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Chapter 21

Motion in Two Dimensions -
Grade 12

21.1 Introduction

In Chapter 3, we studied motion in one dimension and briefly looked at vertical motion. In this
chapter we will discuss vertical motion and also look at motion in two dimensions. In
Chapter 12, we studied the conservation of momentum and looked at applications in one
dimension. In this chapter we will look at momentum in two dimensions.

21.2 Vertical Projectile Motion

In Chapter 4, we studied the motion of objects in free fall and we saw that an object in free fall
falls with gravitational acceleration g. Now we can consider the motion of objects that are
thrown upwards and then fall back to the Earth. We call this projectile motion and we will only
consider the situation where the object is thrown straight upwards and then falls straight
downwards - this means that there is no horizontal displacement of the object, only a vertical
displacement.

21.2.1 Motion in a Gravitational Field

When an object is in a gravitational field, it always accelerates downwards with a constant
acceleration g whether the object is moving upward or downward. This is shown in Figure 21.1.

Important: Projectiles moving upwards or downwards always accelerate downwards with a
constant acceleration g.

bobject moving upwards g bobject moving downwardsg

Figure 21.1: Objects moving upwards or downwards, always accelerate downwards.

This means that if an object is moving upwards, it decreases until it stops (vf = 0 m·s−1).
This is the maximum height that the object reaches, because after this, the object starts to fall.

Important: Projectiles have zero velocity at their greatest height.
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Consider an object thrown upwards from a vertical height ho. We have seen that the object
will travel upwards with decreasing velocity until it stops, at which point it starts falling. The
time that it takes for the object to fall down to height ho is the same as the time taken for the
object to reach its maximum height from height ho.

initial height h0

maximum height

b

(a) time = 0 s

b

(b) time = tm

b

(c) time = 2tm

Figure 21.2: (a) An object is thrown upwards from height h0. (b) After time tm, the object
reaches its maximum height, and starts to fall. (c) After a time 2tm the object returns to height
h0.

Important: Projectiles take the same the time to reach their greatest height from the point
of upward launch as the time they take to fall back to the point of launch.

21.2.2 Equations of Motion

The equations of motion that were used in Chapter 4 to describe free fall can be used for
projectile motion. These equations are the same as those equations that were derived in
Chapter 3, but with a = g. We use g = 9,8 m · s−2 for our calculations.

vi = initial velocity (m·s−1) at t = 0 s

vf = final velocity (m·s−1) at time t

∆x = height above ground (m)

t = time (s)

∆t = time interval (s)

g = acceleration due to gravity (m·s−2)

vf = vi + gt (21.1)

∆x =
(vi + vf )

2
t (21.2)

∆x = vit +
1

2
gt2 (21.3)

v2
f = v2

i + 2g∆x (21.4)

Worked Example 132: Projectile motion

Question: A ball is thrown upwards with an initial velocity of 10 m·s−1.

1. Determine the maximum height reached above the thrower’s hand.

2. Determine the time it takes the ball to reach its maximum height.

Answer
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Step 1 : Identify what is required and what is given

We are required to determine the maximum height reached by the ball and how
long it takes to reach this height. We are given the initial velocity vi = 10
m·s−1and the acceleration due to gravity g = 9,8 m·s−2.

Step 2 : Determine how to approach the problem

Choose down as positive. We know that at the maximum height the velocity of the
ball is 0 m·s−1. We therefore have the following:

• vi = −10 m · s−1 (it is negative because we chose upwards as positive)

• vf = 0 m · s−1

• g = +9,8 m · s−2

Step 3 : Identify the appropriate equation to determine the height.

We can use:
v2

f = v2
i + 2g∆x

to solve for the height.

Step 4 : Substitute the values in and find the height.

v2
f = v2

i + 2g∆x

(0)2 = (−10)2 + (2)(9,8)(∆x)

−100 = 19,6∆x

∆x = 5,102...m

The value for the displacement will be negative because the displacement is
upwards and we have chosen downward as positive (and upward as negative). The
height will be a positive number, h = 5.10m.

Step 5 : Identify the appropriate equation to determine the time.

We can use:
vf = vi + gt

to solve for the time.

Step 6 : Substitute the values in and find the time.

vf = vi + gt

0 = −10 + 9,8t

10 = 9,8t

t = 1,02...s

Step 7 : Write the final answer.

The ball reaches a maximum height of 5,10 m.
The ball takes 1,02 s to reach the top.

Worked Example 133: Height of a projectile

Question: A cricketer hits a cricket ball from the ground so that it goes directly
upwards. If the ball takes, 10 s to return to the ground, determine its maximum
height.

Answer

Step 1 : Identify what is required and what is given

We need to find how high the ball goes. We know that it takes 10 seconds to go
up and down. We do not know what the initial velocity of the ball (vi) is.
Step 2 : Determine how to approach the problem
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A problem like this one can be looked at as
if there are two motions. The first is the ball
going up with an initial velocity and stopping
at the top (final velocity is zero). The second
motion is the ball falling, its initial velocity is
zero and its final velocity is unknown.

vi = ?

vf = 0 m·s−1 vi = 0 m·s−1

vf = ?

g = 9,8 m·s−2

Choose down as positive. We know that at the maximum height, the velocity of
the ball is 0 m·s−1. We also know that the ball takes the same time to reach its
maximum height as it takes to travel from its maximum height to the ground. This
time is half the total time. We therefore have the following for the motion of the
ball going down:

• t = 5 s, half of the total time

• vtop = vi = 0 m · s−1

• g = 9,8 m · s−2

• ∆x = ?

Step 3 : Find an appropriate equation to use
We are not given the initial velocity of the ball going up and therefore we do not
have the final velocity of the ball coming down. We need to choose an equation
that does not have vf in it. We can use the following equation to solve for ∆x:

∆x = vit +
1

2
gt2

Step 4 : Substitute values and find the height.

∆x = (0)(5) +
1

2
(9,8)(5)2

∆x = 0 + 122,5m

height = 122,5m

Step 5 : Write the final answer
The ball reaches a maximum height of 122,5 m.

Exercise: Equations of Motion

1. A cricketer hits a cricket ball straight up into the air. The cricket ball has an
initial velocity of 20 m·s−1.

A What height does the ball reach before it stops to fall back to the ground.

B How long has the ball been in the air for?

2. Zingi throws a tennis ball up into the air. It reaches a height of 80 cm.

A Determine the initial velocity of the tennis ball.

B How long does the ball take to reach its maximum height?
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3. A tourist takes a trip in a hot air balloon. The hot air balloon is ascending
(moving up) at a velocity of 4 m·s−1. He accidentally drops his camera over
the side of the balloon’s basket, at a height of 20 m. Calculate the velocity
with which the camera hits the ground.

4 m · s−1

20 m

21.2.3 Graphs of Vertical Projectile Motion

Vertical projectile motion is similar to motion at constant acceleration. In Chapter 3 you
learned about the graphs for motion at constant acceleration. The graphs for vertical projectile
motion are therefore identical to the graphs for motion under constant acceleration.
When we draw the graphs for vertical projectile motion, we consider two main situations: an
object moving upwards and an object moving downwards.
If we take the upwards direction as positive then for an object moving upwards we get the
graphs shown in Figure 21.9.

h (m)

t (s)
tm tf

hm

(a)

0

v (m·s−1)

t (s)
tm

tf
0

(b)

g

a (m·s−2)

t (s)

(c)

0

Figure 21.3: Graphs for an object thrown upwards with an initial velocity vi. The object takes
tm s to reach its maximum height of hm m after which it falls back to the ground. (a) position
vs. time graph (b) velocity vs. time graph (c) acceleration vs. time graph.

Worked Example 134: Drawing Graphs of Projectile Motion

Question: Stanley is standing on the a balcony 20 m above the ground. Stanley
tosses up a rubber ball with an initial velocity of 4,9 m·s−1. The ball travels
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upwards and then falls to the ground. Draw graphs of position vs. time, velocity
vs. time and acceleration vs. time. Choose upwards as the positive direction.

