**FHSST Authors** The Free High School Science Texts: Textbooks for High School Students Studying the Sciences Physics Grades 10 - 12 > Version 0 November 9, 2008 Copyright 2007 "Free High School Science Texts" Permission **is** granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". ### Did you notice the **FREEDOMS** we've granted you? Our copyright license is **different!** It grants freedoms rather than just imposing restrictions like all those other textbooks you probably own or use. - We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally! - Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide we DARE you! - Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want! - Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents. - So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair. - These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community. ### **FHSST Core Team** Mark Horner; Samuel Halliday; Sarah Blyth; Rory Adams; Spencer Wheaton ### FHSST Editors Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan Whitfield ### FHSST Contributors Rory Adams; Prashant Arora; Richard Baxter; Dr. Sarah Blyth; Sebastian Bodenstein; Graeme Broster; Richard Case; Brett Cocks; Tim Crombie; Dr. Anne Dabrowski; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez; Hemant Gopal; Umeshree Govender; Heather Gray; Lynn Greeff; Dr. Tom Gutierrez; Brooke Haag; Kate Hadley; Dr. Sam Halliday; Asheena Hanuman; Neil Hart; Nicholas Hatcher; Dr. Mark Horner; Robert Hovden; Mfandaidza Hove; Jennifer Hsieh; Clare Johnson; Luke Jordan; Tana Joseph; Dr. Jennifer Klay; Lara Kruger; Sihle Kubheka; Andrew Kubik; Dr. Marco van Leeuwen; Dr. Anton Machacek; Dr. Komal Maheshwari; Kosma von Maltitz; Nicole Masureik; John Mathew; JoEllen McBride; Nikolai Meures; Riana Meyer; Jenny Miller; Abdul Mirza; Asogan Moodaly; Jothi Moodley; Nolene Naidu; Tyrone Negus; Thomas O'Donnell; Dr. Markus Oldenburg; Dr. Jaynie Padayachee; Nicolette Pekeur; Sirika Pillay; Jacques Plaut; Andrea Prinsloo; Joseph Raimondo; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle; Evan Robinson; Dr. Andrew Rose; Bianca Ruddy; Katie Russell; Duncan Scott; Helen Seals; Ian Sherratt; Roger Sieloff; Bradley Smith; Greg Solomon; Mike Stringer; Shen Tian; Robert Torregrosa; Jimmy Tseng; Helen Waugh; Dr. Dawn Webber; Michelle Wen; Dr. Alexander Wetzler; Dr. Spencer Wheaton; Vivian White; Dr. Gerald Wigger; Harry Wiggins; Wendy Williams; Julie Wilson; Andrew Wood; Emma Wormauld; Sahal Yacoob; Jean Youssef Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource! www.fhsst.org # **Contents** | ı | Inti | roduct | tion | 1 | |----|-------|----------------|--------------------------------------------------|--------------| | 1 | Wha | t is Ph | ysics? | 3 | | II | Gr | ade 1 | 0 - Physics | 5 | | 2 | Unit | s | | 9 | | | 2.1 | Introdu | uction | 9 | | | 2.2 | Unit S | ystems | 9 | | | | 2.2.1 | SI Units | 9 | | | | 2.2.2 | The Other Systems of Units | 10 | | | 2.3 | Writing | g Units as Words or Symbols | 10 | | | 2.4 | Combi | nations of SI Base Units | 12 | | | 2.5 | Roundi | ing, Scientific Notation and Significant Figures | 12 | | | | 2.5.1 | Rounding Off | 12 | | | | 2.5.2 | Error Margins | 13 | | | | 2.5.3 | Scientific Notation | 13 | | | | 2.5.4 | Significant Figures | 15 | | | 2.6 | Prefixe | s of Base Units | 15 | | | 2.7 | The Im | portance of Units | 17 | | | 2.8 | How to | Change Units | 17 | | | | 2.8.1 | Two other useful conversions | 19 | | | 2.9 | A sanit | ty test | 19 | | | 2.10 | Summa | ary | 19 | | | 2.11 | End of | Chapter Exercises | 21 | | 2 | N/1-4 | : : ( | One Diversity Code 10 | 22 | | 3 | 3.1 | | One Dimension - Grade 10 | <b>23</b> 23 | | | 3.2 | | nce Point, Frame of Reference and Position | 23 | | | 3.2 | 3.2.1 | Frames of Reference | | | | | 3.2.2 | | 23<br>25 | | | 2.2 | - | Position | | | | 3.3 | 3.3.1 | Interpreting Direction | 28<br>29 | | | | | Interpreting Direction | _ | | | 3.4 | 3.3.2<br>Speed | Differences between Distance and Displacement | 29<br>31 | | | 24 | 20000 | AVELANE VEIDLIN AUD INSTAULABEDUS VEIDLIN | 3 I | | | | 3.4.1 Differences between Speed and Velocity | 35 | |---|------|---------------------------------------------------------|----| | | 3.5 | Acceleration | 38 | | | 3.6 | Description of Motion | 39 | | | | 3.6.1 Stationary Object | 40 | | | | 3.6.2 Motion at Constant Velocity | 41 | | | | 3.6.3 Motion at Constant Acceleration | 46 | | | 3.7 | Summary of Graphs | 48 | | | 3.8 | Worked Examples | 49 | | | 3.9 | Equations of Motion | 54 | | | | 3.9.1 Finding the Equations of Motion | 54 | | | 3.10 | Applications in the Real-World | 59 | | | 3.11 | Summary | 61 | | | 3.12 | End of Chapter Exercises: Motion in One Dimension | 62 | | 4 | Grav | vity and Mechanical Energy - Grade 10 | 67 | | | | Weight | 67 | | | | 4.1.1 Differences between Mass and Weight | 68 | | | 4.2 | | 69 | | | | | 69 | | | | 4.2.2 Free fall | 69 | | | 4.3 | Potential Energy | 73 | | | 4.4 | Kinetic Energy | 75 | | | | 4.4.1 Checking units | 77 | | | 4.5 | Mechanical Energy | 78 | | | | 4.5.1 Conservation of Mechanical Energy | 78 | | | | 4.5.2 Using the Law of Conservation of Energy | 79 | | | 4.6 | Energy graphs | 82 | | | 4.7 | Summary | 83 | | | 4.8 | End of Chapter Exercises: Gravity and Mechanical Energy | 84 | | 5 | Tran | nsverse Pulses - Grade 10 | B7 | | | 5.1 | Introduction | 87 | | | 5.2 | | 87 | | | 5.3 | What is a <i>pulse</i> ? | 87 | | | | 5.3.1 Pulse Length and Amplitude | 88 | | | | 5.3.2 Pulse Speed | 89 | | | 5.4 | Graphs of Position and Velocity | 90 | | | | 5.4.1 Motion of a Particle of the Medium | 90 | | | | 5.4.2 Motion of the Pulse | 92 | | | 5.5 | Transmission and Reflection of a Pulse at a Boundary | 96 | | | 5.6 | Reflection of a Pulse from Fixed and Free Ends | 97 | | | | 5.6.1 Reflection of a Pulse from a Fixed End | 97 | | | | 5.6.2 Reflection of a Pulse from a Free End | 3 | |---|------|--------------------------------------------------------------|---| | | 5.7 | Superposition of Pulses | 9 | | | 5.8 | Exercises - Transverse Pulses | 2 | | 6 | Tran | sverse Waves - Grade 10 105 | 5 | | | 6.1 | Introduction | 5 | | | 6.2 | What is a <i>transverse wave</i> ? | 5 | | | | 6.2.1 Peaks and Troughs | 5 | | | | 6.2.2 Amplitude and Wavelength | 7 | | | | 6.2.3 Points in Phase | 9 | | | | 6.2.4 Period and Frequency | C | | | | 6.2.5 Speed of a Transverse Wave | 1 | | | 6.3 | Graphs of Particle Motion | 5 | | | 6.4 | Standing Waves and Boundary Conditions | 3 | | | | 6.4.1 Reflection of a Transverse