

**FHSST Authors** 

The Free High School Science Texts: Textbooks for High School Students Studying the Sciences Physics Grades 10 - 12

> Version 0 November 9, 2008

Copyright 2007 "Free High School Science Texts"

Permission **is** granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".



# Did you notice the **FREEDOMS** we've granted you?

Our copyright license is **different!** It grants freedoms rather than just imposing restrictions like all those other textbooks you probably own or use.

- We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally!
- Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide we DARE you!
- Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want!
- Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do
  it all, do it with your colleagues, your friends, or alone but get involved!
  Together we can overcome the challenges our complex and diverse country
  presents.
- So what is the catch? The only thing you can't do is take this book, make
  a few changes and then tell others that they can't do the same with your
  changes. It's share and share-alike and we know you'll agree that is only fair.
- These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community.

#### **FHSST Core Team**

Mark Horner; Samuel Halliday; Sarah Blyth; Rory Adams; Spencer Wheaton

# FHSST Editors

Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan Whitfield

# FHSST Contributors

Rory Adams; Prashant Arora; Richard Baxter; Dr. Sarah Blyth; Sebastian Bodenstein; Graeme Broster; Richard Case; Brett Cocks; Tim Crombie; Dr. Anne Dabrowski; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez; Hemant Gopal; Umeshree Govender; Heather Gray; Lynn Greeff; Dr. Tom Gutierrez; Brooke Haag; Kate Hadley; Dr. Sam Halliday; Asheena Hanuman; Neil Hart; Nicholas Hatcher; Dr. Mark Horner; Robert Hovden; Mfandaidza Hove; Jennifer Hsieh; Clare Johnson; Luke Jordan; Tana Joseph; Dr. Jennifer Klay; Lara Kruger; Sihle Kubheka; Andrew Kubik; Dr. Marco van Leeuwen; Dr. Anton Machacek; Dr. Komal Maheshwari; Kosma von Maltitz; Nicole Masureik; John Mathew; JoEllen McBride; Nikolai Meures; Riana Meyer; Jenny Miller; Abdul Mirza; Asogan Moodaly; Jothi Moodley; Nolene Naidu; Tyrone Negus; Thomas O'Donnell; Dr. Markus Oldenburg; Dr. Jaynie Padayachee; Nicolette Pekeur; Sirika Pillay; Jacques Plaut; Andrea Prinsloo; Joseph Raimondo; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle; Evan Robinson; Dr. Andrew Rose; Bianca Ruddy; Katie Russell; Duncan Scott; Helen Seals; Ian Sherratt; Roger Sieloff; Bradley Smith; Greg Solomon; Mike Stringer; Shen Tian; Robert Torregrosa; Jimmy Tseng; Helen Waugh; Dr. Dawn Webber; Michelle Wen; Dr. Alexander Wetzler; Dr. Spencer Wheaton; Vivian White; Dr. Gerald Wigger; Harry Wiggins; Wendy Williams; Julie Wilson; Andrew Wood; Emma Wormauld; Sahal Yacoob; Jean Youssef

Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource!

www.fhsst.org

# **Contents**

| ı  | Inti  | roduct         | tion                                             | 1            |
|----|-------|----------------|--------------------------------------------------|--------------|
| 1  | Wha   | t is Ph        | ysics?                                           | 3            |
| II | Gr    | ade 1          | 0 - Physics                                      | 5            |
| 2  | Unit  | s              |                                                  | 9            |
|    | 2.1   | Introdu        | uction                                           | 9            |
|    | 2.2   | Unit S         | ystems                                           | 9            |
|    |       | 2.2.1          | SI Units                                         | 9            |
|    |       | 2.2.2          | The Other Systems of Units                       | 10           |
|    | 2.3   | Writing        | g Units as Words or Symbols                      | 10           |
|    | 2.4   | Combi          | nations of SI Base Units                         | 12           |
|    | 2.5   | Roundi         | ing, Scientific Notation and Significant Figures | 12           |
|    |       | 2.5.1          | Rounding Off                                     | 12           |
|    |       | 2.5.2          | Error Margins                                    | 13           |
|    |       | 2.5.3          | Scientific Notation                              | 13           |
|    |       | 2.5.4          | Significant Figures                              | 15           |
|    | 2.6   | Prefixe        | s of Base Units                                  | 15           |
|    | 2.7   | The Im         | portance of Units                                | 17           |
|    | 2.8   | How to         | Change Units                                     | 17           |
|    |       | 2.8.1          | Two other useful conversions                     | 19           |
|    | 2.9   | A sanit        | ty test                                          | 19           |
|    | 2.10  | Summa          | ary                                              | 19           |
|    | 2.11  | End of         | Chapter Exercises                                | 21           |
| 2  | N/1-4 | : : (          | One Diversity Code 10                            | 22           |
| 3  | 3.1   |                | One Dimension - Grade 10                         | <b>23</b> 23 |
|    | 3.2   |                | nce Point, Frame of Reference and Position       | 23           |
|    | 3.2   | 3.2.1          | Frames of Reference                              |              |
|    |       | 3.2.2          |                                                  | 23<br>25     |
|    | 2.2   | -              | Position                                         |              |
|    | 3.3   | 3.3.1          | Interpreting Direction                           | 28<br>29     |
|    |       |                | Interpreting Direction                           | _            |
|    | 3.4   | 3.3.2<br>Speed | Differences between Distance and Displacement    | 29<br>31     |
|    | 24    | 20000          | AVELANE VEIDLIN AUD INSTAULABEDUS VEIDLIN        | 3 I          |

|   |      | 3.4.1 Differences between Speed and Velocity            | 35 |
|---|------|---------------------------------------------------------|----|
|   | 3.5  | Acceleration                                            | 38 |
|   | 3.6  | Description of Motion                                   | 39 |
|   |      | 3.6.1 Stationary Object                                 | 40 |
|   |      | 3.6.2 Motion at Constant Velocity                       | 41 |
|   |      | 3.6.3 Motion at Constant Acceleration                   | 46 |
|   | 3.7  | Summary of Graphs                                       | 48 |
|   | 3.8  | Worked Examples                                         | 49 |
|   | 3.9  | Equations of Motion                                     | 54 |
|   |      | 3.9.1 Finding the Equations of Motion                   | 54 |
|   | 3.10 | Applications in the Real-World                          | 59 |
|   | 3.11 | Summary                                                 | 61 |
|   | 3.12 | End of Chapter Exercises: Motion in One Dimension       | 62 |
| 4 | Grav | vity and Mechanical Energy - Grade 10                   | 67 |
|   |      | Weight                                                  | 67 |
|   |      | 4.1.1 Differences between Mass and Weight               | 68 |
|   | 4.2  |                                                         | 69 |
|   |      |                                                         | 69 |
|   |      | 4.2.2 Free fall                                         | 69 |
|   | 4.3  | Potential Energy                                        | 73 |
|   | 4.4  | Kinetic Energy                                          | 75 |
|   |      | 4.4.1 Checking units                                    | 77 |
|   | 4.5  | Mechanical Energy                                       | 78 |
|   |      | 4.5.1 Conservation of Mechanical Energy                 | 78 |
|   |      | 4.5.2 Using the Law of Conservation of Energy           | 79 |
|   | 4.6  | Energy graphs                                           | 82 |
|   | 4.7  | Summary                                                 | 83 |
|   | 4.8  | End of Chapter Exercises: Gravity and Mechanical Energy | 84 |
| 5 | Tran | nsverse Pulses - Grade 10                               | B7 |
|   | 5.1  | Introduction                                            | 87 |
|   | 5.2  |                                                         | 87 |
|   | 5.3  | What is a <i>pulse</i> ?                                | 87 |
|   |      | 5.3.1 Pulse Length and Amplitude                        | 88 |
|   |      | 5.3.2 Pulse Speed                                       | 89 |
|   | 5.4  | Graphs of Position and Velocity                         | 90 |
|   |      | 5.4.1 Motion of a Particle of the Medium                | 90 |
|   |      | 5.4.2 Motion of the Pulse                               | 92 |
|   | 5.5  | Transmission and Reflection of a Pulse at a Boundary    | 96 |
|   | 5.6  | Reflection of a Pulse from Fixed and Free Ends          | 97 |
|   |      | 5.6.1 Reflection of a Pulse from a Fixed End            | 97 |