Answer

Step 1 : Determine what is required

We are required to draw graphs of

1. ∆x vs. t

2. v vs. t

3. a vs. t

Step 2 : Analysis of problem

There are two parts to the motion of the ball:

1. ball travelling upwards from the building

2. ball falling to the ground

We examine each of these parts separately. To
be able to draw the graphs, we need to determine
the time taken and displacement for each of the
motions.

g = −9,8m·s−2

vi = 4,9m·s−1

vf = 0m·s−1

Step 3 : Find the height and the time taken for the first motion.

For the first part of the motion we have:

• vi = +4,9 m · s−1

• vf = 0 m · s−1

• g = −9,8 m · s−2

Therefore we can use v2
f = v2

i + 2g∆x to solve for the height and vf = vi + gt to
solve for the time.

v2
f = v2

i + 2g∆x

(0)2 = (4,9)2 + 2 × (−9,8) × ∆x

19,6∆x = (4,9)2

∆x = 1,225 m

vf = vi + gt

0 = 4,9 + (−9,8)× t

9,8t = 4,9

t = 0,5 s
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t = 0,5s
∆x = 1,225m

Step 4 : Find the height and the time taken for the second motion.

For the second part of the motion we have:

• vi = 0 m · s−1

• ∆x = −(20 + 1,225) m

• g = −9,8 m · s−2

Therefore we can use ∆x = vit + 1

2
gt2 to solve

for the time.

∆x = vit +
1

2
gt2

−(20 + 1,225) = (0) × t +
1

2
× (−9,8)× t2

−21,225 = 0 − 4,9t2

t2 = 4,33163...

t = 2,08125... s

20 m
g = −9,8 m·s−2

vi = 0 m·s−1

∆x = −21,225 m

Step 5 : Graph of position vs. time

The ball starts from a position of 20 m (at t = 0 s) from the ground and moves
upwards until it reaches (20 + 1,225) m (at t = 0,5 s). It then falls back to 20 m
(at t = 0,5 + 0,5 = 1,0 s) and then falls to the ground, ∆ x = 0 m at (t = 0,5 +
2,08 = 2,58 s).
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t(s)

x(m)

21,25

20

0,5 1,0 2,58

Step 6 : Graph of velocity vs. time

The ball starts off with a velocity of +4,9 m·s−1at t = 0 s, it then reaches a
velocity of 0 m·s−1at t = 0,5 s. It stops and falls back to the Earth. At t = 1,0 it
has a velocity of -4,9 m·s−1. This is the same as the initial upwards velocity but it
is downwards. It carries on at constant acceleration until t = 2,58 s. In other
words, the velocity graph will be a straight line. The final velocity of the ball can
be calculated as follows:

vf = vi + gt

= 0 + (−9,8)(2,08...)

= −20,396... m · s−1

b

b

b t(s)

v(m · s−1)

b4,9

−4,9

−20,40

0,5
1,0 2,58

Step 7 : Graph of a vs t

We chose upwards to be positive. The acceleration of the ball is downward.
g = −9.8 m · s−2. Because the acceleration is constant throughout the motion, the
graph looks like this:
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t(s)

a(m · s−2)

2,58

−9,8

Worked Example 135: Analysing Graphs of Projectile Motion

Question: The graph below (not drawn to scale) shows the motion of tennis ball
that was thrown vertically upwards from an open window some distance from the
ground. It takes the ball 0,2 s to reach its highest point before falling back to the
ground. Study the graph given and calculate

1. how high the window is above the ground.

2. the time it takes the ball to reach the maximum height.

3. the initial velocity of the ball.

4. the maximum height that the ball reaches.

5. the final velocity of the ball when it reaches the ground.

time (s)

Position (m)

0,2 0,4 ?

1

2

3

4

5

Answer
Step 1 : Find the height of the window.
The initial position of the ball will tell us how high the window is. From the y-axis
on the graph we can see that the ball is 4 m from the ground.
The window is therefore 4 m above the ground.
Step 2 : Find the time taken to reach the maximum height.
The maximum height is where the position-time graph show the maximum position
- the top of the curve. This is when t = 0,2 s.
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It takes the ball 0,2 seconds to reach the maximum height.
Step 3 : Find the initial velocity (vi) of the ball.
To find the initial velocity we only look at the first part of the motion of the ball.
That is from when the ball is released until it reaches its maximum height. We
have the following for this: Choose upwards as positive.

t = 0,2 s

g = −9,8 m · s−2

vf = 0 m · s−1(because the ball stops)

To calculate the initial velocity of the ball (vi), we use:

vf = vi + gt

0 = vi + (−9,8)(0,2)

vi = 1,96 m · s−1

The initial velocity of the ball is 1,96 m·s−1upwards.
Step 4 : Find the maximum height (∆x) of the ball.
To find the maximum height we look at the initial motion of the ball. We have the
following:

t = 0,2 s

g = −9,8 m · s−2

vf = 0 m · s−1(because the ball stops)

vi = +1,96 m · s−1(calculated above)

To calculate the maximum height (∆x) we use:

∆x = vit +
1

2
gt2

∆x = (1,96)(0,2) +
1

2
(−9,8)(0,2)2

∆x = 0,196m

The maximum height of the ball is (4 + 0,196) = 4,196 m above the ground.
Step 5 : Find the final velocity (vf) of the ball.
To find the final velocity of the ball we look at the second part of the motion. For
this we have:

∆x = −4,196 m (because upwards is positive)

g = −9,8 m · s−2

vi = 0 m · s−1

We can use (vf )2 = (vi)
2 + 2g∆x to calculate the final velocity of the ball.

(vf )2 = (vi)
2 + 2g∆x

(vf )2 = (0)2 + 2(−9,8)(−4,196)

(vf )2 = 82,2416

vf = 9,0687... m · s−1

The final velocity of the ball is 9,07 m·s−1downwards.

Worked Example 136: Describing Projectile Motion
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Question: A cricketer hits a cricket ball from the ground and the following graph
of velocity vs. time was drawn. Upwards was taken as positive. Study the graph
and answer the following questions:

1. Describe the motion of the ball according to the graph.

2. Draw a sketch graph of the corresponding displacement-time graph. Label the
axes.

3. Draw a sketch graph of the corresponding acceleration-time graph. Label the
axes.

b

b

b

19,6

-19,6

2 4 time (s)

ve
lo

ci
ty

(m
·
s−

1
)

b

b

Answer
Step 1 : Describe the motion of the ball.
We need to study the velocity-time graph to answer this question. We will break
the motion of the ball up into two time zones: t = 0 s to t = 2 s and t = 2 s to t
= 4 s.
From t = 0 s to t = 2 s the following happens:
The ball starts to move at an initial velocity of 19,6 m·s−1and decreases its velocity
to 0 m·s−1at t = 2 s. At t = 2 s the velocity of the ball is 0 m·s−1and therefore it
stops.
From t = 2 s to t = 4 s the following happens:
The ball moves from a velocity of 0 m·s−1to 19,6 m·s−1in the opposite direction to
the original motion.
If we assume that the ball is hit straight up in the air (and we take upwards as
positive), it reaches its maximum height at t = 2 s, stops, turns around and falls
back to the Earth to reach the ground at t = 4 s.
Step 2 : Draw the displacement-time graph.
To draw this graph, we need to determine the displacements at t = 2 s and t = 4 s.
At t = 2 s:
The displacement is equal to the area under the graph:
Area under graph = Area of triangle
Area = 1

2
bh

Area = 1

2
× 2 × 19,6

Displacement = 19,6 m
At t = 4 s:
The displacement is equal to the area under the whole graph (top and bottom).
Remember that an area under the time line must be substracted:
Area under graph = Area of triangle 1 + Area of triangle 2
Area = 1

2
bh + 1

2
bh

Area = (1

2
× 2 × 19,6) + (1

2
× 2 × (-19,6))

Area = 19,6 - 19,6
Displacement = 0 m
The displacement-time graph for motion at constant acceleration is a curve. The
graph will look like this:
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b

b b

19,6

2 4 time (s)

di
sp

la
ce

m
en

t(
m

)

b

Step 3 : Draw the acceleration-time graph.