Wave from a Fixed End | 3 | | | | 6.4.2 Reflection of a Transverse Wave from a Free End | 3 | | | | 6.4.3 Standing Waves | 3 | | | | 6.4.4 Nodes and anti-nodes | 2 | | | | 6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends | 2 | | | | 6.4.6 Superposition and Interference | 5 | | | 6.5 | Summary | 7 | | | 6.6 | Exercises | 7 | | 7 | Geo | netrical Optics - Grade 10 129 | 9 | | | 7.1 | Introduction | 9 | | | 7.2 | Light Rays | 9 | | | | 7.2.1 Shadows | 2 | | | | 7.2.2 Ray Diagrams | 2 | | | 7.3 | Reflection | 2 | | | | 7.3.1 Terminology | 3 | | | | 7.3.2 Law of Reflection | 3 | | | | 7.3.3 Types of Reflection | 5 | | | 7.4 | Refraction | 7 | | | | 7.4.1 Refractive Index | 9 | | | | 7.4.2 Snell's Law | 9 | | | | 7.4.3 Apparent Depth | 3 | | | 7.5 | Mirrors | 5 | | | | 7.5.1 Image Formation | 5 | | | | 7.5.2 Plane Mirrors | 7 | | | | 7.5.3 Ray Diagrams | 3 | | | | 7.5.4 Spherical Mirrors | Э | | | | 7.5.5 Concave Mirrors | ^ | | | | 7.5.6 | Convex Mirrors | 153 | |----|-------|--------------------|---------------------------------------------|-----| | | | 7.5.7 | Summary of Properties of Mirrors | 154 | | | | 7.5.8 | Magnification | 154 | | | 7.6 | Total I | nternal Reflection and Fibre Optics | 156 | | | | 7.6.1 | Total Internal Reflection | 156 | | | | 7.6.2 | Fibre Optics | 161 | | | 7.7 | Summa | ary | 163 | | | 7.8 | Exercis | es | 164 | | 8 | Mag | netism | - Grade 10 | 167 | | | 8.1 | Introdu | uction | 167 | | | 8.2 | Magne <sup>-</sup> | tic fields | 167 | | | 8.3 | Permar | nent magnets | 169 | | | | 8.3.1 | The poles of permanent magnets | 169 | | | | 8.3.2 | Magnetic attraction and repulsion | 169 | | | | 8.3.3 | Representing magnetic fields | 170 | | | 8.4 | The co | ompass and the earth's magnetic field | 173 | | | | 8.4.1 | The earth's magnetic field | 175 | | | 8.5 | Summa | ary | 175 | | | 8.6 | End of | chapter exercises | 176 | | 9 | Flect | trostati | ics - Grade 10 | 177 | | | 9.1 | | uction | | | | 9.2 | | nds of charge | | | | 9.3 | | f charge | | | | 9.4 | | vation of charge | | | | 9.5 | Force b | petween Charges | 178 | | | 9.6 | Conduc | ctors and insulators | 181 | | | | 9.6.1 | The electroscope | 182 | | | 9.7 | Attract | tion between charged and uncharged objects | 183 | | | | 9.7.1 | Polarisation of Insulators | | | | 9.8 | Summa | ary | 184 | | | 9.9 | End of | chapter exercise | 184 | | 10 | Floci | tric Cir | cuits - Grade 10 | 187 | | 10 | | | Circuits | | | | 10.1 | | Closed circuits | | | | | | Representing electric circuits | | | | 10.2 | | ial Difference | | | | 10.2 | | Potential Difference | | | | | | Potential Difference and Parallel Resistors | | | | | | Potential Difference and Series Resistors | | | | | | Ohm's Law | | | | | 1∪.∠.4 | UIIII 3 LdW | エガサ | | | | 10.2.5 EMF | |-----|------|-----------------------------------------------------------| | | 10.3 | Current | | | | 10.3.1 Flow of Charge | | | | 10.3.2 Current | | | | 10.3.3 Series Circuits | | | | 10.3.4 Parallel Circuits | | | 10.4 | Resistance | | | | 10.4.1 What causes resistance? | | | | 10.4.2 Resistors in electric circuits | | | 10.5 | Instruments to Measure voltage, current and resistance | | | | 10.5.1 Voltmeter | | | | 10.5.2 Ammeter | | | | 10.5.3 Ohmmeter | | | | 10.5.4 Meters Impact on Circuit | | | 10.6 | Exercises - Electric circuits | | | | | | 111 | G | rade 11 - Physics 209 | | | | | | 11 | Vect | | | | | Introduction | | | | Scalars and Vectors | | | 11.3 | Notation | | | | 11.3.1 Mathematical Representation | | | | 11.3.2 Graphical Representation | | | 11.4 | Directions | | | | 11.4.1 Relative Directions | | | | 11.4.2 Compass Directions | | | | 11.4.3 Bearing | | | 11.5 | Drawing Vectors | | | 11.6 | Mathematical Properties of Vectors | | | | 11.6.1 Adding Vectors | | | | 11.6.2 Subtracting Vectors | | | | 11.6.3 Scalar Multiplication | | | 11.7 | Techniques of Vector Addition | | | | 11.7.1 Graphical Techniques | | | | 11.7.2 Algebraic Addition and Subtraction of Vectors | | | 11.8 | Components of Vectors | | | | 11.8.1 Vector addition using components | | | | 11.8.2 Summary | | | | 11.8.3 End of chapter exercises: Vectors | | | | 11.8.4 End of chapter exercises: Vectors - Long questions | | 12 Force | e, Momentum and Impulse - Grade 11 | 239 | |----------|----------------------------------------------|-----| | 12.1 | Introduction | 239 | | 12.2 | Force | 239 | | | 12.2.1 What is a <i>force</i> ? | 239 | | | 12.2.2 Examples of Forces in Physics | 240 | | | 12.2.3 Systems and External Forces | 241 | | | 12.2.4 Force Diagrams | 242 | | | 12.2.5 Free Body Diagrams | 243 | | | 12.2.6 Finding the Resultant Force | 244 | | | 12.2.7 Exercise | 246 | | 12.3 | Newton's Laws | 246 | | | 12.3.1 Newton's First Law | 247 | | | 12.3.2 Newton's Second Law of Motion | 249 | | | 12.3.3 Exercise | 261 | | | 12.3.4 Newton's Third Law of Motion | 263 | | | 12.3.5 Exercise | 267 | | | 12.3.6 Different types of forces | 268 | | | 12.3.7 Exercise | 275 | | | 12.3.8 Forces in equilibrium | 276 | | | 12.3.9 Exercise | 279 | | 12.4 | Forces between Masses | 282 | | | 12.4.1 Newton's Law of Universal Gravitation | 282 | | | 12.4.2 Comparative Problems | 284 | | | 12.4.3 Exercise | 286 | | 12.5 | Momentum and Impulse | 287 | | | 12.5.1 Vector Nature of Momentum | 290 | | | 12.5.2 Exercise | 291 | | | 12.5.3 Change in Momentum | 291 | | | 12.5.4 Exercise | 293 | | | 12.5.5 Newton's Second Law revisited | 293 | | | 12.5.6 Impulse | 294 | | | 12.5.7 Exercise | 296 | | | 12.5.8 Conservation of Momentum | 297 | | | 12.5.9 Physics in Action: Impulse | | | | 12.5.10 Exercise | 301 | | 12.6 | Torque and Levers | | | | 12.6.1 Torque | | | | 12.6.2 Mechanical Advantage and Levers | | | | 12.6.3 Classes of levers | | | | 12.6.4 Exercise | | | | Summary | | | 12.8 | End of Chapter exercises | 310 | | 13 | Geor | metrical Optics - Grade 11 | 327 | |----|------|----------------------------------------------------------------------|-----| | | 13.1 | Introduction | 327 | | | 13.2 | Lenses | 327 | | | | 13.2.1 Converging Lenses | 329 | | | | 13.2.2 Diverging Lenses | 340 | | | | 13.2.3 Summary of Image Properties | 343 | | | 13.3 | The Human Eye | 344 | | | | 13.3.1 Structure of the Eye | 345 | | | | 13.3.2 Defects of Vision | 346 | | | 13.4 | Gravitational Lenses | 347 | | | 13.5 | Telescopes | 347 | | | | 13.5.1 Refracting Telescopes | 347 | | | | 13.5.2 Reflecting Telescopes | 348 | | | | 13.5.3 Southern African Large Telescope | 348 | | | 13.6 | Microscopes | 349 | | | 13.7 | Summary | 351 | | | 13.8 | Exercises | 352 | | 14 | Long | gitudinal Waves - Grade 11 | 355 | | | 14.1 | Introduction | 355 | | | 14.2 | What is a longitudinal wave? | 355 | | | 14.3 | Characteristics of Longitudinal Waves | 356 | | | | 14.3.1 Compression and Rarefaction | 356 | | | | 14.3.2 Wavelength and Amplitude | 357 | | | | 14.3.3 Period and Frequency | 357 | | | | 14.3.4 Speed of a Longitudinal Wave | 358 | | | 14.4 | Graphs of Particle Position, Displacement, Velocity and Acceleration | 359 | | | 14.5 | Sound Waves | 360 | | | 14.6 | Seismic Waves | 361 | | | 14.7 | Summary - Longitudinal Waves | 361 | | | 14.8 | Exercises - Longitudinal Waves | 362 | | 15 | Sour | nd - Grade 11 | 363 | | | 15.1 | Introduction | 363 | | | 15.2 | Characteristics of a Sound Wave | 363 | | | | 15.2.1 Pitch | 364 | | | | 15.2.2 Loudness | 364 | | | | 15.2.3 Tone | 364 | | | 15.3 | Speed of Sound | 365 | | | 15.4 | Physics of the Ear and Hearing | 365 | | | | 15.4.1 Intensity of Sound | 366 | | | 15.5 | Ultrasound | 367 | | CONTENTS | CONTENTS | |----------|----------| | | | | | 15.6 | SONAR | |----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | 15.6.1 Echolocation | | | 15.7 | Summary | | | 15.8 | Exercises | | 16 | The | Physics of Music - Grade 11 373 | | | | Introduction | | | | Standing Waves in String Instruments | | | | Standing Waves in Wind Instruments | | | | Resonance | | | | Music and Sound Quality | | | | Summary - The Physics of Music | | | | End of Chapter Exercises | | | | | | 17 | | trostatics - Grade 11 387 | | | | Introduction | | | | Forces between charges - Coulomb's Law | | | 17.3 | Electric field around charges | | | | 17.3.1 Electric field lines | | | | 17.3.2 Positive charge acting on a test charge | | | | 17.3.3 Combined charge distributions | | | | 17.3.4 Parallel plates | | | 17.4 | Electrical potential energy and potential | | | | 17.4.1 Electrical potential | | | | 17.4.2 Real-world application: lightning | | | 17.5 | Capacitance and the parallel plate capacitor | | | | 17.5.1 Capacitors and capacitance | | | | 17.5.2 Dielectrics | | | | 17.5.3 Physical properties of the capacitor and capacitance | | | | 17.5.4 Electric field in a capacitor | | | 17.6 | Capacitor as a circuit device | | | | $17.6.1 \ A \ capacitor \ in \ a \ circuit \ \ldots $ | | | | $17.6.2 \ \ Real\text{-world\ applications:\ capacitors} \ \ldots $ | | | 17.7 | Summary | | | 17.8 | Exercises - Electrostatics | | 18 | Elect | tromagnetism - Grade 11 413 | | | 18.1 | Introduction | | | 18.2 | Magnetic field associated with a current | | | | 18.2.1 Real-world applications | | | 18.3 | Current induced by a changing magnetic field | | | | 18.3.1 Real-life applications | | | 18.4 | Transformers | | | | | | | | 18.4.1 Real-world applications | 425 | |----|-------|----------------------------------------------------------|-----| | | 18.5 | Motion of a charged particle in a magnetic field | 425 | | | | 18.5.1 Real-world applications | 426 | | | 18.6 | Summary | 427 | | | 18.7 | End of chapter exercises | 427 | | 19 | Elect | tric Circuits - Grade 11 | 429 | | | 19.1 | Introduction | 429 | | | 19.2 | Ohm's Law | 429 | | | | 19.2.1 Definition of Ohm's Law | 429 | | | | 19.2.2 Ohmic and non-ohmic conductors | 431 | | | | 19.2.3 Using Ohm's Law | 432 | | | 19.3 | Resistance | 433 | | | | 19.3.1 Equivalent resistance | 433 | | | | 19.3.2 Use of Ohm's Law in series and parallel Circuits | 438 | | | | 19.3.3 Batteries and internal resistance | 440 | | | 19.4 | Series and parallel networks of resistors | 442 | | | 19.5 | Wheatstone bridge | 445 | | | 19.6 | Summary | 447 | | | 19.7 | End of chapter exercise | 447 | | 20 | Elect | tronic Properties of Matter - Grade 11 | 451 | | | 20.1 | Introduction | 451 | | | 20.2 | Conduction | 451 | | | | 20.2.1 Metals | 453 | | | | 20.2.2 Insulator | 453 | | | | 20.2.3 Semi-conductors | 454 | | | 20.3 | Intrinsic Properties and Doping | 454 | | | | 20.3.1 Surplus | 455 | | | | 20.3.2 Deficiency | 455 | | | 20.4 | The p-n junction | 457 | | | | 20.4.1 Differences between p- and n-type semi-conductors | 457 | | | | 20.4.2 The p-n Junction | 457 | | | | 20.4.3 Unbiased | 457 | | | | 20.4.4 Forward biased | 457 | | | | 20.4.5 Reverse biased | 458 | | | | 20.4.6 Real-World Applications of Semiconductors | 458 | | | 20.5 | End of Chapter Exercises | 459 | | | | | | | IV | G | rade 12 - Physics 4 | 61 | | 21 | Mot | ion in Two Dimensions - Grade 12 | 463 | | | 21.1 | Introduction | 463 | | | 21.2 | Vertical Projectile Motion | |----|------|------------------------------------------------| | | | 21.2.1 Motion in a Gravitational Field | | | | 21.2.2 Equations of Motion | | | | 21.2.3 Graphs of Vertical Projectile Motion | | | 21.3 | Conservation of Momentum in Two Dimensions | | | 21.4 | Types of Collisions | | | | 21.4.1 Elastic Collisions | | | | 21.4.2 Inelastic Collisions | | | 21.5 | Frames of Reference | | | | 21.5.1 Introduction | | | | 21.5.2 What is a <i>frame of reference</i> ? | | | | 21.5.3 Why are frames of reference important? | | | | 21.5.4 Relative Velocity | | | 21.6 | Summary | | | 21.7 | End of chapter exercises | | 22 | N4 | haviad Danastia of Matter Conda 12 | | 22 | | hanical Properties of Matter - Grade 12 503 | | | | Introduction | | | 22.2 | Deformation of materials | | | | 22.2.1 Hooke's Law | | | 22.2 | 22.2.2 Deviation from Hooke's Law | | | 22.3 | Elasticity, plasticity, fracture, creep | | | | 22.3.1 Elasticity and plasticity | | | | 22.3.2 Fracture, creep and fatigue | | | 22.4 | Failure and strength of materials | | | | 22.4.1 The properties of matter | | | | 22.4.2 Structure and failure of materials | | | | 22.4.3 Controlling the properties of materials | | | | 22.4.4 Steps of Roman Swordsmithing | | | | Summary | | | 22.6 | End of chapter exercise | | 23 | Worl | c, Energy and Power - Grade 12 513 | | | 23.1 | Introduction | | | 23.2 | Work | | | 23.3 | Energy | | | | 23.3.1 External and Internal Forces | | | | 23.3.2 Capacity to do Work | | | 23.4 | Power | | | 23.5 | Important Equations and Quantities | | | 23.6 | End of Chapter Exercises | | | | | | 24 | Dop | pler Effect - Grade 12 | 533 | |----|------|------------------------------------------------|-----| | | 24.1 | Introduction | 533 | | | 24.2 | The Doppler Effect with Sound and Ultrasound | 533 | | | | 24.2.1 Ultrasound and the Doppler Effect | 537 | | | 24.3 | The Doppler Effect with Light | 537 | | | | 24.3.1 The Expanding Universe | 538 | | | 24.4 | Summary | 539 | | | 24.5 | End of Chapter Exercises | 539 | | 25 | Colo | our - Grade 12 | 541 | | | 25.1 | Introduction | 541 | | | 25.2 | Colour and Light | 541 | | | | 25.2.1 Dispersion of white light | 544 | | | 25.3 | Addition and Subtraction of Light | 544 | | | | 25.3.1 Additive Primary Colours | 544 | | | | 25.3.2 Subtractive Primary Colours | 545 | | | | 25.3.3 Complementary Colours | 546 | | | | 25.3.4 Perception of Colour | 546 | | | | 25.3.5 Colours on a Television Screen | 547 | | | 25.4 | Pigments and Paints | 548 | | | | 25.4.1 Colour of opaque objects | 548 | | | | 25.4.2 Colour of transparent objects | 548 | | | | 25.4.3 Pigment primary colours | 549 | | | 25.5 | End of Chapter Exercises | 550 | | 26 | 2D a | and 3D Wavefronts - Grade 12 | 553 | | | 26.1 | Introduction | 553 | | | 26.2 | Wavefronts | 553 | | | 26.3 | The Huygens Principle | 554 | | | 26.4 | Interference | 556 | | | 26.5 | Diffraction | 557 | | | | 26.5.1 Diffraction through a Slit | 558 | | | 26.6 | Shock Waves and Sonic Booms | 562 | | | | 26.6.1 Subsonic Flight | 563 | | | | 26.6.2 Supersonic Flight | 563 | | | | 26.6.3 Mach Cone | 566 | | | 26.7 | End of Chapter Exercises | 568 | | 27 | Wav | ve Nature of Matter - Grade 12 | 571 | | | 27.1 | Introduction | 571 | | | 27.2 | de Broglie Wavelength | 571 | | | 27.3 | The Electron Microscope | 574 | | | | 27.3.1 Disadvantages of an Electron Microscope | 577 | | | | 27.3.2 Uses of Electron Microscopes | |----|-------|------------------------------------------------------| | | 27.4 | · · · · · · · · · · · · · · · · · · · | | | 27.4 | End of Chapter Exercises | | 28 | Elect | trodynamics - Grade 12 579 | | | 28.1 | Introduction | | | 28.2 | Electrical machines - generators and motors | | | | 28.2.1 Electrical generators | | | | 28.2.2 Electric motors | | | | 28.2.3 Real-life applications | | | | 28.2.4 Exercise - generators and motors | | | 28.3 | Alternating Current | | | | 28.3.1 Exercise - alternating current | | | 28.4 | Capacitance and inductance | | | | 28.4.1 Capacitance | | | | 28.4.2 Inductance | | | | 28.4.3 Exercise - capacitance and inductance | | | 28.5 | Summary | | | 28.6 | End of chapter exercise | | | | | | 29 | Elect | tronics - Grade 12 591 | | | 29.1 | Introduction | | | 29.2 | Capacitive and Inductive Circuits | | | 29.3 | Filters and Signal Tuning | | | | 29.3.1 Capacitors and Inductors as Filters | | | | 29.3.2 LRC Circuits, Resonance and Signal Tuning 596 | | | 29.4 | Active Circuit Elements | | | | 29.4.1 The Diode | | | | 29.4.2 The Light Emitting Diode (LED) | | | | 29.4.3 Transistor | | | | 29.4.4 The Operational Amplifier | | | 29.5 | The Principles of Digital Electronics | | | | 29.5.1 Logic Gates | | | 29.6 | Using and Storing Binary Numbers | | | | 29.6.1 Binary numbers | | | | 29.6.2 Counting circuits | | | | 29.6.3 Storing binary numbers | | 20 | | | | 30 | | Radiation 625 | | | | Introduction | | | | Particle/wave nature of electromagnetic radiation | | | | The wave nature of electromagnetic radiation | | | | Electromagnetic spectrum | | | 30.5 | The particle nature of electromagnetic radiation | | CONTENTS | CONTENTS | |---------------------|-------------------| | / 1 N I I L N I I C | 7 / 1/1 / L/1 / C | | .(7) | | | | | 30.5.1 Exercise - particle nature of EM waves | . 630 | |-----|-------|----------------------------------------------------------|-------| | | 30.6 | Penetrating ability of electromagnetic radiation | . 631 | | | | 30.6.1 Ultraviolet(UV) radiation and the skin | . 631 | | | | 30.6.2 Ultraviolet radiation and the eyes | . 632 | | | | 30.6.3 X-rays | . 632 | | | | 30.6.4 Gamma-rays | . 632 | | | | 30.6.5 Exercise - Penetrating ability of EM radiation | . 633 | | | 30.7 | Summary | . 633 | | | 30.8 | End of chapter exercise | . 633 | | 31 | Onti | ical Phenomena and Properties of Matter - Grade 12 | 635 | | - | _ | Introduction | | | | | The transmission and scattering of light | | | | 01.1 | 31.2.1 Energy levels of an electron | | | | | 31.2.2 Interaction of light with metals | | | | | 31.2.3 Why is the sky blue? | | | | 31.3 | The photoelectric effect | | | | 02.0 | 31.3.1 Applications of the photoelectric effect | | | | | 31.3.2 Real-life applications | | | | 31.4 | Emission and absorption spectra | | | | 02 | 31.4.1 Emission Spectra | | | | | 31.4.2 Absorption spectra | | | | | 31.4.3 Colours and energies of electromagnetic radiation | | | | | 31.4.4 Applications of emission and absorption spectra | | | | 31.5 | Lasers | | | | 02.0 | 31.5.1 How a laser works | | | | | 31.5.2 A simple laser | | | | | 31.5.3 Laser applications and safety | | | | 31.6 | Summary | | | | | End of chapter exercise | | | | •= | | | | V | Fx | xercises | 659 | | | | | | | 32 | Exer | rcises | 661 | | | | | | | VI | E | ssays | 663 | | Ess | say 1 | : Energy and electricity. Why the fuss? | 665 | | | • | | | | | | y: How a cell phone works | 671 | | 34 | Essa | y: How a Physiotherapist uses the Concept of Levers | 673 | | 35 | Essa | y: How a Pilot Uses Vectors | 675 | | CONTENTS | CONTENT. | |----------|----------| | | | | Λ | CNIII | Fron | Documentation | Licone | |---|-------|------|---------------|--------| 677 # Chapter 18 # Electromagnetism - Grade 11 ### 18.1 Introduction Electromagnetism is the science of the properties and relationship between electric currents and magnetism. An electric current creates a magnetic field and a moving magnetic field will create a flow of charge. This relationship between electricity and magnetism has resulted in the invention of many devices which are useful to humans. ### 18.2 Magnetic field associated with a current If you hold a compass near a wire through which current is flowing, the needle on the compass will be deflected. Activity :: Case Study : Magnetic field near a current carrying conductor When the battery is connected as shown, the compass needle is deflected to the left. What do you think will happen if the direction of the current is reversed as shown? The discovery of the relationship between magnetism and electricity was, like so many other scientific discoveries, stumbled upon almost by accident. The Danish physicist Hans Christian Oersted was lecturing one day in 1820 on the possibility of electricity and magnetism being related to one another, and in the process demonstrated it conclusively by experiment in front of his whole class. By passing an electric current through a metal wire suspended above a magnetic compass, Oersted was able to produce a definite motion of the compass needle in response to the current. What began as a guess at the start of the class session was confirmed