|   |      | 5.6.2 Reflection of a Pulse from a Free End                  | 3 |
|---|------|--------------------------------------------------------------|---|
|   | 5.7  | Superposition of Pulses                                      | 9 |
|   | 5.8  | Exercises - Transverse Pulses                                | 2 |
| 6 | Tran | sverse Waves - Grade 10 105                                  | 5 |
|   | 6.1  | Introduction                                                 | 5 |
|   | 6.2  | What is a <i>transverse wave</i> ?                           | 5 |
|   |      | 6.2.1 Peaks and Troughs                                      | 5 |
|   |      | 6.2.2 Amplitude and Wavelength                               | 7 |
|   |      | 6.2.3 Points in Phase                                        | 9 |
|   |      | 6.2.4 Period and Frequency                                   | C |
|   |      | 6.2.5 Speed of a Transverse Wave                             | 1 |
|   | 6.3  | Graphs of Particle Motion                                    | 5 |
|   | 6.4  | Standing Waves and Boundary Conditions                       | 3 |
|   |      | 6.4.1 Reflection of a Transverse Wave from a Fixed End       | 3 |
|   |      | 6.4.2 Reflection of a Transverse Wave from a Free End        | 3 |
|   |      | 6.4.3 Standing Waves                                         | 3 |
|   |      | 6.4.4 Nodes and anti-nodes                                   | 2 |
|   |      | 6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends | 2 |
|   |      | 6.4.6 Superposition and Interference                         | 5 |
|   | 6.5  | Summary                                                      | 7 |
|   | 6.6  | Exercises                                                    | 7 |
| 7 | Geo  | netrical Optics - Grade 10 129                               | 9 |
|   | 7.1  | Introduction                                                 | 9 |
|   | 7.2  | Light Rays                                                   | 9 |
|   |      | 7.2.1 Shadows                                                | 2 |
|   |      | 7.2.2 Ray Diagrams                                           | 2 |
|   | 7.3  | Reflection                                                   | 2 |
|   |      | 7.3.1 Terminology                                            | 3 |
|   |      | 7.3.2 Law of Reflection                                      | 3 |
|   |      | 7.3.3 Types of Reflection                                    | 5 |
|   | 7.4  | Refraction                                                   | 7 |
|   |      | 7.4.1 Refractive Index                                       | 9 |
|   |      | 7.4.2 Snell's Law                                            | 9 |
|   |      | 7.4.3 Apparent Depth                                         | 3 |
|   | 7.5  | Mirrors                                                      | 5 |
|   |      | 7.5.1 Image Formation                                        | 5 |
|   |      | 7.5.2 Plane Mirrors                                          | 7 |
|   |      | 7.5.3 Ray Diagrams                                           | 3 |
|   |      | 7.5.4 Spherical Mirrors                                      | Э |
|   |      | 7.5.5 Concave Mirrors                                        | ^ |

|    |       | 7.5.6              | Convex Mirrors                              | 153 |
|----|-------|--------------------|---------------------------------------------|-----|
|    |       | 7.5.7              | Summary of Properties of Mirrors            | 154 |
|    |       | 7.5.8              | Magnification                               | 154 |
|    | 7.6   | Total I            | nternal Reflection and Fibre Optics         | 156 |
|    |       | 7.6.1              | Total Internal Reflection                   | 156 |
|    |       | 7.6.2              | Fibre Optics                                | 161 |
|    | 7.7   | Summa              | ary                                         | 163 |
|    | 7.8   | Exercis            | es                                          | 164 |
| 8  | Mag   | netism             | - Grade 10                                  | 167 |
|    | 8.1   | Introdu            | uction                                      | 167 |
|    | 8.2   | Magne <sup>-</sup> | tic fields                                  | 167 |
|    | 8.3   | Permar             | nent magnets                                | 169 |
|    |       | 8.3.1              | The poles of permanent magnets              | 169 |
|    |       | 8.3.2              | Magnetic attraction and repulsion           | 169 |
|    |       | 8.3.3              | Representing magnetic fields                | 170 |
|    | 8.4   | The co             | ompass and the earth's magnetic field       | 173 |
|    |       | 8.4.1              | The earth's magnetic field                  | 175 |
|    | 8.5   | Summa              | ary                                         | 175 |
|    | 8.6   | End of             | chapter exercises                           | 176 |
| 9  | Flect | trostati           | ics - Grade 10                              | 177 |
|    | 9.1   |                    | uction                                      |     |
|    | 9.2   |                    | nds of charge                               |     |
|    | 9.3   |                    | f charge                                    |     |
|    | 9.4   |                    | vation of charge                            |     |
|    | 9.5   | Force b            | petween Charges                             | 178 |
|    | 9.6   | Conduc             | ctors and insulators                        | 181 |
|    |       | 9.6.1              | The electroscope                            | 182 |
|    | 9.7   | Attract            | tion between charged and uncharged objects  | 183 |
|    |       | 9.7.1              | Polarisation of Insulators                  |     |
|    | 9.8   | Summa              | ary                                         | 184 |
|    | 9.9   | End of             | chapter exercise                            | 184 |
| 10 | Floci | tric Cir           | cuits - Grade 10                            | 187 |
| 10 |       |                    | Circuits                                    |     |
|    | 10.1  |                    | Closed circuits                             |     |
|    |       |                    | Representing electric circuits              |     |
|    | 10.2  |                    | ial Difference                              |     |
|    | 10.2  |                    | Potential Difference                        |     |
|    |       |                    | Potential Difference and Parallel Resistors |     |
|    |       |                    | Potential Difference and Series Resistors   |     |
|    |       |                    | Ohm's Law                                   |     |
|    |       | 1∪.∠.4             | UIIII 3 LdW                                 | エガサ |

|     |      | 10.2.5 EMF                                                |
|-----|------|-----------------------------------------------------------|
|     | 10.3 | Current                                                   |
|     |      | 10.3.1 Flow of Charge                                     |
|     |      | 10.3.2 Current                                            |
|     |      | 10.3.3 Series Circuits                                    |
|     |      | 10.3.4 Parallel Circuits                                  |
|     | 10.4 | Resistance                                                |
|     |      | 10.4.1 What causes resistance?                            |
|     |      | 10.4.2 Resistors in electric circuits                     |
|     | 10.5 | Instruments to Measure voltage, current and resistance    |
|     |      | 10.5.1 Voltmeter                                          |
|     |      | 10.5.2 Ammeter                                            |
|     |      | 10.5.3 Ohmmeter                                           |
|     |      | 10.5.4 Meters Impact on Circuit                           |
|     | 10.6 | Exercises - Electric circuits                             |
|     |      |                                                           |
| 111 | G    | rade 11 - Physics 209                                     |
|     |      |                                                           |
| 11  | Vect |                                                           |
|     |      | Introduction                                              |
|     |      | Scalars and Vectors                                       |
|     | 11.3 | Notation                                                  |
|     |      | 11.3.1 Mathematical Representation                        |
|     |      | 11.3.2 Graphical Representation                           |
|     | 11.4 | Directions                                                |
|     |      | 11.4.1 Relative Directions                                |
|     |      | 11.4.2 Compass Directions                                 |
|     |      | 11.4.3 Bearing                                            |
|     | 11.5 | Drawing Vectors                                           |
|     | 11.6 | Mathematical Properties of Vectors                        |
|     |      | 11.6.1 Adding Vectors                                     |
|     |      | 11.6.2 Subtracting Vectors                                |
|     |      | 11.6.3 Scalar Multiplication                              |
|     | 11.7 | Techniques of Vector Addition                             |
|     |      | 11.7.1 Graphical Techniques                               |
|     |      | 11.7.2 Algebraic Addition and Subtraction of Vectors      |
|     | 11.8 | Components of Vectors                                     |
|     |      | 11.8.1 Vector addition using components                   |
|     |      | 11.8.2 Summary                                            |
|     |      | 11.8.3 End of chapter exercises: Vectors                  |
|     |      | 11.8.4 End of chapter exercises: Vectors - Long questions |

| 12 Force | e, Momentum and Impulse - Grade 11           | 239 |
|----------|----------------------------------------------|-----|
| 12.1     | Introduction                                 | 239 |
| 12.2     | Force                                        | 239 |
|          | 12.2.1 What is a <i>force</i> ?              | 239 |
|          | 12.2.2 Examples of Forces in Physics         | 240 |
|          | 12.2.3 Systems and External Forces           | 241 |
|          | 12.2.4 Force Diagrams                        | 242 |
|          | 12.2.5 Free Body Diagrams                    | 243 |
|          | 12.2.6 Finding the Resultant Force           | 244 |
|          | 12.2.7 Exercise                              | 246 |
| 12.3     | Newton's Laws                                | 246 |
|          | 12.3.1 Newton's First Law                    | 247 |
|          | 12.3.2 Newton's Second Law of Motion         | 249 |
|          | 12.3.3 Exercise                              | 261 |
|          | 12.3.4 Newton's Third Law of Motion          | 263 |
|          | 12.3.5 Exercise                              | 267 |
|          | 12.3.6 Different types of forces             | 268 |
|          | 12.3.7 Exercise                              | 275 |
|          | 12.3.8 Forces in equilibrium                 | 276 |
|          | 12.3.9 Exercise                              | 279 |
| 12.4     | Forces between Masses                        | 282 |
|          | 12.4.1 Newton's Law of Universal Gravitation | 282 |
|          | 12.4.2 Comparative Problems                  | 284 |
|          | 12.4.3 Exercise                              | 286 |
| 12.5     | Momentum and Impulse                         | 287 |
|          | 12.5.1 Vector Nature of Momentum             | 290 |
|          | 12.5.2 Exercise                              | 291 |
|          | 12.5.3 Change in Momentum                    | 291 |
|          | 12.5.4 Exercise                              | 293 |
|          | 12.5.5 Newton's Second Law revisited         | 293 |
|          | 12.5.6 Impulse                               | 294 |
|          | 12.5.7 Exercise                              | 296 |
|          | 12.5.8 Conservation of Momentum              | 297 |
|          | 12.5.9 Physics in Action: Impulse            |     |
|          | 12.5.10 Exercise                             | 301 |
| 12.6     | Torque and Levers                            |     |
|          | 12.6.1 Torque                                |     |
|          | 12.6.2 Mechanical Advantage and Levers       |     |
|          | 12.6.3 Classes of levers                     |     |
|          | 12.6.4 Exercise                              |     |
|          | Summary                                      |     |
| 12.8     | End of Chapter exercises                     | 310 |