To draw the acceleration vs. time graph, we need to know what the acceleration is.
The velocity-time graph is a straight line which means that the acceleration is
constant. The gradient of the line will give the acceleration.

The line has a negative slope (goes down towards the left) which means that the
acceleration has a negative value.

Calculate the gradient of the line:
gradient = ∆v

t

gradient = 0−19,6
2−0

gradient = −19,6

2

gradient = -9,8
acceleration = 9,8 m·s−2downwards

b

-9,8

2 4 time (s)

ac
ce

le
ra

ti
on

(m
·
s−

2
)

b

b

Exercise: Graphs of Vertical Projectile Motion

1. Amanda throws a tennisball from a height of 1,5m straight up into the air
and then lets it fall to the ground. Draw graphs of ∆x vs t; v vs t and a vs t

for the motion of the ball. The initial velocity of the tennisball is 2 m · s−1.
Choose upwards as positive.

2. A bullet is shot from a gun. The following graph is drawn. Downwards was
chosen as positive

a Describe the motion of the bullet

b Draw a displacement - time graph

c Draw a acceleration - time graph
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t(s)

v(m · s−1)

200

−200

20,4
40,8

21.3 Conservation of Momentum in Two Dimensions

We have seen in Chapter ?? that the momentum of a system is conserved when there are no
external forces acting on the system. Conversely, an external force causes a change in
momentum ∆p, with the impulse delivered by the force, F acting for a time ∆t given by:

∆p = F · ∆t

The same principles that were studied in applying the conservation of momentum to problems
in one dimension, can be applied to solving problems in two dimensions.

The calculation of momentum is the same in two dimensions as in one dimension. The
calculation of momentum in two dimensions is broken down into determining the x and y

components of momentum and applying the conservation of momentum to each set of
components.

Consider two objects moving towards each other as shown in Figure 21.4. We analyse this
situation by calculating the x and y components of the momentum of each object.

vi1y

vi1x

vi1

θ1m1

vi2y

vi2x

vi2

θ2 m2

b

P

(a) Before the collision

vf1y

vf1x

vf1

φ1m1

vf2y

vf2x

vf2

φ2 m2

b

P

(b) After the collision

Figure 21.4: Two balls collide at point P.

Before the collision

Total momentum:

pi1 = m1vi1

pi2 = m2vi2
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x-component of momentum:

pi1x = m1vi1x = m1vi1 cos θ1

pi2x = m2ui2x = m2vi2 sin θ2

y-component of momentum:

pi1y = m1vi1y = m1vi1 cos θ1

pi2y = m2vi2y = m2vi2 sin θ2

After the collision

Total momentum:

pf1 = m1vf1

pf2 = m2vf2

x-component of momentum:

pf1x = m1vf1x = m1vf1 cosφ1

pf2x = m2vf2x = m2vf2 sin φ2

y-component of momentum:

pf1y = m1vf1y = m1vf1 cosφ1

pf2y = m2vf2y = m2vf2 sin φ2

Conservation of momentum

The initial momentum is equal to the final momentum:

pi = pf

pi = pi1 + pi2

pf = pf1 + pf2

This forms the basis of analysing momentum conservation problems in two dimensions.

Worked Example 137: 2D Conservation of Momentum

Question: In a rugby game, Player 1 is running with the ball at 5 m·s−1 straight
down the field parallel to the edge of the field. Player 2 runs at 6 m·s−1 an angle
of 60◦ to the edge of the field and tackles Player 1. In the tackle, Player 2 stops
completely while Player 1 bounces off Player 2. Calculate the velocity (magnitude
and direction) at which Player 1 bounces off Player 2. Both the players have a
mass of 90 kg.

Answer

Step 1 : Understand what is given and what is being asked

The first step is to draw the picture to work out what the situation is. Mark the
initial velocities of both players in the picture.
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60◦

v
1
i
=

5
m

s−
1

v
2i =

8
m
s −

1

v2xi

v
2
y

i

We also know that m1 = m2 = 90 kg and vf2 = 0 ms−1.
We need to find the final velocity and angle at which Player 1 bounces off Player 2.

Step 2 : Use conservation of momentum to solve the problem. First find
the initial total momentum:

Total initial momentum = Total final momentum. But we have a two dimensional
problem, and we need to break up the initial momentum into x and y components.

pix = pfx

piy = pfy

For Player 1:

pix1 = m1vi1x = 90 × 0 = 0

piy1 = m1vi1y = 90 × 5

For Player 2:

pix2 = m2vi2x = 90 × 8 × sin 60◦

piy2 = m2vi2y = 90 × 8 × cos 60◦

Step 3 : Now write down what we know about the final momentum:

For Player 1:

pfx1 = m1vfx1 = 90 × vfx1

pfy1 = m1vfy1 = 90 × vfy1

For Player 2:

pfx2 = m2vfx2 = 90 × 0 = 0

pfy2 = m2vfy2 = 90 × 0 = 0

Step 4 : Use conservation of momentum:

The initial total momentum in the x direction is equal to the final total momentum
in the x direction.
The initial total momentum in the y direction is equal to the final total momentum
in the y direction.
If we find the final x and y components, then we can find the final total

momentum.

pix1 + pix2 = pfx1 + pfx2

0 + 90 × 8 × sin 60◦ = 90 × vfx1 + 0

vfx1 =
90 × 8 × sin 60◦

90

vfx1 = 6.928ms−1
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piy1 + piy2 = pfy1 + pfy2

90 × 5 + 90 × 8 × cos 60◦ = 90 × vfy1 + 0

vfy1 =
90 × 5 + 90 × 8 × cos 60◦

90

vfy1 = 9.0ms−1

Step 5 : Using the x and y components, calculate the final total v

Use Pythagoras’s theorem to find the total final velocity:

θ

vfx1

v
f

y
1

v
f
to

t

vftot =
√

v2
fx1

+ v2
fx2

=
√

6.9282 + 92

= 11.36

Calculate the angle θ to find the direction of Player 1’s final velocity:

sin θ =
vfxy1

vftot

θ = 52.4◦

Therefore Player 1 bounces off Player 2 with a final velocity of 11.36 m·s−1 at an
angle of 52.4◦ from the horizontal.

Worked Example 138: 2D Conservation of Momentum: II

Question: In a soccer game, Player 1 is running with the ball at 5 m·s−1 across
the pitch at an angle of 75◦ from the horizontal. Player 2 runs towards Player 1 at
6 m·s−1 an angle of 60◦ to the horizontal and tackles Player 1. In the tackle, the
two players bounce off each other. Player 2 moves off with a velocity in the
opposite x-direction of 0.3 m·s−1 and a velocity in the y-direction of 6 m·s−1.
Both the players have a mass of 80 kg. What is the final total velocity of Player 1?
Answer
Step 1 : Understand what is given and what is being asked
The first step is to draw the picture to work out what the situation is. Mark the
initial velocities of both players in the picture.

75◦

60◦

vix1

vix2

v
iy

2

v
iy

1

v
i1

=
5

m
s
−

1

v
i2=6

ms −
1
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We also know that m1 = m2 = 80 kg. And vfx2=-0.3 ms−1 and vfy2=6 ms−1.
We need to find the final velocity and angle at which Player 1 bounces off Player 2.

