Circuit Elements | | | | 29.4.1 The Diode | | | | 29.4.2 The Light Emitting Diode (LED) | | | | 29.4.3 Transistor | | | | 29.4.4 The Operational Amplifier | | | 29.5 | The Principles of Digital Electronics | | | | 29.5.1 Logic Gates | | | 29.6 | Using and Storing Binary Numbers | | | | 29.6.1 Binary numbers | | | | 29.6.2 Counting circuits | | | | 29.6.3 Storing binary numbers | | 20 | | | | 30 | | Radiation 625 | | | | Introduction | | | | Particle/wave nature of electromagnetic radiation | | | | The wave nature of electromagnetic radiation | | | | Electromagnetic spectrum | | | 30.5 | The particle nature of electromagnetic radiation | | CONTENTS | CONTENTS | |---------------------|-------------| | / 1 N I I L N I I C | //\KIILKIIC | | .(7) | | | | | 30.5.1 Exercise - particle nature of EM waves | . 630 | |-----|-------|----------------------------------------------------------|-------| | | 30.6 | Penetrating ability of electromagnetic radiation | . 631 | | | | 30.6.1 Ultraviolet(UV) radiation and the skin | . 631 | | | | 30.6.2 Ultraviolet radiation and the eyes | . 632 | | | | 30.6.3 X-rays | . 632 | | | | 30.6.4 Gamma-rays | . 632 | | | | 30.6.5 Exercise - Penetrating ability of EM radiation | . 633 | | | 30.7 | Summary | . 633 | | | 30.8 | End of chapter exercise | . 633 | | 31 | Onti | ical Phenomena and Properties of Matter - Grade 12 | 635 | | - | _ | Introduction | | | | | The transmission and scattering of light | | | | 02.2 | 31.2.1 Energy levels of an electron | | | | | 31.2.2 Interaction of light with metals | | | | | 31.2.3 Why is the sky blue? | | | | 31.3 | The photoelectric effect | | | | 02.0 | 31.3.1 Applications of the photoelectric effect | | | | | 31.3.2 Real-life applications | | | | 31.4 | Emission and absorption spectra | | | | 02 | 31.4.1 Emission Spectra | | | | | 31.4.2 Absorption spectra | | | | | 31.4.3 Colours and energies of electromagnetic radiation | | | | | 31.4.4 Applications of emission and absorption spectra | | | | 31.5 | Lasers | | | | 02.0 | 31.5.1 How a laser works | | | | | 31.5.2 A simple laser | | | | | 31.5.3 Laser applications and safety | | | | 31.6 | Summary | | | | | End of chapter exercise | | | | •= | | | | V | Fx | kercises | 659 | | | | | | | 32 | Exer | rcises | 661 | | | | | | | VI | E | ssays | 663 | | Ess | say 1 | : Energy and electricity. Why the fuss? | 665 | | | - | | | | | | y: How a cell phone works | 671 | | 34 | Essa | y: How a Physiotherapist uses the Concept of Levers | 673 | | 35 | Essa | y: How a Pilot Uses Vectors | 675 | | CONTENTS | CONTENT. | |----------|----------| | | | | Λ | CNIII | Fron | Documentation | Licone | |---|-------|------|---------------|--------| 677 # Chapter 16 # The Physics of Music - Grade 11 ## 16.1 Introduction What is your favorite musical instrument? How do you play it? Do you pluck a string, like a guitar? Do you blow through it, like a flute? Do you hit it, like a drum? All of these work by making standing waves. Each instrument has a unique sound because of the special waves made in it. These waves could be in the strings of a guitar or violin. They could also be in the skin of a drum or a tube of air in a trumpet. These waves are picked up by the air and later reach your ear as sound. In Grade 10, you learned about standing waves and boundary conditions. We saw a rope that was: - fixed at both ends - fixed at one end and free at the other We also saw a pipe: - closed at both ends - open at both ends - open at one end, closed at the other String and wind instruments are good examples of standing waves on strings and pipes. One way to describe standing waves is to count nodes. Recall that a node is a point on a string that does not move as the wave changes. The anti-nodes are the highest and lowest points on the wave. There is a node at each end of a fixed string. There is also a node at the closed end of a pipe. But an open end of a pipe has an anti-node. What causes a standing wave? There are incident and reflected waves traveling back and forth on our string or pipe. For some frequencies, these waves combine in just the right way so that the whole wave appears to be standing still. These special cases are called harmonic frequencies, or **harmonics**. They depend on the