| 13 | Geor | metrical Optics - Grade 11                                           | 327 |
|----|------|----------------------------------------------------------------------|-----|
|    | 13.1 | Introduction                                                         | 327 |
|    | 13.2 | Lenses                                                               | 327 |
|    |      | 13.2.1 Converging Lenses                                             | 329 |
|    |      | 13.2.2 Diverging Lenses                                              | 340 |
|    |      | 13.2.3 Summary of Image Properties                                   | 343 |
|    | 13.3 | The Human Eye                                                        | 344 |
|    |      | 13.3.1 Structure of the Eye                                          | 345 |
|    |      | 13.3.2 Defects of Vision                                             | 346 |
|    | 13.4 | Gravitational Lenses                                                 | 347 |
|    | 13.5 | Telescopes                                                           | 347 |
|    |      | 13.5.1 Refracting Telescopes                                         | 347 |
|    |      | 13.5.2 Reflecting Telescopes                                         | 348 |
|    |      | 13.5.3 Southern African Large Telescope                              | 348 |
|    | 13.6 | Microscopes                                                          | 349 |
|    | 13.7 | Summary                                                              | 351 |
|    | 13.8 | Exercises                                                            | 352 |
| 14 | Long | gitudinal Waves - Grade 11                                           | 355 |
|    | 14.1 | Introduction                                                         | 355 |
|    | 14.2 | What is a longitudinal wave?                                         | 355 |
|    | 14.3 | Characteristics of Longitudinal Waves                                | 356 |
|    |      | 14.3.1 Compression and Rarefaction                                   | 356 |
|    |      | 14.3.2 Wavelength and Amplitude                                      | 357 |
|    |      | 14.3.3 Period and Frequency                                          | 357 |
|    |      | 14.3.4 Speed of a Longitudinal Wave                                  | 358 |
|    | 14.4 | Graphs of Particle Position, Displacement, Velocity and Acceleration | 359 |
|    | 14.5 | Sound Waves                                                          | 360 |
|    | 14.6 | Seismic Waves                                                        | 361 |
|    | 14.7 | Summary - Longitudinal Waves                                         | 361 |
|    | 14.8 | Exercises - Longitudinal Waves                                       | 362 |
| 15 | Sour | nd - Grade 11                                                        | 363 |
|    | 15.1 | Introduction                                                         | 363 |
|    | 15.2 | Characteristics of a Sound Wave                                      | 363 |
|    |      | 15.2.1 Pitch                                                         | 364 |
|    |      | 15.2.2 Loudness                                                      | 364 |
|    |      | 15.2.3 Tone                                                          | 364 |
|    | 15.3 | Speed of Sound                                                       | 365 |
|    | 15.4 | Physics of the Ear and Hearing                                       | 365 |
|    |      | 15.4.1 Intensity of Sound                                            | 366 |
|    | 15.5 | Ultrasound                                                           | 367 |

| CONTENTS | CONTENTS |
|----------|----------|
|          |          |

|    | 15.6  | SONAR                                                                                                                                                                        |
|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |       | 15.6.1 Echolocation                                                                                                                                                          |
|    | 15.7  | Summary                                                                                                                                                                      |
|    | 15.8  | Exercises                                                                                                                                                                    |
| 16 | The   | Physics of Music - Grade 11 373                                                                                                                                              |
|    |       | Introduction                                                                                                                                                                 |
|    |       | Standing Waves in String Instruments                                                                                                                                         |
|    |       | Standing Waves in Wind Instruments                                                                                                                                           |
|    |       | Resonance                                                                                                                                                                    |
|    |       | Music and Sound Quality                                                                                                                                                      |
|    |       | Summary - The Physics of Music                                                                                                                                               |
|    |       | End of Chapter Exercises                                                                                                                                                     |
|    |       |                                                                                                                                                                              |
| 17 |       | trostatics - Grade 11 387                                                                                                                                                    |
|    |       | Introduction                                                                                                                                                                 |
|    |       | Forces between charges - Coulomb's Law                                                                                                                                       |
|    | 17.3  | Electric field around charges                                                                                                                                                |
|    |       | 17.3.1 Electric field lines                                                                                                                                                  |
|    |       | 17.3.2 Positive charge acting on a test charge                                                                                                                               |
|    |       | 17.3.3 Combined charge distributions                                                                                                                                         |
|    |       | 17.3.4 Parallel plates                                                                                                                                                       |
|    | 17.4  | Electrical potential energy and potential                                                                                                                                    |
|    |       | 17.4.1 Electrical potential                                                                                                                                                  |
|    |       | 17.4.2 Real-world application: lightning                                                                                                                                     |
|    | 17.5  | Capacitance and the parallel plate capacitor                                                                                                                                 |
|    |       | 17.5.1 Capacitors and capacitance                                                                                                                                            |
|    |       | 17.5.2 Dielectrics                                                                                                                                                           |
|    |       | 17.5.3 Physical properties of the capacitor and capacitance                                                                                                                  |
|    |       | 17.5.4 Electric field in a capacitor                                                                                                                                         |
|    | 17.6  | Capacitor as a circuit device                                                                                                                                                |
|    |       | $17.6.1 \ A \ capacitor \ in \ a \ circuit \ \ldots $ |
|    |       | $17.6.2 \ \ Real\text{-world\ applications:\ capacitors}\ \ldots \ldots$                        |
|    | 17.7  | Summary                                                                                                                                                                      |
|    | 17.8  | Exercises - Electrostatics                                                                                                                                                   |
| 18 | Elect | tromagnetism - Grade 11 413                                                                                                                                                  |
|    | 18.1  | Introduction                                                                                                                                                                 |
|    | 18.2  | Magnetic field associated with a current                                                                                                                                     |
|    |       | 18.2.1 Real-world applications                                                                                                                                               |
|    | 18.3  | Current induced by a changing magnetic field                                                                                                                                 |
|    |       | 18.3.1 Real-life applications                                                                                                                                                |
|    | 18.4  | Transformers                                                                                                                                                                 |
|    |       |                                                                                                                                                                              |

|    |       | 18.4.1 Real-world applications                           | 425 |
|----|-------|----------------------------------------------------------|-----|
|    | 18.5  | Motion of a charged particle in a magnetic field         | 425 |
|    |       | 18.5.1 Real-world applications                           | 426 |
|    | 18.6  | Summary                                                  | 427 |
|    | 18.7  | End of chapter exercises                                 | 427 |
| 19 | Elect | tric Circuits - Grade 11                                 | 429 |
|    | 19.1  | Introduction                                             | 429 |
|    | 19.2  | Ohm's Law                                                | 429 |
|    |       | 19.2.1 Definition of Ohm's Law                           | 429 |
|    |       | 19.2.2 Ohmic and non-ohmic conductors                    | 431 |
|    |       | 19.2.3 Using Ohm's Law                                   | 432 |
|    | 19.3  | Resistance                                               | 433 |
|    |       | 19.3.1 Equivalent resistance                             | 433 |
|    |       | 19.3.2 Use of Ohm's Law in series and parallel Circuits  | 438 |
|    |       | 19.3.3 Batteries and internal resistance                 | 440 |
|    | 19.4  | Series and parallel networks of resistors                | 442 |
|    | 19.5  | Wheatstone bridge                                        | 445 |
|    | 19.6  | Summary                                                  | 447 |
|    | 19.7  | End of chapter exercise                                  | 447 |
| 20 | Elect | tronic Properties of Matter - Grade 11                   | 451 |
|    | 20.1  | Introduction                                             | 451 |
|    | 20.2  | Conduction                                               | 451 |
|    |       | 20.2.1 Metals                                            | 453 |
|    |       | 20.2.2 Insulator                                         | 453 |
|    |       | 20.2.3 Semi-conductors                                   | 454 |
|    | 20.3  | Intrinsic Properties and Doping                          | 454 |
|    |       | 20.3.1 Surplus                                           | 455 |
|    |       | 20.3.2 Deficiency                                        | 455 |
|    | 20.4  | The p-n junction                                         | 457 |
|    |       | 20.4.1 Differences between p- and n-type semi-conductors | 457 |
|    |       | 20.4.2 The p-n Junction                                  | 457 |
|    |       | 20.4.3 Unbiased                                          | 457 |
|    |       | 20.4.4 Forward biased                                    | 457 |
|    |       | 20.4.5 Reverse biased                                    | 458 |
|    |       | 20.4.6 Real-World Applications of Semiconductors         | 458 |
|    | 20.5  | End of Chapter Exercises                                 | 459 |
|    |       |                                                          |     |
| IV | G     | rade 12 - Physics 4                                      | 61  |
| 21 | Mot   | ion in Two Dimensions - Grade 12                         | 463 |
|    | 21.1  | Introduction                                             | 463 |