Step 2 : Use conservation of momentum to solve the problem. First find
the initial total momentum:

Total initial momentum = Total final momentum. But we have a two dimensional
problem, and we need to break up the initial momentum into x and y components.

pix = pfx

piy = pfy

For Player 1:

pix1 = m1vi1x = 80 × 5 × cos 75◦

piy1 = m1vi1y = 80 × 5 × sin 75◦

For Player 2:

pix2 = m2vi2x = 80 × 6 × cos 60◦

piy2 = m2vi2y = 80 × 6 × sin 60◦

Step 3 : Now write down what we know about the final momentum:

For Player 1:

pfx1 = m1vfx1 = 80 × vfx1

pfy1 = m1vfy1 = 80 × vfy1

For Player 2:

pfx2 = m2vfx2 = 80 × (−0.3)× cos 60◦

pfy2 = m2vfy2 = 80 × 6 × sin 60◦

Step 4 : Use conservation of momentum:

The initial total momentum in the x direction is equal to the final total momentum
in the x direction.
The initial total momentum in the y direction is equal to the final total momentum
in the y direction.
If we find the final x and y components, then we can find the final total

momentum.

pix1 + pix2 = pfx1 + pfx2

80 × 5 cos 75◦ + 80 × cos 60◦ = 80 × vfx1 + 80 × (−0.3)

vfx1 =
80 × 5 cos 75◦ + 80 × cos 60◦ + 80 × (−0.3)

80

vfx1 = 2.0ms−1

piy1 + piy2 = pfy1 + pfy2

80 × 5 sin 75◦ + 80 × sin 60◦ = 80 × vfy1 + 80 × 6

vfy1 =
80 × 5 sin 75◦ + 80 × sin 60◦ − 80 × 6

80

vfy1 = 4.0ms−1

Step 5 : Using the x and y components, calculate the final total v

Use Pythagoras’s theorem to find the total final velocity:
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θ

vfx1

v
f

y
1

v
f
to

t

vftot =
√

v2
fx1

+ v2
fx2

=
√

22 + 42

= 4.5

Calculate the angle θ to find the direction of Player 1’s final velocity:

tan θ =
vfy1

vfx1

θ = 26.6◦

Therefore Player 1 bounces off Player 2 with a final velocity of 4.5 m·s−1 at an
angle of 26.6◦ from the horizontal.

21.4 Types of Collisions

Two types of collisions are of interest:

• elastic collisions

• inelastic collisions

In both types of collision, total momentum is always conserved. Kinetic energy is conserved for
elastic collisions, but not for inelastic collisions.

21.4.1 Elastic Collisions

Definition: Elastic Collisions
An elastic collision is a collision where total momentum and total kinetic energy are both
conserved.

This means that in an elastic collision the total momentum and the total kinetic energy before
the collision is the same as after the collision. For these kinds of collisions, the kinetic energy is
not changed into another type of energy.

Before the Collision

Figure 21.5 shows two balls rolling toward each other, about to collide:

Before the balls collide, the total momentum of the system is equal to all the individual
momenta added together. Ball 1 has a momentum which we call pi1 and ball 2 has a
momentum which we call pi2, it means the total momentum before the collision is:

pi = pi1 + pi2
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1
pi1, KEi1

2
pi2, KEi2

Figure 21.5: Two balls before they collide.

We calculate the total kinetic energy of the system in the same way. Ball 1 has a kinetic energy
which we call KEi1 and the ball 2 has a kinetic energy which we call KEi2, it means that the
total kinetic energy before the collision is:

KEi = KEi1 + KEi2

After the Collision

Figure 21.6 shows two balls after they have collided:

1
pf1, KEf1

2
pf2, KEf2

Figure 21.6: Two balls after they collide.

After the balls collide and bounce off each other, they have new momenta and new kinetic
energies. Like before, the total momentum of the system is equal to all the individual momenta
added together. Ball 1 now has a momentum which we call pf1 and ball 2 now has a
momentum which we call pf2, it means the total momentum after the collision is

pf = pf1 + pf2

Ball 1 now has a kinetic energy which we call KEf1 and ball 2 now has a kinetic energy which
we call KEf2, it means that the total kinetic energy after the collision is:

KEf = KEf1 + KEf2

Since this is an elastic collision, the total momentum before the collision equals the total
momentum after the collision and the total kinetic energy before the collision equals the total
kinetic energy after the collision. Therefore:

Initial Final

pi = pf (21.5)

pi1 + pi2 = pf1 + pf2

and

KEi = KEf (21.6)

KEi1 + KEi2 = KEf1 + KEf2

Worked Example 139: An Elastic Collision

Question: Consider a collision between two pool balls. Ball 1 is at rest and ball 2
is moving towards it with a speed of 2 m·s−1. The mass of each ball is 0.3 kg.
After the balls collide elastically, ball 2 comes to an immediate stop and ball 1
moves off. What is the final velocity of ball 1?
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Answer
Step 1 : Determine how to approach the problem
We are given:

• mass of ball 1, m1 = 0.3 kg

• mass of ball 2, m2 = 0.3 kg

• initial velocity of ball 1, vi1 = 0 m·s−1

• initial velocity of ball 2, vi2 = 2 m·s−1

• final velocity of ball 2, vf2 = 0 m·s−1

• the collision is elastic

All quantities are in SI units. We are required to determine the final velocity of ball
1, vf1. Since the collision is elastic, we know that

• momentum is conserved, m1vi1 + m2vi2 = m1vf1 + m2vf2

• energy is conserved, 1

2
(m1v

2
i1 + m2v

2
i2 = m1v

2
f1 + m2v

2
f2)

Step 2 : Choose a frame of reference
Choose to the right as positive.
Step 3 : Draw a rough sketch of the situation

2

m2, vi2

1

m1, vi1

2

m2, vf2

1

m1, vf1

Before collision After collision

Step 4 : Solve the problem
Momentum is conserved. Therefore:

pi = pf

m1vi1 + m2vi2 = m1vf1 + m2vf2

(0,3)(0) + (0,3)(2) = (0,3)vf1 + 0

vf1 = 2 m · s−1

Step 5 : Quote the final answer
The final velocity of ball 1 is 2 m·s−1in the same direction as ball 2.

Worked Example 140: Another Elastic Collision

Question: Consider two 2 marbles. Marble 1 has mass 50 g and marble 2 has
mass 100 g. Edward rolls marble 2 along the ground towards marble 1 in the
positive x-direction. Marble 1 is initially at rest and marble 2 has a velocity of 3
m·s−1 in the positive x-direction. After they collide elastically, both marbles are
moving. What is the final velocity of each marble?
Answer
Step 1 : Decide how to approach the problem
We are given:

• mass of marble 1, m1=50 g

• mass of marble 2, m2=100 g

• initial velocity of marble 1, vi1=0 m·s−1

• initial velocity of marble 2, vi2=3 m·s−1

• the collision is elastic
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The masses need to be converted to SI units.

m1 = 0,05 kg

m2 = 0,1 kg

We are required to determine the final velocities:

• final velocity of marble 1, vf1

• final velocity of marble 2, vf2

Since the collision is elastic, we know that

• momentum is conserved, pi = pf .

• energy is conserved, KEi=KEf .

We have two equations and two unknowns (v1, v2) so it is a simple case of solving
a set of simultaneous equations.

Step 2 : Choose a frame of reference

Choose to the right as positive.