length and material of the medium. **Definition: Harmonic** A harmonic frequency is a frequency at which standing waves can be made. # 16.2 Standing Waves in String Instruments Let us look at a basic "instrument": a string pulled tight and fixed at both ends. When you pluck the string, you hear a certain pitch. This pitch is made by a certain frequency. What causes the string to emit sounds at this pitch? You have learned that the frequency of a standing wave depends on the length of the wave. The wavelength depends on the nodes and anti-nodes. The longest wave that can "fit" on the string is shown in Figure 16.1. This is called the **fundamental** or **natural frequency** of the string. The string has nodes at both ends. The wavelength of the fundamental is twice the length of the string. Now put your finger on the center of the string. Hold it down gently and pluck it. The standing wave now has a node in the middle of the string. There are three nodes. We can fit a whole wave between the ends of the string. This means the wavelength is equal to the length of the string. This wave is called the first harmonic. As we add more nodes, we find the second harmonic, third harmonic, and so on. We must keep the nodes equally spaced or we will lose our standing wave. Figure 16.1: Harmonics on a string fixed at both ends. ## Activity :: Investigation : Waves on a String Fixed at Both Ends This chart shows various waves on a string. The string length ${\cal L}$ is the dashed line. - 1. Fill in the: - number of nodes - number of anti-nodes - ullet wavelength in terms of L The first and last waves are done for you. | Wave | Nodes | Antinodes | Wavelength | |------|-------|-----------|---------------| | | 2 | 1 | 2L | | | | | | | | | | | | | 5 | 4 | $\frac{L}{2}$ | 2. Use the chart to find a formula for the wavelength in terms of the number of nodes. You should have found this formula: $$\lambda = \frac{2L}{n-1}$$ Here, n is the number of nodes. L is the length of the string. The frequency f is: $$f = \frac{v}{\lambda}$$ Here, v is the velocity of the wave. This may seem confusing. The wave is a *standing* wave, so how can it have a velocity? But one standing wave is made up of many waves that travel back and forth on the string. Each of these waves has the same velocity. This speed depends on the mass and tension of the string. # Worked Example 105: Harmonics on a String **Question:** We have a standing wave on a string that is 65 cm long. The wave has a velocity of 143 m.s<sup>-1</sup> Find the frequencies of the fundamental, first, second, and third harmonics. #### Answer Step 1 : Identify what is given and what is asked: L = $$65 \text{ cm} = 0.65 \text{ m}$$ $v = 143 \text{ m.s}^{-1}$ $f = ?$ To find the frequency we will use $f = \frac{v}{\lambda}$ # Step 2: Find the wavelength for each harmonic: To find f we need the wavelength of each harmonic $(\lambda = \frac{2L}{n-1})$ . The wavelength is then substituted into $f = \frac{v}{\lambda}$ to find the harmonics. Table ?? below shows the calculations. | | Nodes | Wavelength $\lambda = \frac{2L}{n-1}$ | Frequency $f = \frac{v}{\lambda}$ | |-----------------------------|-------|---------------------------------------|------------------------------------| | Fundamental frequency $f_o$ | 2 | $\frac{2(0,65)}{2-1} = 1,3$ | $\frac{143}{1,3} = 110 \text{ Hz}$ | | First harmonic $f_1$ | 3 | $\frac{2(0,65)}{3-1} =$ | $\frac{143}{2} = 220 \text{ Hz}$ | | Second harmonic $f_2$ | 4 | $\frac{2(0,65)}{4-1} =$ | $\frac{143}{2} = 330 \text{ Hz}$ | | Third harmonic $f_3$ | 5 | $\frac{2(0,65)}{5-1} =$ | $\frac{143}{2} = 440 \text{ Hz}$ | 110 Hz is the natural frequency of the A string on a guitar. The third harmonic, at 440 Hz, is the note that orchestras use for tuning. Extension: Guitar Guitars use strings with high tension. The length, tension and mass of the strings affect the pitches you hear. High tension and short strings make high frequencies; Low tension and long strings make low frequencies. When a string is first plucked, it vibrates at many frequencies. All of these except the harmonics are quickly filtered out. The harmonics make up the tone we hear. The body of a guitar acts as a large wooden soundboard. Here is how a soundboard works: the body picks up the vibrations of the strings. It then passes these vibrations to the air. A sound hole allows the soundboard of the guitar to vibrate more freely. It also helps sound waves to get out of the body. The neck of the guitar has thin metal bumps on it called frets. Pressing a string against a fret shortens the length of that string. This raises the natural frequency and the pitch of that string. Most guitars use an "equal tempered" tuning of 12 notes per octave. A 6 string guitar has a range of 4 $\frac{1}{2}$ octaves with pitches from 82.407 Hz (low E) to 2093 kHz (high C). Harmonics may reach over 20 kHz, in the inaudible range. Extension: Piano Let us look at another stringed instrument: the piano. The piano has strings that you can not see. When a key is pressed, a felt-tipped hammer hits a string inside the piano. The pitch depends on the length, tension and mass of the string. But there are many more strings than keys on a piano. This is because the short and thin strings are not as loud as the long and heavy strings. To make up for this, the higher keys have groups of two to four strings each. The soundboard in a piano is a large cast iron plate. It picks up vibrations from the strings. This heavy plate can withstand over 200 tons of pressure from string tension! Its mass also allows the piano to sustain notes for long periods of time. The piano has a wide frequency range, from 27,5 Hz (low A) to 4186,0 Hz (upper C). But these are just the fundamental frequencies. A piano plays complex, rich tones with over 20 harmonics per note. Some of these are out of the range of human hearing. Very low piano notes can be heard mostly because of their higher harmonics. # **16.3 Standing Waves in Wind Instruments** A wind instrument is an instrument that is usually made with a a pipe or thin tube. Examples of wind instruments are recorders, clarinets, flutes, organs etc. When one plays a wind instrument, the air that is pushed through the pipe vibrates and standing waves are formed. Just like with strings, the wavelengths of the standing waves will depend on the length of the pipe and whether it is open or closed at each end. Let's consider each of the following situations: - A pipe with both ends open, like a flute or organ pipe. - A pipe with one end open and one closed, like a clarinet. If you blow across a small hole in a pipe or reed, it makes a sound. If both ends are open, standing waves will form according to figure 16.2. You will notice that there is an anti-node at each end. In the next activity you will find how this affects the wavelengths. Figure 16.2: Harmonics in a pipe open at both ends. ### Activity :: Investigation : Waves in a Pipe Open at Both Ends This chart shows some standing waves in a pipe open at both ends. The pipe (shown with dashed lines) has length L. - 1. Fill in the: - number of nodes - number of anti-nodes - ullet wavelength in terms of L The first and last waves are done for you. | Wave | Nodes | Antinodes | Wavelength | |------|-------|-----------|---------------| | | 1 | 2 | 2L | | | | | | | | | | | | | 4 | 5 | $\frac{L}{2}$ | 2. Use the chart to find a formula for the wavelength in terms of the number of nodes. The formula is different because there are more anti-nodes than nodes. The right formula is: $$\lambda_n = \frac{2L}{n}$$ Here, n is still the number of nodes. # Worked Example 106: The Organ Pipe Question: An open organ pipe is 0,853 m long. The speed of sound in air is 345 m.s $^{-1}$ . Can this pipe play middle C? (Middle C has a frequency of about ## Answer The main frequency of a note is the fundamental frequency. The fundamental frequency of the open pipe has one node. # Step 1: To find the frequency we will use the equation: $$f = \frac{v}{\lambda}$$ We need to find the wavelength first. $$\lambda = \frac{2L}{n}$$ $$= \frac{2(0.853)}{1}$$ $$= 1,706 \text{ m}$$ 378 ## Step 2 : Now we can calculate the frequency: $$f = \frac{v}{\lambda}$$ $$= \frac{345}{1,706}$$ $$= 202 \text{ Hz}$$ This is lower than $262~\mathrm{Hz}$ , so this pipe will not play middle C. We will need a shorter pipe for a higher pitch. ## Worked Example 107: The Flute A flute can be modeled as a metal pipe open at both ends. (One end looks closed but