|    | 21.2 | Vertical Projectile Motion                     |
|----|------|------------------------------------------------|
|    |      | 21.2.1 Motion in a Gravitational Field         |
|    |      | 21.2.2 Equations of Motion                     |
|    |      | 21.2.3 Graphs of Vertical Projectile Motion    |
|    | 21.3 | Conservation of Momentum in Two Dimensions     |
|    | 21.4 | Types of Collisions                            |
|    |      | 21.4.1 Elastic Collisions                      |
|    |      | 21.4.2 Inelastic Collisions                    |
|    | 21.5 | Frames of Reference                            |
|    |      | 21.5.1 Introduction                            |
|    |      | 21.5.2 What is a <i>frame of reference</i> ?   |
|    |      | 21.5.3 Why are frames of reference important?  |
|    |      | 21.5.4 Relative Velocity                       |
|    | 21.6 | Summary                                        |
|    | 21.7 | End of chapter exercises                       |
| 22 | N4   | haviad Danastia of Matter Conda 12             |
| 22 |      | hanical Properties of Matter - Grade 12 503    |
|    |      | Introduction                                   |
|    | 22.2 | Deformation of materials                       |
|    |      | 22.2.1 Hooke's Law                             |
|    | 22.2 | 22.2.2 Deviation from Hooke's Law              |
|    | 22.3 | Elasticity, plasticity, fracture, creep        |
|    |      | 22.3.1 Elasticity and plasticity               |
|    |      | 22.3.2 Fracture, creep and fatigue             |
|    | 22.4 | Failure and strength of materials              |
|    |      | 22.4.1 The properties of matter                |
|    |      | 22.4.2 Structure and failure of materials      |
|    |      | 22.4.3 Controlling the properties of materials |
|    |      | 22.4.4 Steps of Roman Swordsmithing            |
|    |      | Summary                                        |
|    | 22.6 | End of chapter exercise                        |
| 23 | Worl | c, Energy and Power - Grade 12 513             |
|    | 23.1 | Introduction                                   |
|    | 23.2 | Work                                           |
|    | 23.3 | Energy                                         |
|    |      | 23.3.1 External and Internal Forces            |
|    |      | 23.3.2 Capacity to do Work                     |
|    | 23.4 | Power                                          |
|    | 23.5 | Important Equations and Quantities             |
|    | 23.6 | End of Chapter Exercises                       |
|    |      |                                                |

| 24 | Dop  | pler Effect - Grade 12                         | 533 |
|----|------|------------------------------------------------|-----|
|    | 24.1 | Introduction                                   | 533 |
|    | 24.2 | The Doppler Effect with Sound and Ultrasound   | 533 |
|    |      | 24.2.1 Ultrasound and the Doppler Effect       | 537 |
|    | 24.3 | The Doppler Effect with Light                  | 537 |
|    |      | 24.3.1 The Expanding Universe                  | 538 |
|    | 24.4 | Summary                                        | 539 |
|    | 24.5 | End of Chapter Exercises                       | 539 |
| 25 | Colo | our - Grade 12                                 | 541 |
|    | 25.1 | Introduction                                   | 541 |
|    | 25.2 | Colour and Light                               | 541 |
|    |      | 25.2.1 Dispersion of white light               | 544 |
|    | 25.3 | Addition and Subtraction of Light              | 544 |
|    |      | 25.3.1 Additive Primary Colours                | 544 |
|    |      | 25.3.2 Subtractive Primary Colours             | 545 |
|    |      | 25.3.3 Complementary Colours                   | 546 |
|    |      | 25.3.4 Perception of Colour                    | 546 |
|    |      | 25.3.5 Colours on a Television Screen          | 547 |
|    | 25.4 | Pigments and Paints                            | 548 |
|    |      | 25.4.1 Colour of opaque objects                | 548 |
|    |      | 25.4.2 Colour of transparent objects           | 548 |
|    |      | 25.4.3 Pigment primary colours                 | 549 |
|    | 25.5 | End of Chapter Exercises                       | 550 |
| 26 | 2D a | and 3D Wavefronts - Grade 12                   | 553 |
|    | 26.1 | Introduction                                   | 553 |
|    | 26.2 | Wavefronts                                     | 553 |
|    | 26.3 | The Huygens Principle                          | 554 |
|    | 26.4 | Interference                                   | 556 |
|    | 26.5 | Diffraction                                    | 557 |
|    |      | 26.5.1 Diffraction through a Slit              | 558 |
|    | 26.6 | Shock Waves and Sonic Booms                    | 562 |
|    |      | 26.6.1 Subsonic Flight                         | 563 |
|    |      | 26.6.2 Supersonic Flight                       | 563 |
|    |      | 26.6.3 Mach Cone                               | 566 |
|    | 26.7 | End of Chapter Exercises                       | 568 |
| 27 | Wav  | ve Nature of Matter - Grade 12                 | 571 |
|    | 27.1 | Introduction                                   | 571 |
|    | 27.2 | de Broglie Wavelength                          | 571 |
|    | 27.3 | The Electron Microscope                        | 574 |
|    |      | 27.3.1 Disadvantages of an Electron Microscope | 577 |

|    |       | 27.3.2 Uses of Electron Microscopes                  |
|----|-------|------------------------------------------------------|
|    | 27.4  | · · · · · · · · · · · · · · · · · · ·                |
|    | 27.4  | End of Chapter Exercises                             |
| 28 | Elect | trodynamics - Grade 12 579                           |
|    | 28.1  | Introduction                                         |
|    | 28.2  | Electrical machines - generators and motors          |
|    |       | 28.2.1 Electrical generators                         |
|    |       | 28.2.2 Electric motors                               |
|    |       | 28.2.3 Real-life applications                        |
|    |       | 28.2.4 Exercise - generators and motors              |
|    | 28.3  | Alternating Current                                  |
|    |       | 28.3.1 Exercise - alternating current                |
|    | 28.4  | Capacitance and inductance                           |
|    |       | 28.4.1 Capacitance                                   |
|    |       | 28.4.2 Inductance                                    |
|    |       | 28.4.3 Exercise - capacitance and inductance         |
|    | 28.5  | Summary                                              |
|    | 28.6  | End of chapter exercise                              |
|    |       |                                                      |
| 29 | Elect | tronics - Grade 12 591                               |
|    | 29.1  | Introduction                                         |
|    | 29.2  | Capacitive and Inductive Circuits                    |
|    | 29.3  | Filters and Signal Tuning                            |
|    |       | 29.3.1 Capacitors and Inductors as Filters           |
|    |       | 29.3.2 LRC Circuits, Resonance and Signal Tuning 596 |
|    | 29.4  | Active Circuit Elements                              |
|    |       | 29.4.1 The Diode                                     |
|    |       | 29.4.2 The Light Emitting Diode (LED)                |
|    |       | 29.4.3 Transistor                                    |
|    |       | 29.4.4 The Operational Amplifier                     |
|    | 29.5  | The Principles of Digital Electronics                |
|    |       | 29.5.1 Logic Gates                                   |
|    | 29.6  | Using and Storing Binary Numbers                     |
|    |       | 29.6.1 Binary numbers                                |
|    |       | 29.6.2 Counting circuits                             |
|    |       | 29.6.3 Storing binary numbers                        |
| 20 |       |                                                      |
| 30 |       | Radiation 625                                        |
|    |       | Introduction                                         |
|    |       | Particle/wave nature of electromagnetic radiation    |
|    |       | The wave nature of electromagnetic radiation         |
|    |       | Electromagnetic spectrum                             |
|    | 30.5  | The particle nature of electromagnetic radiation     |

| CONTENTS            | CONTENTS    |
|---------------------|-------------|
| / 1 N I I L N I I C | //\KIILKIIC |
| .(7)                |             |

|     |       | 30.5.1 Exercise - particle nature of EM waves            | . 630 |
|-----|-------|----------------------------------------------------------|-------|
|     | 30.6  | Penetrating ability of electromagnetic radiation         | . 631 |
|     |       | 30.6.1 Ultraviolet(UV) radiation and the skin            | . 631 |
|     |       | 30.6.2 Ultraviolet radiation and the eyes                | . 632 |
|     |       | 30.6.3 X-rays                                            | . 632 |
|     |       | 30.6.4 Gamma-rays                                        | . 632 |
|     |       | 30.6.5 Exercise - Penetrating ability of EM radiation    | . 633 |
|     | 30.7  | Summary                                                  | . 633 |
|     | 30.8  | End of chapter exercise                                  | . 633 |
| 31  | Onti  | ical Phenomena and Properties of Matter - Grade 12       | 635   |
| -   | _     | Introduction                                             |       |
|     |       | The transmission and scattering of light                 |       |
|     | 02.2  | 31.2.1 Energy levels of an electron                      |       |
|     |       | 31.2.2 Interaction of light with metals                  |       |
|     |       | 31.2.3 Why is the sky blue?                              |       |
|     | 31.3  | The photoelectric effect                                 |       |
|     | 02.0  | 31.3.1 Applications of the photoelectric effect          |       |
|     |       | 31.3.2 Real-life applications                            |       |
|     | 31.4  | Emission and absorption spectra                          |       |
|     | 02    | 31.4.1 Emission Spectra                                  |       |
|     |       | 31.4.2 Absorption spectra                                |       |
|     |       | 31.4.3 Colours and energies of electromagnetic radiation |       |
|     |       | 31.4.4 Applications of emission and absorption spectra   |       |
|     | 31.5  | Lasers                                                   |       |
|     | 02.0  | 31.5.1 How a laser works                                 |       |
|     |       | 31.5.2 A simple laser                                    |       |
|     |       | 31.5.3 Laser applications and safety                     |       |
|     | 31.6  | Summary                                                  |       |
|     |       | End of chapter exercise                                  |       |
|     | •=    |                                                          |       |
| V   | Fx    | kercises                                                 | 659   |
|     |       |                                                          |       |
| 32  | Exer  | rcises                                                   | 661   |
|     |       |                                                          |       |
| VI  | E     | ssays                                                    | 663   |
| Ess | say 1 | : Energy and electricity. Why the fuss?                  | 665   |
|     | -     |                                                          |       |
|     |       | y: How a cell phone works                                | 671   |
| 34  | Essa  | y: How a Physiotherapist uses the Concept of Levers      | 673   |
| 35  | Essa  | y: How a Pilot Uses Vectors                              | 675   |

| CONTENTS | CONTENT. |
|----------|----------|
|          |          |

| Λ | CNIII | Fron | Documentation | Licone |
|---|-------|------|---------------|--------|

677

# Chapter 23

# Work, Energy and Power - Grade 12

(NOTE TO SELF: Status: Content is complete. More exercises, worked examples and activities are needed.)