Step 3 : Draw a rough sketch of the situation

2 21 1

Before Collision After Collision

m2 = 100g

vi2 = 3 m · s−1

m1 = 50g

vi1 = 0

m2 = 100g m1 = 50g

Step 4 : Solve problem

Momentum is conserved. Therefore:

pi = pf

pi1 + pi2 = pf1 + pf2

m1vi1 + m2vi2 = m1vf1 + m2vf2

(0,05)(0) + (0,1)(3) = (0,05)vf1 + (0,1)vf2

0,3 = 0,05vf1 + 0,1vf2 (21.7)

Energy is also conserved. Therefore:

KEi = KEf

KEi1 + KEi2 = KEf1 + KEf2

1

2
m1v

2
i1 +

1

2
m2v

2
i2 =

1

2
m1v

2
f1 +

1

2
m2v

2
f2

(
1

2
)(0,05)(0)2 + (

1

2
)(0,1)(3)2 =

1

2
(0,05)(vf1)

2 + (
1

2
)(0,1)(vf2)

2

0,45 = 0,025v2
f1 + 0,05v2

f2 (21.8)

Substitute Equation 21.7 into Equation 21.8 and solve for vf2.
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m2v
2
i2 = m1v

2
f1 + m2v

2
f2

= m1

(

m2

m1

(vi2 − vf2)

)2

+ m2v
2
f2

= m1

m2
2

m2
1

(vi2 − vf2)
2 + m2v

2
f2

=
m2

2

m1

(vi2 − vf2)
2 + m2v

2
f2

v2
i2 =

m2

m1

(vi2 − vf2)
2
+ v2

f2

=
m2

m1

(

v2
i2 − 2 · vi2 · vf2 + v2

f2

)

+ v2
f2

0 =

(

m2

m1

− 1

)

v2
i2 − 2

m2

m1

vi2 · vf2 +

(

m2

m1

+ 1

)

v2
f2

=

(

0.1

0.05
− 1

)

(3)2 − 2
0.1

0.05
(3) · vf2 +

(

0.1

0.05
+ 1

)

v2
f2

= (2 − 1)(3)2 − 2 · 2(3) · vf2 + (2 + 1)v2
f2

= 9 − 12vf2 + 3v2
f2

= 3 − 4vf2 + v2
f2

= (vf2 − 3)(vf2 − 1)

Substituting back into Equation 21.7, we get:

vf1 =
m2

m1

(vi2 − vf2)

=
0.1

0.05
(3 − 3)

= 0 m · s−1

or

vf1 =
m2

m1

(vi2 − vf2)

=
0.1

0.05
(3 − 1)

= 4 m · s−1

But according to the question, ball 1 is moving after the collision, therefore ball 1
moves to the right at 4 m·s−1and ball 2 moves to the left with a velocity of 1
m·s−1.

Worked Example 141: Colliding Billiard Balls

Question: Two billiard balls each with a mass of 150g collide head-on in an elastic
collision. Ball 1 was travelling at a speed of 2 m · s−1 and ball 2 at a speed of
1,5 m · s−1. After the collision, ball 1 travels away from ball 2 at a velocity of
1,5 m · s−1.

1. Calculate the velocity of ball 2 after the collision.

2. Prove that the collision was elastic. Show calculations.

Answer

1. Step 1 : Draw a rough sketch of the situation
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1 2 1 2

Before Collision After Collision

?1,5 m · s−1

2 m · s−1 1,5 m · s−1

Step 2 : Decide how to approach the problem

Since momentum is conserved in all kinds of collisions, we can use
conservation of momentum to solve for the velocity of ball 2 after the collision.

Step 3 : Solve problem

pbefore = pafter

m1vi1 + m2vi2 = m1vf1 + m2vf2
(

150

1000

)

(2) +

(

150

1000

)

(−1,5) =

(

150

1000

)

(−1,5) +

(

150

1000

)

(vf2)

0,3 − 0,225 = −0,225 + 0,15vf2

vf2 = 3 m · s−1

So after the collision, ball 2 moves with a velocity of 3 m · s−1.

2. The fact that characterises an elastic collision is that the total kinetic energy
of the particles before the collision is the same as the total kinetic energy of
the particles after the collision. This means that if we can show that the
initial kinetic energy is equal to the final kinetic energy, we have shown that
the collision is elastic.

Calculating the initial total kinetic energy:

EKbefore =
1

2
m1v

2
i1 +

1

2
m2v

2
i2

=

(

1

2

)

(0,15)(2)2 +

(

1

2

)

(0,15)(−1,5)2

= 0.469....J

Calculating the final total kinetic energy:

EKafter =
1

2
m1v

2
f1 +

1

2
m2v

2
f2

=

(

1

2

)

(0,15)(−1,5)2 +

(

1

2

)

(0,15)(2)2

= 0.469....J

So EKbefore = EKafter and hence the collision is elastic.

21.4.2 Inelastic Collisions

Definition: Inelastic Collisions
An inelastic collision is a collision in which total momentum is conserved but total kinetic
energy is not conserved. The kinetic energy is transformed into other kinds of energy.

So the total momentum before an inelastic collisions is the same as after the collision. But the
total kinetic energy before and after the inelastic collision is different. Of course this does not
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mean that total energy has not been conserved, rather the energy has been transformed into
another type of energy.

As a rule of thumb, inelastic collisions happen when the colliding objects are distorted in some
way. Usually they change their shape. The modification of the shape of an object requires
energy and this is where the “missing” kinetic energy goes. A classic example of an inelastic
collision is a motor car accident. The cars change shape and there is a noticeable change in the
kinetic energy of the cars before and after the collision. This energy was used to bend the
metal and deform the cars. Another example of an inelastic collision is shown in Figure 21.7.

pim, KEim pia, KEia

Before collision

pf , KEf

After collision

Figure 21.7: Asteroid moving towards the Moon.

An asteroid is moving through space towards the Moon. Before the asteroid crashes into the
Moon, the total momentum of the system is:

pi = pim + pia

The total kinetic energy of the system is:

KEi = KEim + KEia

When the asteroid collides inelastically with the Moon, its kinetic energy is transformed
mostly into heat energy. If this heat energy is large enough, it can cause the asteroid and the
area of the Moon’s surface that it hits, to melt into liquid rock! From the force of impact of
the asteroid, the molten rock flows outwards to form a crater on the Moon.

After the collision, the total momentum of the system will be the same as before. But since
this collision is inelastic, (and you can see that a change in the shape of objects has taken
place!), total kinetic energy is not the same as before the collision.
Momentum is conserved:

pi = pf

But the total kinetic energy of the system is not conserved:

KEi 6= KEf

Worked Example 142: An Inelastic Collision

Question: Consider the collision of two cars. Car 1 is at rest and Car 2 is moving
at a speed of 2 m·s−1 in the negative x-direction. Both cars each have a mass of
500 kg. The cars collide inelastically and stick together. What is the resulting
velocity of the resulting mass of metal?
Answer
Step 1 : Draw a rough sketch of the situation

Car 1

pi1 = 0

Car 2

pi2

Before collision

Car 1 Car 2

After collision

pf

Step 2 : Determine how to approach the problem
We are given:
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• mass of car 1, m1 = 500 kg

• mass of car 2, m2 = 500 kg

• initial velocity of car 1, vi1 = 0 m·s−1

• initial velocity of car 2, vi2 = 2 m·s−1to the left

• the collision is inelastic

All quantities are in SI units. We are required to determine the final velocity of the
resulting mass, vf .
Since the collision is inelastic, we know that

• momentum is conserved, m1vi1 + m2vi2 = m1vf1 + m2vf2

• kinetic energy is not conserved

Step 3 : Choose a frame of reference
Choose to the left as positive.
Step 4 : Solve problem
So we must use conservation of momentum to solve this problem.

pi = pf

pi1 + pi2 = pf

m1vi1 + m2vi2 = (m1 + m2)vf

(500)(0) + (500)(2) = (500 + 500)vf

1000 = 1000vf

vf = 1 m · s−1

Therefore, the final velocity of the resulting mass of cars is 1 m·s−1to the left.

Worked Example 143: Colliding balls of clay

Question: Two balls of clay, 200g each, are thrown towards each other according
to the following diagram. When they collide, they stick together and move off
together. All motion is taking place in the horizontal plane. Determine the velocity
of the clay after the collision.