the flute has an *embouchure*, or hole for the player to blow across. This hole is large enough for air to escape on that side as well.) If the fundamental note of a flute is middle C, how long is the flute? The speed of sound in air is 345 m.s<sup>-1</sup>. # Answer We can calculate the length of the flute from $\lambda = \frac{2L}{n}$ but Step 1 : We need to calculate the wavelength first: $$f = \frac{v}{\lambda}$$ $$262 = \frac{345}{\lambda}$$ $$\lambda = \frac{345}{262} = 1,32 \text{ m}$$ Step 2: Using the wavelength, we can now solve for L: $$\lambda = \frac{2L}{n}$$ $$= \frac{2L}{1}$$ $$L = \frac{1,32}{2} = 0,66 \text{ m}$$ Now let's look at a pipe that is open on one end and closed on the other. This pipe has a node at one end and an antinode at the other. An example of a musical instrument that has a node at one end and an antinode at the other is a clarinet. In the activity you will find out how the wavelengths are affected. Figure 16.3: Harmonics in a pipe open at one end. # Activity :: Investigation : Waves in a Pipe open at One End This chart shows some standing waves in a pipe open at *one* end. The pipe (shown as dashed lines) has length L. - 1. Fill in the: - number of nodes - number of anti-nodes - ullet wavelength in terms of L The first and last waves are done for you. | Wave | Nodes | Antinodes | Wavelength | |------|-------|-----------|----------------| | | 1 | 1 | 4L | | | | | | | | | | | | | 4 | 4 | $\frac{4L}{7}$ | 2. Use the chart to find a formula for the wavelength in terms of the number of nodes. The right formula for this pipe is: $$\lambda_n = \frac{4L}{2n-1}$$ 380 A long wavelength has a low frequency and low pitch. If you took your pipe from the last example and covered one end, you should hear a much lower note! Also, the wavelengths of the harmonics for this tube are *not* integer multiples of each other. #### Worked Example 108: The Clarinet **Question:** A clarinet can be modeled as a wooden pipe closed on one end and open on the other. The player blows into a small slit on one end. A reed then vibrates in the mouthpiece. This makes the standing wave in the air. What is the fundamental frequency of a clarinet $60 \text{ cm} \log ?$ The speed of sound in air is $345 \text{ m.s}^{-1}$ . #### Answer Step 1: Identify what is given and what is asked: We are given: $$L = 60 \text{ cm}$$ $v = 345 \text{ m.s}^{-1}$ $f = ?$ Step 2 : To find the frequency we will use the equation $f=\frac{v}{\lambda}$ but we need to find the wavelength first: $$\lambda = \frac{4L}{2n-1} = \frac{4(0,60)}{2(1)-1} = 2.4 \text{ m}$$ Step 3: Now, using the wavelength you have calculated, find the frequency: $$f = \frac{v}{\lambda}$$ $$= \frac{345}{2,4}$$ $$= 144 \text{ Hz}$$ This is closest to the D below middle C. This note is one of the lowest notes on a clarinet. Extension: Musical Scale The 12 tone scale popular in Western music took centuries to develop. This scale is also called the 12-note Equal Tempered scale. It has an octave divided into 12 steps. (An **octave** is the main interval of most scales. If you double a frequency, you have raised the note one octave.) All steps have equal ratios of frequencies. But this scale is not perfect. If the octaves are in tune, all the other intervals are slightly mistuned. No interval is badly out of tune. But none is perfect. For example, suppose the base note of a scale is a frequency of $110\ Hz$ (a low A). The first harmonic is $220\ Hz$ . This note is also an A, but is one octave higher. The second harmonic is at $330\ Hz$ (close to an E). The third is $440\ Hz$ (also an A). But not all the notes have such simple ratios. Middle C has a frequency of about $262\ Hz$ . This is not a simple multiple of $110\ Hz$ . So the interval between C and A is a little out of tune. Many other types of tuning exist. Just Tempered scales are tuned so that all intervals are simple ratios of frequencies. There are also equal tempered scales with more or less notes per octave. Some scales use as many as 31 or 53 notes. ## 16.4 Resonance Resonance is the tendency of a system to vibrate at a maximum amplitude at the natural frequency of the system. Resonance takes place when a system is made to vibrate at its natural frequency as a result of