# 23.1 Introduction

Imagine a vendor carrying a basket of vegetables on her head. Is she doing any work? One would definitely say yes! However, in Physics she is not doing any work! Again, imagine a boy pushing against a wall? Is he doing any work? We can see that his muscles are contracting and expanding. He may even be sweating. But in Physics, he is not doing any work!

If the vendor is carrying a very heavy load for a long distance, we would say she has lot of energy. By this, we mean that she has a lot of stamina. If a car can travel very fast, we describe the car as powerful. So, there is a link between power and speed. However, power means something different in Physics. This chapter describes the links between work, energy and power and what these mean in Physics.

You will learn that work and energy are closely related. You shall see that the energy of an object is its capacity to do work and doing work is the process of transferring energy from one object or form to another. In other words,

- an object with lots of energy can do lots of work.
- when work is done, energy is lost by the object doing work and gained by the object on which the work is done.

Lifting objects or throwing them requires that you do work on them. Even making electricity flow requires that something do work. Something must have energy and transfer it through doing work to make things happen.

#### 23.2 Work



#### **Definition: Work**

When a force exerted on an object causes it to move, work is done on the object (except if the force and displacement are at right angles to each other).

This means that in order for work to be done, an object must be moved a distance d by a force F, such that there is some non-zero component of the force in the direction of the displacement. Work is calculated as:

$$W = F \cdot \Delta x \cos \theta. \tag{23.1}$$

where F is the applied force,  $\Delta x$  is the displacement of the object and  $\theta$  is the angle between the applied force and the direction of motion.

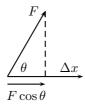



Figure 23.1: The force F causes the object to be displaced by  $\Delta x$  at angle  $\theta$ .

It is very important to note that for work to be done there must be a component of the applied force in the direction of motion. Forces perpendicular to the direction of motion do no work.

For example work is done on the object in Figure 23.2,

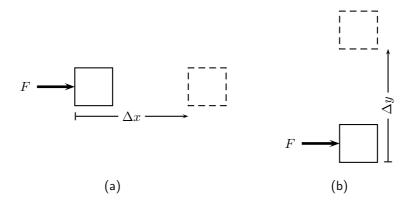
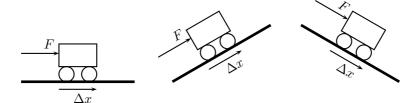



Figure 23.2: (a) The force F causes the object to be displaced by  $\Delta x$  in the same direction as the force.  $\theta=180^\circ$  and  $\cos\theta=1$ . Work is done in this situation. (b) A force F is applied to the object. The object is displaced by  $\Delta y$  at right angles to the force.  $\theta=90^\circ$  and  $\cos\theta=0$ . Work is not done in this situation.


#### Activity :: Investigation : Is work done?

Decide whether on not work is done in the following situations. Remember that for work to be done a force must be applied in the direction of motion and there must be a displacement. Give reasons for your answer.

- 1. Max applies a force to a wall and becomes tired.
- 2. A book falls off a table and free falls to the ground.
- 3. A rocket accelerates through space.
- 4. A waiter carries a tray full of meals above his head by one arm straight across the room at constant speed. (Careful! This is a very difficult question.)



**Important:** The Meaning of  $\theta$  The angle  $\theta$  is the angle between the force vector and the displacement vector. In the following situations,  $\theta = 0^{\circ}$ .



As with all physical quantities, work must have units. Following from the definition, work is measured in  $N \cdot m$ . The name given to this combination of S.I. units is the joule (symbol J).



#### **Definition: Joule**

1 joule is the work done when an object is moved 1 m under the application of a force of 1 N in the direction of motion.

The work done by an object can be positive or negative. Since force  $(F_{\parallel})$  and displacement (s) are both vectors, the result of the above equation depends on their directions:

- ullet If  $F_{\parallel}$  acts in the same direction as the motion then positive work is being done. In this case the object on which the force is applied gains energy.
- If the direction of motion and  $F_{\parallel}$  are opposite, then negative work is being done. This means that energy is transferred in the opposite direction. For example, if you try to push a car uphill by applying a force up the slope and instead the car rolls down the hill you are doing negative work on the car. Alternatively, the car is doing positive work on you!



**Important:** The everyday use of the word "work" differs from the physics use. In physics, only the component of the applied force that is parallel to the motion does work on an object. So, for example, a person holding up a heavy book does no work on the book.



# Worked Example 149: Calculating Work Done I

**Question:** If you push a box 20 m forward by applying a force of 15 N in the forward direction, what is the work you have done on the box?

#### Answer

#### Step 1 : Analyse the question to determine what information is provided

- ullet The force applied is  $F{=}15$  N.
- $\bullet$  The distance moved is s=20 m.
- The applied force and distance moved are in the same direction. Therefore,  $F_{\parallel}{=}15~{\rm N}.$

These quantities are all in the correct units, so no unit conversions are required.

#### Step 2 : Analyse the question to determine what is being asked

 $\bullet$  We are asked to find the work done on the box. We know from the definition that work done is  $W=F_{\parallel}s$ 

#### Step 3: Next we substitute the values and calculate the work done

$$W = F_{\parallel} s$$
  
= (15 N)(20 m)  
= 300 J

Remember that the answer must be *positive* as the applied force and the motion are in the same direction (forwards). In this case, you (the pusher) lose energy, while the box gains energy.



# Worked Example 150: Calculating Work Done II

**Question:** What is the work done by you on a car, if you try to push the car up a hill by applying a force of 40 N directed up the slope, but it slides downhill 30 cm? **Answer** 

#### Step 1: Analyse the question to determine what information is provided

- The force applied is F=40 N
- The distance moved is s=30 cm. This is expressed in the wrong units so we must convert to the proper S.I. units (meters):

$$100 \,\mathrm{cm} = 1 \,\mathrm{m}$$

$$1 \,\mathrm{cm} = \frac{1}{100} \,\mathrm{m}$$

$$\therefore 30 \times 1 \,\mathrm{cm} = 30 \times \frac{1}{100} \,\mathrm{m}$$

$$= \frac{30}{100} \,\mathrm{m}$$

$$= 0.3 \,\mathrm{m}$$

• The applied force and distance moved are in opposite directions. Therefore, if we take s=0.3 m, then  $F_{\parallel}$ =-40 N.

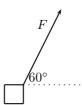
#### Step 2: Analyse the question to determine what is being asked

 $\bullet$  We are asked to find the work done on the car by you. We know that work done is  $W=F_{\parallel}s$ 

#### Step 3: Substitute the values and calculate the work done

Again we have the applied force and the distance moved so we can proceed with calculating the work done:

$$W = F_{\parallel} s$$
  
= (-40 N)(0.3 m)  
= -12J


Note that the answer must be *negative* as the applied force and the motion are in opposite directions. In this case the car does work on the person trying to push.

What happens when the applied force and the motion are not parallel? If there is an angle between the direction of motion and the applied force then to determine the work done we have to calculate the *component* of the applied force *parallel* to the direction of motion. Note that this means a force perpendicular to the direction of motion can do no work.



#### Worked Example 151: Calculating Work Done III

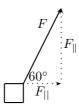
**Question:** Calculate the work done on a box, if it is pulled 5 m along the ground by applying a force of F=10 N at an angle of  $60^{\circ}$  to the horizontal.



#### Answer

### Step 1: Analyse the question to determine what information is provided

- The force applied is F=10 N
- ullet The distance moved is s=5 m along the ground
- $\bullet$  The angle between the applied force and the motion is  $60^\circ$


These quantities are in the correct units so we do not need to perform any unit conversions.

# Step 2: Analyse the question to determine what is being asked

• We are asked to find the work done on the box.

# Step 3 : Calculate the component of the applied force in the direction of motion

Since the force and the motion are not in the same direction, we must first calculate the component of the force in the direction of the motion.