2200g

4 m · s−1

1

200g

3 m · s−1

1+2

N

?
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Answer
Step 1 : Analyse the problem
This is an inelastic collision where momentum is conserved.
The momentum before = the momentum after.
The momentum after can be calculated by drawing a vector diagram.
Step 2 : Calculate the momentum before the collision

p1(before) = m1vi1 = (0,2)(3) = 0,6 kg · m·s−1east

p2(before) = m2vi2 = (0,2)(4) = 0,8 kg · m·s−1south

Step 3 : Calculate the momentum after the collision.
Here we need to draw a diagram:

θ

0,6

0,8

p1+2(after)

p1+2(after) =
√

(0,8)2 + (0,6)2

= 1

Step 4 : Calculate the final velocity
First we have to find the direction of the final momentum:

tan θ =
0,8

0,6

θ = 53,13◦

Now we have to find the magnitude of the final velocity:

p1+2 = m1+2vf

1 = (0,2 + 0,2)vf

vf = 2,5 m · s−1E53,13◦S

Exercise: Collisions

1. A truck of mass 4500 kg travelling at 20 m·s−1hits a car from behind. The
car (mass 1000 kg) was travelling at 15 m·s−1. The two vehicles, now
connected carry on moving in the same direction.

a Calculate the final velocity of the truck-car combination after the
collision.

b Determine the kinetic energy of the system before and after the collision.

c Explain the difference in your answers for b).

d Was this an example of an elastic or inelastic collision? Give reasons for
your answer.

2. Two cars of mass 900 kg each collide and stick together at an angle of 90◦.
Determine the final velocity of the cars if
car 1 was travelling at 15m·s−1and
car 2 was travelling at 20m·s−1.
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2

20 m · s−1

15 m · s−1

1

?

1+2

Extension: Tiny, Violent Collisions

Author: Thomas D. Gutierrez

Tom Gutierrez received his Bachelor of Science and Master degrees in Physics
from San Jose State University in his home town of San Jose, California. As a
Master’s student he helped work on a laser spectrometer at NASA Ames Research
Centre. The instrument measured the ratio of different isotopes of carbon in CO2

gas and could be used for such diverse applications as medical diagnostics and
space exploration. Later, he received his PhD in physics from the University of
California, Davis where he performed calculations for various reactions in high
energy physics collisions. He currently lives in Berkeley, California where he studies
proton-proton collisions seen at the STAR experiment at Brookhaven National
Laboratory on Long Island, New York.

High Energy Collisions

Take an orange and expand it to the size of the earth. The atoms of the
earth-sized orange would themselves be about the size of regular oranges and would
fill the entire “earth-orange”. Now, take an atom and expand it to the size of a
football field. The nucleus of that atom would be about the size of a tiny seed in
the middle of the field. From this analogy, you can see that atomic nuclei are very
small objects by human standards. They are roughly 10−15 meters in diameter –
one-hundred thousand times smaller than a typical atom. These nuclei cannot be
seen or studied via any conventional means such as the naked eye or microscopes.
So how do scientists study the structure of very small objects like atomic nuclei?

The simplest nucleus, that of hydrogen, is called the proton. Faced with the
inability to isolate a single proton, open it up, and directly examine what is inside,
scientists must resort to a brute-force and somewhat indirect means of exploration:
high energy collisions. By colliding protons with other particles (such as other
protons or electrons) at very high energies, one hopes to learn about what they are
made of and how they work. The American physicist Richard Feynman once
compared this process to slamming delicate watches together and figuring out how
they work by only examining the broken debris. While this analogy may seem
pessimistic, with sufficient mathematical models and experimental precision,
considerable information can be extracted from the debris of such high energy
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subatomic collisions. One can learn about both the nature of the forces at work
and also about the sub-structure of such systems.

The experiments are in the category of “high energy physics” (also known as
“subatomic” physics). The primary tool of scientific exploration in these
experiments is an extremely violent collision between two very, very small
subatomic objects such as nuclei. As a general rule, the higher the energy of the
collisions, the more detail of the original system you are able to resolve. These
experiments are operated at laboratories such as CERN, SLAC, BNL, and Fermilab,
just to name a few. The giant machines that perform the collisions are roughly the
size of towns. For example, the RHIC collider at BNL is a ring about 1 km in
diameter and can be seen from space. The newest machine currently being built,
the LHC at CERN, is a ring 9 km in diameter!

Activity :: Casestudy : Atoms and its Constituents
Questions:

1. What are isotopes? (2)

2. What are atoms made up of? (3)

3. Why do you think protons are used in the experiments and not atoms like
carbon? (2)

4. Why do you think it is necessary to find out what atoms are made up of and
how they behave during collisions? (2)

5. Two protons (mass 1,67× 10−27 kg) collide and somehow stick together after
the collision. If each proton travelled with an initial velocity of
5,00× 107 m · s−1 and they collided at an angle of 90◦, what is the velocity of
the combination after the collision. (9)

21.5 Frames of Reference

21.5.1 Introduction

N

S

W E

b

b

A

B

A’s rightA’s left

B’s leftB’s right

Figure 21.8: Top view of a road with two people standing on opposite sides. A car drives past.

Consider two people standing, facing each other on either side of a road. A car drives past
them, heading West. For the person facing South, the car was moving toward the right.
However, for the person facing North, the car was moving toward the left. This discrepancy is
due to the fact that the two people used two different frames of reference from which to
investigate this system. If each person were asked in what direction the car were moving, they
would give a different answer. The answer would be relative to their frame of reference.
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21.5.2 What is a frame of reference?

Definition: Frame of Reference
A frame of reference is the point of view from which a system is observed.

In practical terms, a frame of reference is a set of axes (specifying directions) with an origin.
An observer can then measure the position and motion of all points in a system, as well as the
orientation of objects in the system relative to the frame of reference.

There are two types of reference frames: inertial and non-inertial. An inertial frame of
reference travels at a constant velocity, which means that Newton’s first law (inertia) holds
true. A non-inertial frame of reference, such as a moving car or a rotating carousel, accelerates.
Therefore, Newton’s first law does not hold true in a non-inertial reference frame, as objects
appear to accelerate without the appropriate forces.

21.5.3 Why are frames of reference important?

Frames of reference are important because (as we have seen in the introductory example) the
velocity of a car can differ depending on which frame of reference is used.

Extension: Frames of Reference and Special Relativity

Frames of reference are especially important in special relativity, because when
a frame of reference is moving at some significant fraction of the speed of light,
then the flow of time in that frame does not necessarily apply in another reference
frame. The speed of light is considered to be the only true constant between
moving frames of reference.

The next worked example will explain this.

21.5.4 Relative Velocity

The velocity of an object is frame dependent. More specifically, the perceived velocity of an
object depends on the velocity of the observer. For example, a person standing on shore would
observe the velocity of a boat to be different than a passenger on the boat.

Worked Example 144: Relative Velocity

Question: The speedometer of a motor boat reads 5 m·s−1. The boat is moving
East across a river which has a current traveling 3 m·s−1 North. What would the
velocity of the motor boat be according to an observer on the shore?

Answer

Step 1 : First, draw a diagram showing the velocities involved.

N

S

W E

3 m·s−1

5 m·s−1

491



21.5 CHAPTER 21. MOTION IN TWO DIMENSIONS - GRADE 12

Step 2 : Use the Theorem of Pythagoras to solve for the resultant of the
two velocities.

R =
√

(3)2 + (5)2

=
√

34

= 5,8 m · s−1

tan θ =
5

3
θ = 59,04◦

N

S

W E
3 m·s−1

5 m·s−1

5,8 m·s−1θ

The observer on the shore sees the boat moving with a velocity of 5,8 m·s−1 at
N59,04◦E due to the current pushing the boat perpendicular to its velocity. This is
contrary to the perspective of a passenger on the boat who perceives the velocity
of the boat to be 5 m·s−1 due East. Both perspectives are correct as long as the
frame of the observer is considered.