vibrations that are received from another source of the same frequency. In the following investigation you will measure the speed of sound using resonance. # Activity :: Experiment : Using resonance to measure the speed of sound To measure the speed of sound using resonance #### **Apparatus:** - one measuring cylinder - a high frequency (512 Hz) tuning fork - some water - a ruler or tape measure #### Method: - Make the tuning fork vibrate by hitting it on the sole of your shoe or something else that has a rubbery texture. A hard surface is not ideal as you can more easily damage the tuning fork. - 2. Hold the vibrating tuning fork about 1 cm above the cylinder mouth and start adding water to the cylinder at the same time. Keep doing this until the first resonance occurs. Pour out or add a little water until you find the level at which the loudest sound (i.e. the resonance) is made. - 3. When the water is at the resonance level, use a ruler or tape measure to measure the distance $(L_A)$ between the top of the cylinder and the water level. - 4. Repeat the steps ?? above, this time adding more water until you find the next resonance. Remember to hold the tuning fork at the same height of about 1 cm above the cylinder mouth and adjust the water level to get the loudest sound. - 5. Use a ruler or tape measure to find the new distance $(L_B)$ from the top of the cylinder to the new water level. # Conclusions: The difference between the two resonance water levels (i.e. $L=L_A-L_B$ ) is half a wavelength, or the same as the distance between a compression and rarefaction. Therefore, since you know the wavelength, and you know the frequency of the tuning fork, it is easy to calculate the speed of sound! Interesting fact: Soldiers march out of time on bridges to avoid stimulating the bridge to vibrate at its natural frequency. ## Worked Example 109: Resonance **Question:** A 512 Hz tuning fork can produce a resonance in a cavity where the air column is 18,2 cm long. It can also produce a second resonance when the length of the air column is 50,1 cm. What is the speed of sound in the cavity? ### Answer #### Step 1 : Identify what is given and what is asked: $$L_1 = 18.2 \text{ cm}$$ $L_2 = 50.3 \text{ cm}$ $f = 512 \text{ Hz}$ $v = ?$ Remember that: $$v = f \times \lambda$$ We have values for f and so to calculate v, we need to first find $\lambda$ . You know that the difference in the length of the air column between two resonances is half a wavelength. # Step 2 : Calculate the difference in the length of the air column between the two resonances: $$L_2 - L_1 = 32.1 \text{ cm}$$ Therefore 32,1 cm $$= \frac{1}{2} \times \lambda$$ So, $$\lambda = 2 \times 32,1 \text{ cm}$$ = 64,2 cm = 0,642 m Step 3 : Now you can substitute into the equation for $\boldsymbol{v}$ to find the speed of sound: $$v = f \times \lambda$$ $$= 512 \times 0,642$$ $$= 328,7 \text{ m.s}^{-1}$$ From the investigation you will notice that the column of air will make a sound at a certain length. This is where resonance takes place. # 16.5 Music and Sound Quality In the sound chapter, we referred to the quality of sound as its tone. What makes the tone of a note played on an instrument? When you pluck a string or vibrate air in a tube, you hear mostly the fundamental frequency. Higher harmonics are present, but are fainter. These are called **overtones**. The tone of a note depends on its mixture of overtones. Different instruments have different mixtures of overtones. This is why the same note sounds different on a flute and a piano. Let us see how overtones can change the shape of a wave: Figure 16.4: The quality of a tone depends on its mixture of harmonics. The resultant waveform is very different from the fundamental frequency. Even though the two waves have the same main frequency, they do not sound the same! # 16.6 Summary - The Physics of Music - 1. Instruments produce sounds because they form standing waves in strings or pipes. - 2. The fundamental frequency of a string or a pipe is its natural frequency. The wavelength of the fundamental frequency is twice the length of the string or pipe. - 3. The first harmonic is formed when the standing wave forms one whole wavelength in the string or pipe. The second