From the force diagram we see that the component of the applied force parallel to the ground is

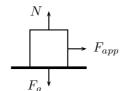
$$F_{||} = F \cdot \cos(60^{\circ})$$

$$= 10 \text{ N} \cdot \cos(60^{\circ})$$

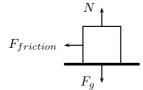
$$= 5 \text{ N}$$

# Step 4: Substitute and calculate the work done

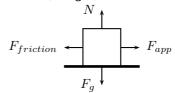
Now we can calculate the work done on the box:


$$W = F_{\parallel} s$$
  
=  $(5 \text{ N})(5 \text{ m})$   
=  $25 \text{ J}$ 

Note that the answer is positive as the component of the force  $F_{\parallel}$  is in the same direction as the motion.




**Exercise: Work** 


 A 10 N force is applied to push a block across a friction free surface for a displacement of 5.0 m to the right. The block has a weight of 20 N. Determine the work done by the following forces: normal force, weight, applied force.



2. A 10 N frictional force slows a moving block to a stop after a displacement of 5.0 m to the right. The block has a weight of 20 N. Determine the work done by the following forces: normal force, weight, frictional force.



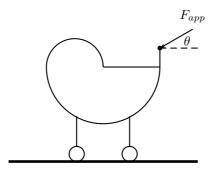
3. A 10 N force is applied to push a block across a frictional surface at constant speed for a displacement of 5.0 m to the right. The block has a weight of 20 N and the frictional force is 10 N. Determine the work done by the following forces: normal force, weight, frictional force.



4. A 20 N object is sliding at constant speed across a friction free surface for a displacement of 5 m to the right. Determine if there is any work done.



5. A 20 N object is pulled upward at constant speed by a 20 N force for a vertical displacement of 5 m. Determine if there is any work done.




6. Before beginning its descent, a roller coaster is always pulled up the first hill to a high initial height. Work is done on the roller coaster to achieve this initial height. A coaster designer is considering three different incline angles of the hill at which to drag the 2 000 kg car train to the top of the 60 m high hill. In each case, the force applied to the car will be applied parallel to the hill. Her critical question is: which angle would require the least work? Analyze the data, determine the work done in each case, and answer this critical question.

| Angle of Incline | Applied Force                | Distance | Work |
|------------------|------------------------------|----------|------|
| 35°              | $1.1 \times 10^4 \mathrm{N}$ | 100 m    |      |
| 45°              | $1.3 \times 10^4  { m N}$    | 90 m     |      |
| 55°              | $1.5 \times 10^4  { m N}$    | 80 m     |      |

7. Big Bertha carries a 150 N suitcase up four flights of stairs (a total height of 12 m) and then pushes it with a horizontal force of 60 N at a constant speed of  $0.25~{\rm m\cdot s^{-1}}$  for a horizontal distance of 50 m on a frictionless surface. How much work does Big Bertha do on the suitcase during this entire trip?

8. A mother pushes down on a pram with a force of 50 N at an angle of  $30^{\circ}$ . The pram is moving on a frictionless surface. If the mother pushes the pram for a horizontal distance of 30 m, how much does she do on the pram?



- 9. How much work is done by an applied force to raise a 2 000 N lift 5 floors vertically at a constant speed? Each floor is 5 m high.
- 10. A student with a mass of 60 kg runs up three flights of stairs in 15 s, covering a vertical distance of 10 m. Determine the amount of work done by the student to elevate her body to this height. Assume that her speed is constant.
- 11. (NOTE TO SELF: exercises are needed.)

# 23.3 Energy

# 23.3.1 External and Internal Forces

In Grade 10, you saw that mechanical energy was conserved in the absence of external forces. It is important to know whether a force is an internal force or an external force, because this is related to whether the force can change an object's total mechanical energy when it does work upon an object.

**Activity :: Investigations : External Forces** 

(NOTE TO SELF: need an activity that helps the learner investigate how energy is lost when external forces do work on an object.)

When an external force (for example friction, air resistance, applied force) does work on an object, the total mechanical energy (KE + PE) of that object changes. If positive work is done, then the object will gain energy. If negative work is done, then the object will lose energy. The gain or loss in energy can be in the form of potential energy, kinetic energy, or both. However, the work which is done is equal to the change in mechanical energy of the object.

Activity :: Investigation : Internal Forces and Energy Conservation (NOTE TO SELF: need an activity that helps the learner investigate how energy changes form when an internal force does work on an object.)

When an internal force does work on an object by an (for example, gravitational and spring forces), the total mechanical energy (KE + PE) of that object remains constant but the object's energy can change form. For example, as an object falls in a gravitational field from a high elevation to a lower elevation, some of the object's potential energy is changed into kinetic energy. However, the sum of the kinetic and potential energies remain constant. When the only forces doing work are internal forces, energy changes forms - from kinetic to potential (or vice versa); yet the total amount of mechanical is conserved.

# 23.3.2 Capacity to do Work

Energy is the capacity to do work. When positive work is done on an object, the system doing the work loses energy. In fact, **the energy lost by a system is exactly equal to the work done by the system.** An object with larger potential energy has a greater capacity to do work.



#### Worked Example 152: Work Done on a System

**Question:** Show that a hammer of mass 2 kg does more work when dropped from a height of 10 m than when dropped from a height of 5 m. Confirm that the hammer has a greater potential energy at 10 m than at 5 m.

#### Answei

#### Step 5: Determine what is given and what is required

We are given:

- $\bullet$  the mass of the hammer, m=2 kg
- height 1,  $h_1$ =10 m
- height 2,  $h_2$ =5 m

We are required to show that the hammer does more work when dropped from  $h_1$  than from  $h_2$ . We are also required to confirm that the hammer has a greater potential energy at 10 m than at 5 m.

#### Step 6: Determine how to approach the problem

1. Calculate the work done by the hammer,  $W_1$ , when dropped from  $h_1$  using:

$$W_1 = F_q \cdot h_1$$
.

2. Calculate the work done by the hammer,  $W_2$ , when dropped from  $h_2$  using:

$$W_2 = F_g \cdot h_2$$
.

- 3. Compare  $W_1$  and  $W_2$
- 4. Calculate potential energy at  $h_1$  and  $h_2$  and compare using:

$$PE = m \cdot g \cdot h. \tag{23.2}$$

# $\textbf{Step 7: Calculate } W_1$

$$W_1 = F_g \cdot h_1$$
  
=  $m \cdot g \cdot h_1$   
=  $(2 \text{ kg})(9.8 \text{ m} \cdot \text{s}^{-2})(10 \text{ m})$   
=  $196 \text{ J}$ 

#### Step 8 : Calculate $W_2$

$$W_2 = F_g \cdot h_2$$
=  $m \cdot g \cdot h_2$   
=  $(2 \text{ kg})(9.8 \text{ m} \cdot \text{s}^{-2})(5 \text{ m})$   
=  $98 \text{ J}$   
 $520$ 

**Step 9 : Compare**  $W_1$  and  $W_2$ 

We have  $W_1 = 196$  J and  $W_2 = 98$  J.  $W_1 > W_2$  as required.

Step 10: Calculate potential energy

From 23.2, we see that:

$$\begin{array}{rcl} PE & = & m \cdot g \cdot h \\ & = & F_g \cdot h \\ & = & W \end{array}$$

This means that the potential energy is equal to the work done. Therefore,  $PE_1>PE_2$ , because  $W_1>W_2$ .

This leads us to the work-energy theorem.



#### **Definition: Work-Energy Theorem**

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy:

$$W = \Delta KE = KE_f - KE_i$$

The work-energy theorem is another example of the conservation of energy which you saw in Grade 10.



# Worked Example 153: Work-Energy Theorem

**Question:** A ball of mass 1 kg is dropped from a height of 10 m. Calculate the work done on the ball at the point it hits the ground assuming that there is no air resistance?

# Answer

#### Step 1: Determine what is given and what is required

We are given:

• mass of the ball: m=1 kg

• initial height of the ball:  $h_i=10 \text{ m}$ 

• final height of the ball:  $h_f$ =0 m

We are required to determine the work done on the ball as it hits the ground.

#### Step 2: Determine how to approach the problem

The ball is falling freely, so energy is conserved. We know that the work done is equal to the difference in kinetic energy. The ball has no kinetic energy at the moment it is dropped, because it is stationary. When the ball hits the ground, all the ball's potential energy is converted to kinetic energy.

Step 3 : Determine the ball's potential energy at  $h_i$ 

$$PE = m \cdot g \cdot h$$
  
=  $(1 \text{ kg})(9.8 \text{ m} \cdot \text{s}^{-2})(10 \text{ m})$   
=  $98 \text{ J}$ 

#### Step 4: Determine the work done on the ball

The ball had 98 J of potential energy when it was released and 0 J of kinetic energy. When the ball hit the ground, it had 0 J of potential energy and 98 J of kinetic energy. Therefore  $KE_i$ =0 J and  $KE_f$ =98 J.

From the work-energy theorem:

$$W = \Delta KE$$

$$= KE_f - KE_i$$

$$= 98 J - 0 J$$

$$= 98 J$$

### Step 5: Write the final answer

98 J of work was done on the ball.



# Worked Example 154: Work-Energy Theorem 2

**Question:** The driver of a 1 000 kg car traveling at a speed of  $16.7 \text{ m} \cdot \text{s}^{-1}$  applies the car's brakes when he sees a red robot. The car's brakes provide a frictional force of 8000 N. Determine the stopping distance of the car.