Extension:

Worked Example 145: Relative Velocity 2

Question: It takes a man 10 seconds to ride down an escalator. It takes
the same man 15 s to walk back up the escalator against its motion.
How long will it take the man to walk down the escalator at the same
rate he was walking before?
Answer
Step 1 : Determine what is required and what is given
We are required to determine the time taken for a man to walk down an
escalator, with its motion.
We are given the time taken for the man to ride down the escalator and
the time taken for the man to walk up the escalator, against it motion.
Step 2 : Determine how to approach the problem
Select down as positive and assume that the escalator moves at a
velocity ve. If the distance of the escalator is xe then:

ve =
xe

10 s
(21.9)

Now, assume that the man walks at a velocity vm. Then we have that:

ve − vm =
xe

15 s
(21.10)

We are required to find t in:

ve + vm =
xe

t
(21.11)
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Step 3 : Solve the problem

We find that we have three equations and three unknowns (ve, vm and
t).

Add (21.10) to (21.11) to get:

2ve =
xe

15 s
+

xe

t

Substitute from (21.9) to get:

2
xe

10 s
=

xe

15 s
+

xe

t

Since xe is not equal to zero we can divide throughout by xe.

2

10 s
=

1

15 s
+

1

t

Re-write:
2

10 s
− 1

15 s
=

1

t

Multiply by t:

t(
2

10 s
− 1

15 s
) = 1

Solve for t:

t =
1

2

10 s
− 1

15 s

to get:

t =
2

15
s

Step 4 : Write the final answer

The man will take 1

15
s + 2

15
s = 1

5
s.

Exercise: Frames of Reference

1. A woman walks north at 3 km·hr−1 on a boat that is moving east at 4
km·hr−1. This situation is illustrated in the diagram below.

A How fast is the woman moving according to her friend who is also on the
boat?

B What is the woman’s velocity according to an observer watching from the
river bank?

b
3km·hr−1

4km·hr−1

N
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2. A boy is standing inside a train that is moving at 10 m·s−1to the left. The
boy throws a ball in the air with a velocity of 4 m·s−1. What is the resultant
velocity of the ball

A according to the boy?

B according to someone outside the train?

21.6 Summary

1. Projectiles are objects that move through the air.

2. Objects that move up and down (vertical projectiles) accelerate with a constant
acceleration g which is more or less equal to 9,8 m·s−2.

3. The equations of motion can be used to solve vertical projectile problems.

vf = vi + gt

∆x =
(vi + vf )

2
t

∆x = vit +
1

2
gt2

v2
f = v2

i + 2g∆x

4. Graphs can be drawn for vertical projectile motion and are similar to the graphs for
motion at constant acceleration. If upwards is taken as positive the ∆x vs t, v vs t ans a

vs t graphs for an object being thrown upwards look like this:

h (m)

t (s)
tm tf

hm

(a)

0

v (m·s−1)

t (s)
tm

tf
0

(b)

g

a (m·s−2)

t (s)

(c)

0

5. Momentum is conserved in one and two dimensions

p = mv

∆p = m∆v

∆p = F∆t

6. An elastic collision is a collision where both momentum and kinetic energy is conserved.

pbefore = pafter

KEbefore = KEafter

7. An inelastic collision is where momentum is conserved but kinetic energy is not conserved.

pbefore = pafter
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KEbefore 6= KEafter

8. The frame of reference is the point of view from which a system is observed.

21.7 End of chapter exercises

1. [IEB 2005/11 HG] Two friends, Ann and Lindiwe decide to race each other by swimming
across a river to the other side. They swim at identical speeds relative to the water. The
river has a current flowing to the east.

N

S

W E

b

b b

start

finish
Ann Lindiwe

current

Ann heads a little west of north so that she reaches the other side directly across from
the starting point. Lindiwe heads north but is carried downstream, reaching the other
side downstream of Ann. Who wins the race?

A Ann

B Lindiwe

C It is a dead heat

D One cannot decide without knowing the velocity of the current.

2. [SC 2001/11 HG1] A bullet fired vertically upwards reaches a maximum height and falls
back to the ground.

Which one of the following statements is true with reference to the acceleration of the
bullet during its motion, if air resistance is ignored?

A is always downwards

B is first upwards and then downwards

C is first downwards and then upwards

D decreases first and then increases

3. [SC 2002/03 HG1] Thabo suspends a bag of tomatoes from a spring balance held
vertically. The balance itself weighs 10 N and he notes that the balance reads 50 N. He
then lets go of the balance and the balance and tomatoes fall freely. What would the
reading be on the balance while falling?

falls freely
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A 50 N

B 40 N

C 10 N

D 0 N

4. [IEB 2002/11 HG1] Two balls, P and Q, are simultaneously thrown into the air from the
same height above the ground. P is thrown vertically upwards and Q vertically downwards
with the same initial speed. Which of the following is true of both balls just before they
hit the ground? (Ignore any air resistance. Take downwards as the positive direction.)

Velocity Acceleration
A The same The same
B P has a greater velocity than Q P has a negative acceleration; Q has a positive acceleration
C P has a greater velocity than Q The same
D The same P has a negative acceleration; Q has a positive acceleration

5. [IEB 2002/11 HG1] An observer on the ground looks up to see a bird flying overhead
along a straight line on bearing 130◦ (40◦ S of E). There is a steady wind blowing from
east to west. In the vector diagrams below, I, II and III represent the following:

I the velocity of the bird relative to the air
II the velocity of the air relative to the ground
III the resultant velocity of the bird relative to the ground
Which diagram correctly shows these three velocities?

N

40◦

||

|

|||

N

40◦

|||

|

||

D

N

40◦

||

|

|||

N
130◦

||

|
|||

A B C

6. [SC 2003/11] A ball X of mass m is projected vertically upwards at a speed ux from a
bridge 20 m high. A ball Y of mass 2m is projected vertically downwards from the same
bridge at a speed of uy. The two balls reach the water at the same speed. Air friction
can be ignored.

Which of the following is true with reference to the speeds with which the balls are
projected?

A ux = 1

2
uy

B ux = uy

C ux = 2uy

D ux = 4uy

7. [SC 2001/11 HG1] A sphere is attached to a string, which is suspended from a horizontal
ceiling.

ceiling

string

sphere
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The reaction force to the gravitational force exerted by the earth on the sphere is ...

A the force of the sphere on the earth.

B the force of the ceiling on the string.

C the force of the string on the sphere.

D the force of the ceiling on the sphere.

8. [SC 2002/03 HG1] A stone falls freely from rest from a certain height. Which on eof the
following quantities could be represented on the y-axis of the graph below?

Y

time
A velocity

B acceleration

C momentum

D displacement

9. A man walks towards the back of a train at 2 m·s−1while the train moves forward at 10
m·s−1. The magnitude of the man’s velocity with respect to the ground is

A 2 m·s−1

B 8 m·s−1

C 10 m·s−1

D 12 m·s−1

10. A stone is thrown vertically upwards and it returns to the ground. If friction is ignored,
its acceleration as it reaches the highest point of its motion is

A greater than just after it left the throwers hand.

B less than just before it hits the ground.

C the same as when it left the throwers hand.

D less than it will be when it strikes the ground.

11. An exploding device is thrown vertically upwards. As it reaches its highest point, it
explodes and breaks up into three pieces of equal mass. Which one of the following
combinations is possible for the motion of the three pieces if they all move in a vertical
line?

Mass 1 Mass 2 Mass 3
A v downwards v downwards v upwards
B v upwards 2v downwards v upwards
C 2v upwards v downwards v upwards
D v upwards 2v downwards v downwards

12. [IEB 2004/11 HG1] A stone is thrown vertically up into the air. Which of the following
graphs best shows the resultant force exerted on the stone against time while it is in the
air? (Air resistance is negligible.)

13. What is the velocity of a ball just as it hits the ground if it is thrown upward at 10
m·s−1from a height 5 meters above the ground?