as fact at the end. Needless to say, Oersted had to revise his lecture notes for future classes. His discovery paved the way for a whole new branch of science - electromagnetism. The magnetic field produced by an electric current is always oriented perpendicular to the direction of the current flow. When we are drawing directions of magnetic fields and currents, we use the symbol $\odot$ and $\otimes$ . The symbol $\odot$ for an arrow that is coming out of the page and the symbol $\otimes$ for an arrow that is going into the page. It is easy to remember the meanings of the symbols if you think of an arrow with a head and a tail. When the arrow is coming out of the page, you see the head of the arrow $(\odot)$ . When the arrow is going into the page, you see the tail of the arrow $(\otimes)$ . The direction of the magnetic field around the current carrying conductor is shown in Figure 18.1. Figure 18.1: Magnetic field around a conductor when you look at the conductor from one end. (a) Current flows into the page and the magnetic field is counter clockwise. (b) Current flows out of the page and the magnetic field is clockwise. Figure 18.2: Magnetic fields around a conductor looking down on the conductor, for current in a conductor that is flowing to the right and to the left. ### Activity :: Case Study : Direction of a magnetic field Using the directions given in Figure 18.1 and Figure 18.2 and try to find a rule that easily tells you the direction of the magnetic field. Hint: Use your fingers. Hold the wire in your hands and try to find a link between the direction of your thumb and the direction in which your fingers curl. There is a simple method of showing the relationship between the direction of the current flowing in a conductor and the direction of the magnetic field around the same conductor. The method is called the *Right Hand Rule*. Simply stated, the right hand rule says that the magnetic flux lines produced by a current-carrying wire will be oriented the same direction as the curled fingers of a person's right hand (in the "hitchhiking" position), with the thumb pointing in the direction of the current flow. Figure 18.3: The Right Hand Rule. ### Activity :: Case Study : The Right Hand Rule Use the Right Hand Rule and draw in the directions of the magnetic field for the following conductors with the currents flowing in the directions shown by the arrow. The first problem has been completed for you. # Activity :: Experiment : Magnetic field around a current carrying conductor ### **Apparatus:** - 1. 1 9V battery with holder - 2. 2 hookup wires with alligator clips - 3. compass - 4. stop watch ### Method: - 1. Connect your wires to the battery leaving one end unconnected so that the circuit is not closed. - 2. One student should be in charge of limiting the current flow to 10 seconds. This is to preserve battery life as well as to prevent overheating of wires and battery contacts. - 3. Place the compass close to the wire. - 4. Close the circuit and observe what happens to the compass. 5. Reverse the polarity of the battery and close the circuit. Observe what happens to the compass. #### **Conclusions:** Use your observations to answer the following questions: - 1. Does a current flowing in a wire generate a magnetic field? - 2. Is the magnetic field present when the current is not flowing? - 3. Does the direction of the magnetic field produced by a current in a wire depend on the direction of the current flow? - 4. How does the direction of the current affect the magnetic field? ### Activity :: Case Study : Magnetic field around a loop of conductor Consider two loops of current carrying conductor that are placed in the plane of the page. Draw what you think the magnetic field would look like, by using the Right Hand Rule at different points of the two loops shown. Loop 1 has the current flowing in a counter-clockwise direction, while loop 2 has the current flowing in a clockwise direction. If you make a loop of current carrying conductor, then the direction of the magnetic field is obtained by applying the Right Hand Rule to different points in the loop. The directions of the magnetic field around a loop of current carrying conductor with the current flowing in a counter-clockwise direction is shown. If we know add another loop then the magnetic field around each loop joins to create a stronger field. As more loops are added, the magnetic field gets a definite magnetic (north and south) polarity. Such a coil is more commonly known as a *solenoid*. The magnetic field pattern of a solenoid is similar to the magnetic field pattern of a bar magnet that you studied in Grade 10. Figure 18.4: Magnetic field around a solenoid. ### 18.2.1 Real-world applications ### **Electromagnets** An *electromagnet* is a piece of wire intended to generate a magnetic field with the passage of electric current through it. Though all current-carrying conductors produce magnetic fields, an electromagnet is usually constructed in such a way as to maximize the strength of the magnetic field it produces for a special purpose. Electromagnets find frequent application in research, industry, medical, and consumer products. As an electrically-controllable magnet, electromagnets find application in a wide variety of "electromechanical" devices: machines that effect mechanical force or motion through electrical power. Perhaps the most obvious example of such a machine is the *electric motor* which will be described in detail in Grade 12. Other examples of the use of electromagnets are electric bells, relays, loudspeakers and scrapyard cranes. ### **Activity :: Experiment : Electromagnets** ### Aim: A magnetic field is created when an electric current flows through a wire. A single wire does not produce a strong magnetic field, but a coiled wire around an iron core does. We will investigate this behaviour. ### Apparatus: - 1. a battery and holder - 2. a length of wire - 3. a compass - 4. a few nails - 5. a few paper clips ### Method: - 1. Bend the wire into a series of coils before attaching it to the battery. Observe what happens to the deflection on the compass. Has the deflection of the compass grown stronger? - 2. Repeat the experiment by changing the number and size of the coils in the wire. Observe what happens to the deflection on the compass. - 3. Coil the wire around an iron nail and then attach the coil to the battery. Observe what happens to the deflection on the compass. ### **Conclusions:** - 1. Does the number of coils affect the strength of the magnetic field? - 2. Does the iron nail increase or decrease the strength of the magnetic field? ? ### **Exercise: Magnetic Fields** - 1. Give evidence for the existence of a magnetic field near a current carrying wire. - 2. Describe how you would use your right hand to determine the direction of a magnetic field around a current carrying conductor. - 3. Use the right hand rule to determine the direction of the magnetic field for the following situations. 