#### Answei

#### Step 1: Determine what is given and what is required

We are given:

• mass of the car:  $m=1~000~{\rm kg}$ • speed of the car:  $v=16.7~{\rm m\cdot s}^{-1}$ 

• frictional force of brakes: F=8 000 N

We are required to determine the stopping distance of the car.

#### Step 2: Determine how to approach the problem

We apply the work-energy theorem. We know that all the car's kinetic energy is lost to friction. Therefore, the change in the car's kinetic energy is equal to the work done by the frictional force of the car's brakes.

Therefore, we first need to determine the car's kinetic energy at the moment of braking using:

$$KE = \frac{1}{2}mv^2$$

This energy is equal to the work done by the brakes. We have the force applied by the brakes, and we can use:

$$W = F \cdot d$$

to determine the stopping distance.

# Step 3: Determine the kinetic energy of the car

$$KE = \frac{1}{2}mv^{2}$$

$$= \frac{1}{2}(1\ 000\ \text{kg})(16,7\ \text{m}\cdot\text{s}^{-1})^{2}$$

$$= 139\ 445\ \text{J}$$

#### Step 4: Determine the work done

Assume the stopping distance is  $d_0$ . Then the work done is:

$$W = F \cdot d$$
  
=  $(-8\ 000\ N)(d_0)$ 

The force has a negative sign because it acts in a direction opposite to the direction of motion.

#### Step 5: Apply the work-enemy theorem

The change in kinetic energy is equal to the work done.

$$\Delta KE = W$$

$$KE_f - KE_i = (-8000 \,\mathrm{N})(\mathrm{d_0})$$

$$0 \,\mathrm{J} - 139445 \,\mathrm{J} = (-8000 \,\mathrm{N})(\mathrm{d_0})$$

$$\therefore d_0 = \frac{139445 \,\mathrm{J}}{8000 \,\mathrm{N}}$$

$$= 17.4 \,\mathrm{m}$$

Step 6: Write the final answer

The car stops in 17,4 m.

**Important:** A force only does work on an object for the time that it is in contact with the object. For example, a person pushing a trolley does work on the trolley, but the road does no work on the tyres of a car if they turn without slipping (the force is not applied over any distance because a different piece of tyre touches the road every instant.

Energy is conserved!

**Important:** Energy Conservation

**In the absence of friction**, the work done on an object by a system is equal to the energy gained by the object.

Work Done = Energy Transferred

**In the presence of friction**, only some of the energy lost by the system is transferred to useful energy. The rest is lost to friction.

Total Work Done = Useful Work Done + Work Done Against Friction

In the example of a falling mass the potential energy is known as *gravitational potential energy* as it is the gravitational force exerted by the earth which causes the mass to accelerate towards the ground. The gravitational field of the earth is what does the work in this case.

Another example is a rubber-band. In order to stretch a rubber-band we have to do work on it. This means we transfer energy to the rubber-band and it gains potential energy. This potential energy is called *elastic potential energy*. Once released, the rubber-band begins to move and elastic potential energy is transferred into kinetic energy.



Extension: Other forms of Potential Energy

 elastic potential energy - potential energy is stored in a compressed or extended spring or rubber band. This potential energy is calculated by:

$$\frac{1}{2}kx^2$$

where k is a constant that is a measure of the stiffness of the spring or rubber band and x is the extension of the spring or rubber band.

- 2. Chemical potential energy is related to the making and breaking of chemical bonds. For example, a battery converts chemical energy into electrical energy.
- 3. The electrical potential energy of an electrically charged object is defined as the work that must be done to move it from an infinite distance away to its present location, in the absence of any non-electrical forces on the object.

This energy is non-zero if there is another electrically charged object nearby otherwise it is given by:

$$k\frac{q_1q_2}{d}$$

where k is Coulomb's constant. For example, an electric motor lifting an elevator converts electrical energy into gravitational potential energy.

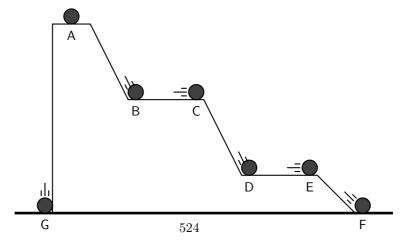
4. Nuclear energy is the energy released when the nucleus of an atom is split or fused. A nuclear reactor converts nuclear energy into heat.

Some of these forms of energy will be studied in later chapters.

#### Activity :: Investigation : Energy Resources

Energy can be taken from almost anywhere. Power plants use many different types of energy sources, including oil, coal, nuclear, biomass (organic gases), wind, solar, geothermal (the heat from the earth's rocks is very hot underground and is used to turn water to steam), tidal and hydroelectric (waterfalls). Most power stations work by using steam to turn turbines which then drive generators and create an electric current.

Most of these sources are dependant upon the sun's energy, because without it we would not have weather for wind and tides. The sun is also responsible for growing plants which decompose into fossil fuels like oil and coal. All these sources can be put under 2 headings, renewable and non-renewable. Renewable sources are sources which will not run out, like solar energy and wind power. Non-renewable sources are ones which will run out eventually, like oil and coal.


It is important that we learn to appreciate conservation in situations like this. The planet has a number of linked systems and if we don't appreciate the long-term consequences of our actions we run the risk of doing damage now that we will only suffer from in many years time.

Investigate two types of renewable and two types of non-renewable energy resources, listing advantages and disadvantages of each type. Write up the results as a short report.

# ?

#### **Exercise: Energy**

1. Fill in the table with the missing information using the positions of the ball in the diagram below combined with the work-energy theorem.



| position | KE | PE   | v |
|----------|----|------|---|
| Α        |    | 50 J |   |
| В        |    | 30 J |   |
| С        |    |      |   |
| D        |    | 10 J |   |
| E        |    |      |   |
| F        |    |      |   |
| G        |    |      |   |

- 2. A falling ball hits the ground at  $10~{\rm m\cdot s^{-1}}$  in a vacuum. Would the speed of the ball be increased or decreased if air resistance were taken into account. Discuss using the work-energy theorem.
- 3. (NOTE TO SELF: Exercises are needed.)

# 23.4 Power

Now that we understand the relationship between work and energy, we are ready to look at a quantity that defines how long it takes for a certain amount of work to be done. For example, a mother pushing a trolley full of groceries can take 30 s or 60 s to push the trolley down an aisle. She does the same amount of work, but takes a different length of time. We use the idea of *power* to describe the rate at which work is done.



#### **Definition: Power**

Power is defined as the rate at which work is done or the rate at which energy is expended. The mathematical definition for power is:

$$P = F \cdot v \tag{23.3}$$

(23.3) is easily derived from the definition of work. We know that:

$$W = F \cdot d.$$

However, power is defined as the rate at which work is done. Therefore,

$$P = \frac{\Delta W}{\Delta t}.$$

This can be written as:

$$P = \frac{\Delta W}{\Delta t}$$

$$= \frac{\Delta (F \cdot d)}{\Delta t}$$

$$= F \frac{\Delta d}{\Delta t}$$

$$= F \cdot v$$

The unit of power is watt (symbol W).



The unit watt is named after Scottish inventor and engineer James Watt (19 January 1736 - 19 August 1819) whose improvements to the steam engine were fundamental to the Industrial Revolution. A key feature of it was that it brought the engine out of the remote coal fields into factories.

# Activity :: Research Project : James Watt

Write a short report 5 pages on the life of James Watt describing his many other inventions.



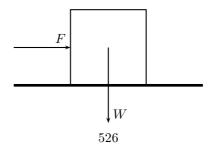
Historically, the *horsepower* (symbol hp) was the unit used to describe the power delivered by a machine. One horsepower is equivalent to approximately 750 W. The horsepower is sometimes used in the motor industry to describe the power output of an engine. Incidentally, the horsepower was derived by James Watt to give an indication of the power of his steam engine in terms of the power of a horse, which was what most people used to for example, turn a mill wheel.



#### Worked Example 155: Power Calculation 1

**Question:** Calculate the power required for a force of 10 N applied to move a 10 kg box at a speed of 1 ms over a frictionless surface.

#### **Answer**


Step 1: Determine what is given and what is required.

We are given:

- we are given the force, F=10 N
- ullet we are given the speed,  $v{=}1~{\rm m\cdot s^{-1}}$

We are required to calculate the power required.

#### Step 2 : Draw a force diagram



#### Step 3: Determine how to approach the problem

From the force diagram, we see that the weight of the box is acting at right angles to the direction of motion. The weight does not contribute to the work done and does not contribute to the power calculation.

We can therefore calculate power from:

$$P = F \cdot v$$

#### Step 4: Calculate the power required

$$P = F \cdot v$$
  
=  $(10 \text{ N})(1 \text{ m} \cdot \text{s}^{-1})$   
=  $10 \text{ W}$ 

#### Step 5: Write the final answer

 $10~\mathrm{W}$  of power are required for a force of  $10~\mathrm{N}$  to move a  $10~\mathrm{kg}$  box at a speed of  $1~\mathrm{ms}$  over a frictionless surface.

Machines are designed and built to do work on objects. All machines usually have a power rating. The power rating indicates the rate at which that machine can do work upon other objects.