14. [IEB 2005/11 HG1] A breeze of 50 km·hr−1 blows towards the west as a pilot flies his
light plane from town A to village B. The trip from A to B takes 1 h. He then turns
west, flying for 1

2
h until he reaches a dam at point C. He turns over the dam and returns

to town A. The diagram shows his flight plan. It is not to scale.

N

W E
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Fres

t

A

0

Fres

t0

B

Fres

t

C

0

Fres

t

D

0

Figure 21.9: Graphs for an object thrown upwards with an initial velocity vi. The object takes
tm s to reach its maximum height of hm m after which it falls back to the ground. (a) position
vs. time graph (b) velocity vs. time graph (c) acceleration vs. time graph.

C B

A

Wind velocity

50 km·hr−1

The pilot flies at the same altitude at a constant speed of 130 km.h−1 relative to the air
throughout this flight.

a Determine the magnitude of the pilot’s resultant velocity from the town A to the
village B.

b How far is village B from town A?

c What is the plane’s speed relative to the ground as it travels from village B to the
dam at C?

d Determine the following, by calculation or by scale drawing:

i. The distance from the village B to the dam C.

ii. The displacement from the dam C back home to town A.

15. A cannon (assumed to be at ground level) is fired off a flat surface at an angle, θ above
the horizontal with an initial speed of v0.

a What is the initial horizontal component of the velocity?

b What is the initial vertical component of the velocity?

c What is the horizontal component of the velocity at the highest point of the
trajectory?

d What is the vertical component of the velocity at that point?

e What is the horizontal component of the velocity when the projectile lands?

f What is the vertical component of the velocity when it lands?

16. [IEB 2004/11 HG1] Hailstones fall vertically on the hood of a car parked on a horizontal
stretch of road. The average terminal velocity of the hailstones as they descend is 8,0
m.s−1 and each has a mass of 1,2 g.

a Explain why a hailstone falls with a terminal velocity.

b Calculate the magnitude of the momentum of a hailstone just before it strikes the
hood of the car.

c If a hailstone rebounds at 6,0 m.s−1 after hitting the car’s hood, what is the
magnitude of its change in momentum?
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d The hailstone is in contact with the car’s hood for 0,002 s during its collision with
the hood of the car. What is the magnitude of the resultant force exerted on the
hood if the hailstone rebounds at 6,0 m.s−1?

e A car’s hood can withstand a maximum impulse of 0,48 N·s without leaving a
permanent dent. Calculate the minimum mass of a hailstone that will leave a dent
in the hood of the car, if it falls at 8,0 m.s−1 and rebounds at 6,0 m.s−1 after a
collision lasting 0,002 s.

17. [IEB 2003/11 HG1 - Biathlon] Andrew takes part in a biathlon race in which he first
swims across a river and then cycles. The diagram below shows his points of entry and
exit from the river, A and P, respectively.

30
◦

A

Q

P

100 m

River

current

N

E

S

b

b

b

During the swim, Andrew maintains a constant velocity of 1,5 m.s−1 East relative to the
water. The water in the river flows at a constant velocity of 2,5 m.s−1 in a direction 30◦

North of East. The width of the river is 100 m.

The diagram below is a velocity-vector diagram used to determine the resultant velocity
of Andrew relative to the river bed.

A B

C

a Which of the vectors (AB, BC and AC) refer to each of the following?

i. The velocity of Andrew relative to the water.

ii. The velocity of the water relative to the water bed.

iii. The resultant velocity of Andrew relative to the river bed.

b Determine the magnitude of Andrew’s velocity relative to the river bed either by
calculations or by scale drawing, showing your method clearly.

c How long (in seconds) did it take Andrew to cross the river?

d At what distance along the river bank (QP) should Peter wait with Andrew’s bicycle
ready for the next stage of the race?

18. [IEB 2002/11 HG1 - Bouncing Ball]

A ball bounces vertically on a hard surface after being thrown vertically up into the air by
a boy standing on the ledge of a building.

Just before the ball hits the ground for the first time, it has a velocity of magnitude 15
m.s−1. Immediately, after bouncing, it has a velocity of magnitude 10 m.s−1.

The graph below shows the velocity of the ball as a function of time from the moment it
is thrown upwards into the air until it reaches its maximum height after bouncing once.
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time (s)

velocity (m·s−1)
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0
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-10

-15

1,0 2,0

a At what velocity does the boy throw the ball into the air?

b What can be determined by calculating the gradient of the graph during the first
two seconds?

c Determine the gradient of the graph over the first two seconds. State its units.

d How far below the boy’s hand does the ball hit the ground?

e Use an equation of motion to calculate how long it takes, from the time the ball
was thrown, for the ball to reach its maximum height after bouncing.

f What is the position of the ball, measured from the boy’s hand, when it reaches its
maximum height after bouncing?

19. [IEB 2001/11 HG1] - Free Falling?

A parachutist steps out of an aircraft, flying high above the ground. She falls for the first
few seconds before opening her parachute. A graph of her velocity is shown in Graph A
below.

time (s)

velocity (m·s−1)

Graph A40

5

0
4 8 9 15 16

a Describe her motion between A and B.

b Use the information from the graph to calculate an approximate height of the
aircraft when she stepped out of it (to the nearest 10 m).

c What is the magnitude of her velocity during her descent with the parachute fully
open?

The air resistance acting on the parachute is related to the speed at which the
parachutist descends. Graph B shows the relationship between air resistance and
velocity of the parachutist descending with the parachute open.
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d Use Graph B to find the magnitude of the air resistance on her parachute when she
was descending with the parachute open.

e Assume that the mass of the parachute is negligible. Calculate the mass of the
parachutist showing your reasoning clearly.

20. An aeroplane travels from Cape Town and the pilot must reach Johannesburg, which is
situated 1300 km from Cape Town on a bearing of 50◦ in 5 hours. At the height at which
the plane flies, a wind is blowing at 100 km·hr−1on a bearing of 130 ◦ for the whole trip.

50◦

Cape Town

Johannesburg
N

a Calculate the magnitude of the average resultant velocity of the aeroplane, in
km·hr−1, if it is to reach its destination on time.

b Calculate ther average velocity, in km·hr−1, in which the aeroplane should be
travelling in order to reach Johannesburg in the prescribed 5 hours. Include a
labelled, rough vector diagram in your answer.
(If an accurate scale drawing is used, a scale of 25 km·hr−1= 1 cm must be used.)

21. Niko, in the basket of a hot-air balloon, is stationary at a height of 10 m above the level
from where his friend, Bongi, will throw a ball. Bongi intends throwing the ball upwards
and Niko, in the basket, needs to descend (move downwards) to catch the ball at its
maximum height.

501



21.7 CHAPTER 21. MOTION IN TWO DIMENSIONS - GRADE 12

b b b

13 m · s−1

10 m

Bongi throws the ball upwards with a velocity of 13 m·s−1. Niko starts his descent at the
same instant the ball is thrown upwards, by letting air escape from the balloon, causing it
to accelerate downwards. Ignore the effect of air friction on the ball.

a Calculate the maximum height reached by the ball.

b Calculate the magnitude of the minimum average acceleration the balloon must
have in order for Niko to catch the ball, if it takes 1,3 s for the ball to rach its
maximum height.

22. Lesedi (mass 50 kg) sits on a massless trolley. The trolley is travelling at a constant
speed of 3 m·s−1. His friend Zola (mass 60 kg) jumps on the trolley with a velocity of 2
m·s−1. What is the final velocity of the combination (lesedi, Zola and trolley) if Zola
jumps on the trolley from

a the front

b behind

c the side

(Ignore all kinds of friction)

3 m · s−1

Trolley + Lesedi (a)

(b)

(c)
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Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
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Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or
absence of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
non-commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section A.
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You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections A and A above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.
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6. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover text
for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section A above for modified versions, provided that you include in the
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combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit. When the Document is
included an aggregate, this License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may
be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section A. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section A) to Preserve its Title (section A) will typically require changing the
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actual title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sub-license or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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