4. Use the Right Hand Rule to find the direction of the magnetic fields at each of the labelled points in the diagrams. ## 18.3 Current induced by a changing magnetic field While Oersted's surprising discovery of electromagnetism paved the way for more practical applications of electricity, it was Michael Faraday who gave us the key to the practical generation of electricity: **electromagnetic induction**. Faraday discovered that a voltage was generated across a length of wire while moving a magnet nearby, such that the distance between the two changed. This meant that the wire was exposed to a magnetic field flux of changing intensity. Furthermore, the voltage also depended on the orientation of the magnet; this is easily understood again in terms of the magnetic flux. The flux will be at its maximum as the magnet is aligned perpendicular to the wire. The magnitude of the changing flux and the voltage are linked. In fact, if the lines of flux are parallel to the wire, there will be no induced voltage. ### **Definition: Faraday's Law** The emf, $\epsilon$ , produced around a loop of conductor is proportional to the rate of change of the magnetic flux, $\phi$ , through the area, A, of the loop. This can be stated mathematically as: $$\epsilon = -N \frac{\Delta \phi}{\Delta t}$$ where $\phi = B \cdot A$ and B is the strength of the magnetic field. Faraday's Law relates induced emf to the rate of change of flux, which is the product of the magnetic field and the cross-sectional area the field lines pass through. When the north pole of a magnet is pushed into a solenoid, the flux in the solenoid increases so the induced current will have an associated magnetic field pointing out of the solenoid (opposite to the magnet's field). When the north pole is pulled out, the flux decreases, so the induced current will have an associated magnetic field pointing into the solenoid (same direction as the magnet's field) to try to oppose the change. The directions of currents and associated magnetic fields can all be found using only the Right Hand Rule. When the fingers of the right hand are pointed in the direction of the current, the thumb points in the direction of the magnetic field. When the thumb is pointed in the direction of the magnetic field, the fingers point in the direction of the current. **Important:** An easy way to create a magnetic field of changing intensity is to move a permanent magnet next to a wire or coil of wire. The magnetic field must increase or decrease in intensity *perpendicular* to the wire (so that the lines of flux "cut across" the conductor), or else no voltage will be induced. Important: Finding the direction of the induced current The induced current generates a magnetic field. The induced magnetic field is in a direction that cancels out the magnetic field in which the conductor is moving. So, you can use the Right Hand Rule to find the direction of the induced current by remembering that the induced magnetic field is opposite in direction to the magnetic field causing the change. Electromganetic induction is put into practical use in the construction of electrical generators, which use mechanical power to move a magnetic field past coils of wire to generate voltage. However, this is by no means the only practical use for this principle. If we recall that the magnetic field produced by a current-carrying wire was always perpendicular to that wire, and that the flux intensity of that magnetic field varied with the amount of current through it, we can see that a wire is capable of inducing a voltage along its own length simply due to a change in current through it. This effect is called self-induction. Self-induction is when a changing magnetic field is produced by changes in current through a wire inducing voltage along the length of that same wire. If the magnetic field flux is enhanced by bending the wire into the shape of a coil, and/or wrapping that coil around a material of high permeability, this effect of self-induced voltage will be more intense. A device constructed to take advantage of this effect is called an *inductor*, and will be discussed in greater detail in the next chapter. Extension: Lenz's Law The induced current will create a magnetic field that opposes the change in the magnetic flux. ### Worked Example 121: Faraday's Law **Question:** Consider a flat square coil with 5 turns. The coil is 0.50 m on each side, and has a magnetic field of 0.5 T passing through it. The plane of the coil is perpendicular to the magnetic field: the field points out of the page. Use Faraday's Law to calculate the induced emf if the magnetic field is increases uniformly from 0.5 T to 1 T in 10 s. Determine the direction of the induced current. Answer Step 1: Identify what is required We are required to use Faraday's Law to calculate the induced emf. Step 2: Write Faraday's Law $$\epsilon = -N \frac{\Delta \phi}{\Delta t}$$ $$421$$ Step 3 : Solve Problem $$\epsilon = -N \frac{\Delta \phi}{\Delta t}$$ $$= -N \frac{\phi_f - \phi_i}{\Delta t}$$ $$= -N \frac{B_f \cdot A - B_i \cdot A}{\Delta t}$$ $$= -N \frac{A(B_f - B_i)}{\Delta t}$$ $$= -(5) \frac{(0.5)^2 (1 - 0.5)}{10}$$ $$= 0.0625 \text{ V}$$ ### 18.3.1 Real-life applications The following devices use Faraday's Law in their operation. - induction stoves - tape players - metal detectors - transformers ### Activity :: Research Project : Real-life applications of Faraday's Law Choose one of the following devices and do some research on the internet or in a library how your device works. You will need to refer to Faraday's Law in your explanation. - induction stoves - tape players - metal detectors - transformers ### Exercise: Faraday's Law - 1. State Faraday's Law in words and write down a mathematical relationship. - 2. Describe what happens when a bar magnet is pushed into or pulled out of a solenoid connected to an ammeter. Draw pictures to support your description. - 3. Use the right hand rule to determine the direction of the induced current in the