A car engine is an example of a machine which is given a power rating. The power rating relates to how rapidly the car can accelerate. Suppose that a 50 kW engine could accelerate the car from 0  $\rm km \cdot hr^{-1}$  to  $60 \rm km \cdot hr^{-1}$  in 16 s. Then a car with four times the power rating (i.e. 200 kW) could do the same amount of work in a quarter of the time. That is, a 200 kW engine could accelerate the same car from 0  $\rm km \cdot hr^{-1}$  to  $60 \rm km \cdot hr^{-1}$  in 4 s.



#### Worked Example 156: Power Calculation 2

**Question:** A forklift lifts a crate of mass 100 kg at a constant velocity to a height of 8 m over a time of 4 s. The forklift then holds the crate in place for 20 s. Calculate how much power the forklift exerts in lifting the crate? How much power does the forklift exert in holding the crate in place?

#### Answer

#### Step 1: Determine what is given and what is required

We are given:

 $\bullet$  mass of crate:  $m{=}100 \text{ kg}$ 

• height that crate is raised: h=8 m

• time taken to raise crate:  $t_r$ =4 s

ullet time that crate is held in place:  $t_s{=}20~\mathrm{s}$ 

We are required to calculate the power exerted.

#### Step 2: Determine how to approach the problem

We can use:

$$P = F \frac{\Delta x}{\Delta t}$$

to calculate power. The force required to raise the crate is equal to the weight of the crate.

#### Step 3 : Calculate the power required to raise the crate

#### Step 4: Calculate the power required to hold the crate in place

While the crate is being held in place, there is no displacement. This means there is no work done on the crate and therefore there is no power exerted.

#### Step 5: Write the final answer

1 960 W of power is exerted to raise the crate and no power is exerted to hold the crate in place.

#### Activity :: Experiment : Simple measurements of human power

You can perform various physical activities, for example lifting measured weights or climbing a flight of stairs to estimate your output power, using a stop watch. Note: the human body is not very efficient in these activities, so your actual power will be much greater than estimated here.

# ?

# Exercise: Power

- 1. [IEB 2005/11 HG] Which of the following is equivalent to the SI unit of power:
  - $A V \cdot A$
  - B  $V \cdot A^{-1}$
  - C kg · m·s<sup>-1</sup>
  - D kg · m · s<sup>-2</sup>
- 2. Two students, Bill and Bob, are in the weight lifting room of their local gum. Bill lifts the 50 kg barbell over his head 10 times in one minute while Bob lifts the 50 kg barbell over his head 10 times in 10 seconds. Who does the most work? Who delivers the most power? Explain your answers.
- 3. Jack and Jill ran up the hill. Jack is twice as massive as Jill; yet Jill ascended the same distance in half the time. Who did the most work? Who delivered the most power? Explain your answers.
- 4. Alex (mass 60 kg) is training for the Comrades Marathon. Part of Alex's training schedule involves push-ups. Alex does his push-ups by applying a force to elevate his center-of-mass by 20 cm. Determine the number of push-ups that Alex must do in order to do 10 J of work. If Alex does all this work in 60 s, then determine Alex's power.
- 5. When doing a chin-up, a physics student lifts her 40 kg body a distance of 0.25 m in 2 s. What is the power delivered by the student's biceps?
- 6. The unit of power that is used on a monthly electricity account is *kilowatt-hours* (symbol kWh). This is a unit of energy delivered by the flow of I kW of electricity for 1 hour. Show how many joules of energy you get when you buy 1 kWh of electricity.

- 7. An escalator is used to move 20 passengers every minute from the first floor of a shopping mall to the second. The second floor is located 5-meters above the first floor. The average passenger's mass is 70 kg. Determine the power requirement of the escalator in order to move this number of passengers in this amount of time.
- 8. (NOTE TO SELF: need a worked example for example the minimum power required of an electric motor to pump water from a borehole of a particular depth at a particular rate)
- 9. (NOTE TO SELF: need a worked example -for example the power of different kinds of cars operating under different conditions.)
- 10. (NOTE TO SELF: Some exercises are needed.)

# 23.5 Important Equations and Quantities

| Units             |           |      |                                        |           |
|-------------------|-----------|------|----------------------------------------|-----------|
| Quantity          | Symbol    | Unit | S.I. Units                             | Direction |
| velocity          | $ec{v}$   | _    | $\frac{m}{s}$ or $m.s^{-1}$            | ✓         |
| momentum          | $\vec{p}$ | _    | $\frac{kg.m}{s}$ or $kg.m.s^{-1}$      | ✓         |
| energy            | E         | J    | $\frac{kg.m^2}{s^2}$ or $kg.m^2s^{-2}$ |           |
| Work              | W         | J    | $N.m$ or $kg.m^2.s^{-2}$               | _         |
| Kinetic Energy    | $E_K$     | J    | $N.m$ or $kg.m^2.s^{-2}$               |           |
| Potential Energy  | $E_P$     | J    | $N.m$ or $kg.m^2.s^{-2}$               | _         |
| Mechanical Energy | U         | J    | $N.m$ or $kg.m^2.s^{-2}$               | _         |

Table 23.1: Units commonly used in Collisions and Explosions

Momentum:

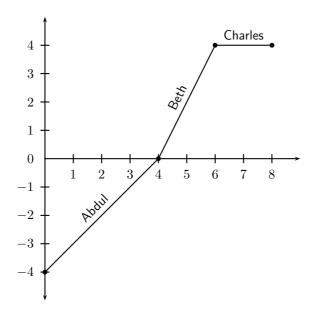
$$\vec{p} = m\vec{v} \tag{23.4}$$

Kinetic energy:

$$E_k = \frac{1}{2}m\vec{v}^2 {(23.5)}$$

**Principle of Conservation of Energy:** Energy is never created nor destroyed, but is merely transformed from one form to another.

**Conservation of Mechanical Energy:** In the absence of friction, the total mechanical energy of an object is conserved.

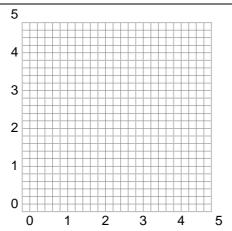

When a force moves in the direction along which it acts, work is done.

Work is the process of converting energy.

Energy is the ability to do work.

# 23.6 End of Chapter Exercises

1. The force vs. displacement graph shows the amount of force applied to an object by three different people. Abdul applies force to the object for the first 4 m of its displacement, Beth applies force from the 4 m point to the 6 m point, and Charles applies force from the 6 m point to the 8 m point. Calculate the work done by each person on the object? Which of the three does the most work on the object?




- 2. How much work does a person do in pushing a shopping trolley with a force of 200 N over a distance of 80 m in the direction of the force?
- 3. How much work does the force of gravity do in pulling a 20 kg box down a  $45^{\circ}$  frictionless inclined plane of length 18 m?
- 4. [IEB 2001/11 HG1] Of which one of the following quantities is  $kg.m^2.s^{-3}$  the base S.I. unit?
  - A Energy
  - B Force
  - C Power
  - D Momentum
- 5. [IEB  $2003/11 \ \text{HG1}$ ] A motor is used to raise a mass m through a vertical height h in time t.

What is the power of the motor while doing this?

- A mght
- B  $\frac{mgh}{t}$
- $C \frac{mgt}{h}$
- D  $\frac{ht}{mg}$
- 6. [IEB 2002/11 HG1] An electric motor lifts a load of mass M vertically through a height h at a constant speed v. Which of the following expressions can be used to correctly calculate the power transferred by the motor to the load while it is lifted at a constant speed?
  - A Mgh
  - $\mathsf{B}\ Mgh + \tfrac{1}{2}\mathsf{Mv}^2$
  - $\mathsf{C}\ Mgv$
  - D  $Mgv + \frac{1}{2} \frac{Mv^3}{h}$
- 7. [IEB 2001/11 HG1] An escalator is a moving staircase that is powered by an electric motor. People are lifted up the escalator at a constant speed of v through a vertical height h.

What is the energy gained by a person of mass m standing on the escalator when he is lifted from the bottom to the top?



- $A \ \mathsf{mgh}$
- B mgh  $\sin \theta$
- $\mathsf{C}\ \frac{\mathrm{mgh}}{\sin\theta}$
- $D \frac{1}{2}mv^2$
- 8. [IEB 2003/11 HG1] In which of the following situations is there no work done on the object?
  - A An apple falls to the ground.
  - B A brick is lifted from the ground to the top of a building.
  - C A car slows down to a stop.
  - D A box moves at constant velocity across a frictionless horizontal surface.
- 9. (NOTE TO SELF: exercises are needed.)

# Appendix A

# **GNU Free Documentation License**

Version 1.2, November 2002
Copyright © 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

# **PREAMBLE**

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

# APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

# VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

# **COPYING IN QUANTITY**

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

# **MODIFICATIONS**

You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

- 1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
- 2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
- 3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
- 4. Preserve all the copyright notices of the Document.
- 5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

- 6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
- 7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
- 8. Include an unaltered copy of this License.
- 9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
- 10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
- 11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
- 12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
- 13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
- 14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
- 15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

# **COMBINING DOCUMENTS**

You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the

combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

# **COLLECTIONS OF DOCUMENTS**

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

# AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

# **TRANSLATION**

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the

actual title.

# **TERMINATION**

You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

# FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

# ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.