harmonic is formed when the standing wave forms $1\frac{1}{2}$ wavelengths in the string or pipe. - 4. The frequency of a standing wave can be calculated with the equation $f = \frac{v}{\lambda}$ . - 5. The wavelength of a standing wave in a string fixed at both ends can be calculated using $\lambda_n = \frac{2L}{n-1}$ . - 6. The wavelength of a standing wave in a pipe with both ends open can be calculated using $\lambda_n = \frac{2L}{n}$ . - 7. The wavelength of a standing wave in a pipe with one end open can be calculated using $\lambda_n = \frac{4L}{2n-1}$ . - 8. Resonance takes place when a system is made to vibrate at its own natural frequency as a result of vibrations received from another source of the same frequency. Extension: Waveforms Below are some examples of the waveforms produced by a flute, clarinet and saxophone for different frequencies (i.e. notes): # 16.7 End of Chapter Exercises - 1. A guitar string with a length of 70 cm is plucked. The speed of a wave in the string is $400~\text{m}\cdot\text{s}^{-1}$ . Calculate the frequency of the first, second, and third harmonics. - 2. A pitch of Middle D (first harmonic = 294 Hz) is sounded out by a vibrating guitar string. The length of the string is 80 cm. Calculate the speed of the standing wave in the guitar string. - 3. A frequency of the first harmonic is 587 Hz (pitch of D5) is sounded out by a vibrating guitar string. The speed of the wave is $600 \text{ m} \cdot \text{s}^{-1}$ . Find the length of the string. - 4. Two notes which have a frequency ratio of 2:1 are said to be separated by an octave. A note which is separated by an octave from middle C (256 Hz) is - A 254 Hz - B 128 Hz - C 258 Hz - D 512 Hz - 5. Playing a middle C on a piano keyboard generates a sound at a frequency of 256 Hz. If the speed of sound in air is 345 m·s<sup>-1</sup>, calculate the wavelength of the sound corresponding to the note of middle C. - 6. What is resonance? Explain how you would demonstrate what resonance is if you have a measuring cylinder, tuning fork and water available. - 7. A tuning fork with a frequency of 256 Hz produced resonance with an air column of length 25,2 cm and at 89,5 cm. Calculate the speed of sound in the air column. # Appendix A # **GNU Free Documentation License** Version 1.2, November 2002 Copyright © 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. # **PREAMBLE** The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. # APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. # VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A. You may also lend copies, under the same conditions stated above, and you may publicly display copies. # **COPYING IN QUANTITY** If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. # **MODIFICATIONS** You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: - 1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. - 2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. - 3. State on the Title page the name of the publisher of the Modified Version, as the publisher. - 4. Preserve all the copyright notices of the Document. - 5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. - 6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. - 7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. - 8. Include an unaltered copy of this License. - 9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. - 10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. - 11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. - 12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. - 13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. - 14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. - 15. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. # **COMBINING DOCUMENTS** You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements". # **COLLECTIONS OF DOCUMENTS** You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. # AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. # **TRANSLATION** Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the actual title. ## **TERMINATION** You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. # FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. # ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.