solenoid below. ### 18.4 Transformers One of the real-world applications of Faraday's Law is in a transformer. Eskom generates electricity at around 22 000 V. When you plug in a toaster, the mains voltage is 220 V. A transformer is used to *step-down* the high voltage to the lower voltage that is used as mains voltage. ### **Definition: Transformer** A transformer is an electrical device that uses the principle of induction between the primary coil and the secondary coil to either step-up or step-down voltage. The essential features of a transformer are two coils of wire, called the primary coil and the secondary coil, which are wound around different sections of the same iron core. When an alternating voltage is applied to the primary coil it creates an alternating current in that coil, which induces an alternating magnetic field in the iron core. This changing magnetic field induces an emf, which creates a current in the secondary coil. The circuit symbol for a transformer is: A very useful property of transformers is the ability to transform voltage and current levels according to a simple ratio, determined by the ratio of input and output coil turns. We can derive a mathematical relationship by using Faraday's law. Assume that an alternating voltage $V_p$ is applied to the primary coil (which has $N_p$ turns) of a transformer. The current that results from this voltage generates a magnetic flux $\phi_p$ . We can then describe the emf in the primary coil by: $$V_p = N_p \frac{\Delta \phi_p}{\Delta t}$$ Similarly, for the secondary coil, $$V_s = N_s \frac{\Delta \phi_s}{\Delta t}$$ If we assume that the primary and secondary windings are perfectly coupled, then: $$\phi_p = \phi_s$$ which means that: $$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$ ### Worked Example 122: Transformer specifications **Question:** Calculate the voltage on the secondary coil if the voltage on the primary coil is 120 V and the ratio of primary windings to secondary windings is 10:1. #### **Answer** $\label{eq:Step 1: Determine how to approach the problem} \textbf{Step 1: Determine how to approach the problem}$ Use $$\frac{V_p}{V_r} = \frac{N_p}{N_r}$$ with - $V_p = 120$ - $\bullet \ \frac{N_p}{N_s} = \frac{10}{1}$ Step 2 : Rearrange equation to solve for $\ensuremath{V_s}$ $$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$ $$\frac{1}{V_s} = \frac{N_p}{N_s} \frac{1}{V_p}$$ $$\therefore V_s = \frac{1}{\frac{N_p}{N_s}} V_p$$ Step 3 : Substitute values and solve for $V_s$ $$V_s = \frac{1}{\frac{N_p}{N_s}} V_p$$ $$= \frac{1}{\frac{10}{1}} 120$$ $$= 12 \text{ V}$$ A transformer designed to output more voltage than it takes in across the input coil is called a *step-up* transformer. A step-up transformer has more windings on the secondary coil than on the primary coil. This means that: $$N_s > N_p$$ Similarly, a transformer designed to output less than it takes in across the input coil is called a *step-down* transformer. A step-down transformer has more windings on the primary coil than on the primary coil. This means that: $$N_p > N_s$$ We use a step-up transformer to increase the voltage from the primary coil to the secondary coil. It is used at power stations to increase the voltage for the transmission lines. A step-down transformer decreases the voltage from the primary coil to the secondary coil. It is particularly used to decrease the voltage from the transmission lines to a voltage which can be used in factories and in homes. Transformer technology has made long-range electric power distribution practical. Without the ability to efficiently step voltage up and down, it would be cost-prohibitive to construct power systems for anything but close-range (within a few kilometres) use. As useful as transformers are, they only work with AC, not DC. This is because the phenomenon of mutual inductance relies on *changing* magnetic fields, and direct current (DC) can only produce steady magnetic fields, transformers simply will not work with direct current. Of course, direct current may be interrupted (pulsed) through the primary winding of a transformer to create a changing magnetic field (as is done in automotive ignition systems to produce high-voltage spark plug power from a low-voltage DC battery), but pulsed DC is not that different from AC. Perhaps more than any other reason, this is why AC finds such widespread application in power systems. ### 18.4.1 Real-world applications Transformers are very important in the supply of electricity nationally. In order to reduce energy losses due to heating, electrical energy is transported from power stations along power lines at high voltage and low current. Transformers are used to step the voltage up from the power station to the power lines, and step it down from the power lines to buildings where it is needed. # ? ### **Exercise: Transformers** - 1. Draw a sketch of the main features of a transformer - 2. Use Faraday's Law to explain how a transformer works in words and pictures. - 3. Use the equation for Faraday's Law to derive an expression involving the ratio between the voltages and number of windings in the primary and secondary coils - 4. If we have $N_p=100$ and $N_s=50$ and we connect the primary winding to a 230 V, 50Hz supply then calculate the voltage on the secondary winding. - 5. State the difference between a step-up and a step-down transformer in both structure and function. - 6. Give an example of the use of transformers. ## 18.5 Motion of a charged particle in a magnetic field When a charged particle moves through a magnetic field it experiences a force. For a particle that is moving at right angles to the magnetic field, the force is given by: $$F = qvB$$ where q is the charge on the particle, v is the velocity of the particle and B is the magnetic field through which the particle is moving. ### Worked Example 123: Charged particle moving in a magnetic field **Question:** An electron travels at $150 \mathrm{m.s^{-1}}$ at right angles to a magnetic field of 80 000 T. What force is exerted on the electron? ### **Answer** ### Step 1 : Determine what is required We are required to determine the force on a moving charge in a magnetic field ### Step 2: Determine how to approach the problem We can use the formula: $$F = qvB$$ ### Step 3: Determine what is given We are given - $q = 1.6 \times 10^{-19} \text{C}$ (The charge on an electron) - $v = 150 \text{m.s}^{-1}$ - B = 80~000T Step 4: Determine the force $$F = qvB$$ = $(1.6 \times 10^{-19} \text{C})(150 \text{m.s}^{-1})(80\ 000 \text{T})$ = $1.92 \times 10^{-12} \text{N}$ **Important:** The direction of the force exerted on a charged particle moving through a magnetic field is determined by using the Right Hand Rule. Point your fingers in the direction of the velocity of the charge and turn them (as if turning a screwdriver) towards the direction of the magnetic field. Your thumb will point in the direction of the force. If the charge is negative, the direction of the force will be opposite to the direction of your thumb. ### 18.5.1 Real-world applications The following devices use the movement of charge in a magnetic field - televisions - oscilloscope # Activity :: Research Project : Real-life applications of charges moving in a magnetic field Choose one of the following devices and do some research on the internet or in a library how your device works. - oscilloscope - television # ? ### **Exercise: Lorentz Force** - 1. What happens to a charged particle when it moves through a magnetic field? - 2. Explain how you would use the Right Hand Rule to determine the direction of the force experienced by a charged particle as it moves in a magnetic field. - 3. Explain how the force exerted on a charged particle moving through a magnetic field is used in a television. ## 18.6 Summary - 1. Electromagnetism is the study of the properties and relationship between electric current and magnetism. - 2. A current carrying conductor will produce a magnetic field around the conductor. - 3. The direction of the magnetic field is found by using the Right Hand Rule. - 4. Electromagnets are temporary magnets formed by current-carrying conductors. - 5. Electromagnetic induction occurs when a moving magnetic field induces a voltage in a current-carrying conductor. - 6. Transformers use electromagnetic induction to alter the voltage. - 7. A charged particle will experience a force in a magnetic field. ## 18.7 End of chapter exercises - 1. State the Right Hand Rule. - 2. What did Hans Oersted discover about the relationship between electricity and magnetism? - 3. List two uses of electromagnetism. - 4. Draw a labelled diagram of an electromagnet and show the poles of the electromagnet on your sketch. - 5. Transformers are useful electrical devices. - A What is a transformer? - B Draw a sketch of a step-down transformer? - C What is the difference between a step-down and step-up transformer? - D When would you use a step-up transformer? - 6. Calculate the voltage on the secondary coil of a transformer if the voltage on the primary coil is 22 000 V and the ratio of secondary windings to secondary windings is 500:1. - 7. You find a transformer with 1000 windings on the primary coil and 200 windinds on the secondary coil. - A What type of transformer is it? - B What will be the voltage on the secondary coil if the voltage on the primary coil is 400 V? - IEB 2005/11 HG An electric cable consists of two long straight parallel wires separated by plastic insulating material. Each wire carries a current I in the same direction (as shown in the diagram below). Which of the following is true concerning the force of Wire A on Wire B? | | Direction of Force | Origin of Force | |-----|------------------------|----------------------------------------------| | (a) | towards A (attraction) | electrostatic force between opposite charges | | (b) | towards B (repulsion) | electrostatic force between opposite charges | | (c) | towards A (attraction) | magnetic force on current-carrying conductor | | (d) | towards B (repulsion) | magnetic force on current-carrying conductor | ### IEB 2005/11 HG1 Force of parallel current-carrying conductors Two long straight parallel current-carrying conductors placed $1\ m$ apart from each other in a vacuum each carry a current of $1\ A$ in the same direction. - A What is the magnitude of the force of 1 m of one conductor on the other? - B How does the force compare with that in the previous question when the current in one of the conductors is halved, and their distance of separation is halved? - IEB 2005/11 HG An electron moving horizontally in a TV tube enters a region where there is a uniform magnetic field. This causes the electron to move along the path (shown by the solid line) because the magnetic field exerts a constant force on it. What is the direction of this magnetic field? - A upwards (towards the top of the page) - B downwards (towards the bottom of the page) - C into the page - D out of the page # Appendix A # **GNU Free Documentation License** Version 1.2, November 2002 Copyright © 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. ### **PREAMBLE** The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. ### APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. ### VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A. You may also lend copies, under the same conditions stated above, and you may publicly display copies. ### **COPYING IN QUANTITY** If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. ### **MODIFICATIONS** You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: - 1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. - 2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. - 3. State on the Title page the name of the publisher of the Modified Version, as the publisher. - 4. Preserve all the copyright notices of the Document. - 5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. - 6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. - 7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. - 8. Include an unaltered copy of this License. - 9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. - 10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. - 11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. - 12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. - 13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. - 14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. - 15. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. ### **COMBINING DOCUMENTS** You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements". ### **COLLECTIONS OF DOCUMENTS** You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. ### AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. ### **TRANSLATION** Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the actual title. ### **TERMINATION** You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. ### FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. ## ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.