
Description of the Project
Release 5.4.4

Yves Renard, Julien Pommier, Konstantinos Poulios

Jun 23, 2025

CONTENTS

1 Introduction 1

2 How to contribute / Git repository on Savannah 3
2.1 How to get the sources . 3
2.2 How to contribute . 3
2.3 Specific branch for doc improvements and typo-fixes 4
2.4 Locally commit your changes . 4
2.5 Push you changes in the Savannah repository . 4
2.6 Ask for an admin to merge your modifications to the master branch of GetFEM 4
2.7 Merge modifications done by other contributors . 5
2.8 Some useful git commands . 5
2.9 Contributing to document translation . 5

3 The FEM description in GetFEM 7
3.1 Convex structures . 7
3.2 Convexes of reference . 8
3.3 Shape function type . 9
3.4 Geometric transformations . 9
3.5 Finite element methods description . 11

4 Description of the different parts of the library 13
4.1 Gmm library . 13
4.2 Dal library . 15
4.3 Miscellaneous algorithms . 16
4.4 Events management . 17
4.5 Mesh module . 18
4.6 Fem module . 20
4.7 Integ module . 22
4.8 MeshFem module . 22
4.9 MeshIm module . 24
4.10 Level-set module . 24
4.11 The high-level generic assembly module in GetFEM 25
4.12 The low-level generic assembly module in GetFEM 29
4.13 Model module . 30
4.14 Continuation module . 32
4.15 Interface with scripting languages (Python, Scilab and Matlab) 32

5 Appendix A. Some basic computations between reference and real elements 39
5.1 Volume integral . 39

i

5.2 Surface integral . 39
5.3 Derivative computation . 39
5.4 Second derivative computation . 40
5.5 Example of elementary matrix . 40

6 References 43

Bibliography 45

Index 49

ii

CHAPTER

ONE

INTRODUCTION

The aim of this document is to report details of the internal of GetFEM useful for developers that have
no place in the user documentation. It is also to outline the main prospects for the future development
of GetFEM. A list of modifications to be done and main tasks is updated on Savannah https://savannah.
nongnu.org/task/?group=getfem.

The GetFEM project focuses on the development of an open source generic finite element library. The
goal is to provide a finite element framework which allows to easily build numerical code for the mod-
elisation of system described by partial differential equations (p.d.e.). A special attention is paid to the
flexibility of the use of the library in the sense that the switch from a method offered by the library to
another is made as easy as possible.

The major point allowing this, compared to traditional finite element codes, is the complete separation
between the description of p.d.e. models and finite element methods. Moreover, a separation is made
between integration methods (exact or approximated), geometric transformations (linear or not) and finite
element methods of arbitrary degrees described on a reference element. GetFEM can be used to build
very general finite elements codes, where the finite elements, integration methods, dimension of the
meshes, are just some parameters that can be changed very easily, thus allowing a large spectrum of
experimentations. Numerous examples are available in the tests directory of the distribution.

The goal is also to make the addition of new finite element method as simple as possible. For standard
method, a description of the finite element shape functions and the type of connection of degrees of
freedom on the reference element is sufficient. Extensions are provided for Hermite elements, piecewise
polynomial, non-polynomial, vectorial elements and XFem. Examples of predefined available methods
are 𝑃𝑘 on simplices in arbitrary degrees and dimensions, 𝑄𝑘 on parallelepipeds, 𝑃1, 𝑃2 with bubble
functions, Hermite elements, elements with hierarchic basis (for multigrid methods for instance), dis-
continuous 𝑃𝑘 or 𝑄𝑘, XFem, Argyris, HCT, Raviart-Thomas.

The library also includes the usual tools for finite elements such as assembly procedures for classi-
cal PDEs, interpolation methods, computation of norms, mesh operations, boundary conditions, post-
processing tools such as extraction of slices from a mesh . . .

The aim of the GetFEM project is not to provide a ready to use finite element code allowing for instance
structural mechanics computations with a graphic interface. It is basically a library allowing the build
of C++ finite element codes. However, the Python, Scilab and matlab interfaces allows to easily build
application coupling the definition of the problem, the finite element methods selection and the graphical
post-processing.

Copyright © 2004-2025 GetFEM project.

The text of the GetFEM website and the documentations are available for modification and reuse under
the terms of the GNU Free Documentation License

GetFEM is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser

1

https://savannah.nongnu.org/task/?group=getfem
https://savannah.nongnu.org/task/?group=getfem
https://savannah.nongnu.org/task/?group=getfem
https://savannah.nongnu.org/task/?group=getfem
http://www.gnu.org/licenses/fdl.html

Description of the Project, Release 5.4.4

General Public License as published by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at
your option) any later version. This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Li-
brary Exception for more details. You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth
Floor, Boston, MA 02110-1301, USA.

2 Chapter 1. Introduction

CHAPTER

TWO

HOW TO CONTRIBUTE / GIT REPOSITORY ON SAVANNAH

GetFEM is an open source finite element library based on a collaborative development. If you intend to
make some contributions, you can ask for membership of the project there. Contributions of all kinds
are welcome: documentation, bug reports, constructive comments, changes suggestions, bug fix, new
models, etc . . .

Contributors are of course required to be careful that their changes do not affect the proper functioning
of the library and that these changes follow a principle of backward compatibility.

See here for a list of task and discussions about GetFEM development.

IMPORTANT : a contributor implicitly accepts that his/her contribution will be distributed under the
LGPL licence of GetFEM.

The main repository of GetFEM is on Savannah, the software forge of the Free Software Foundation (see
Savannah). The page of the project on Savannah is Getfem on Savannah. See also Getfem sources on
Savannah.

2.1 How to get the sources

If you just want the sources and do not intend to make some contributions, you can just use the command

git clone https://git.savannah.nongnu.org/git/getfem.git

If you intend to make some contributions, the first step is to ask for the inclusion in the GetFEM project
(for this you have to create a Savannah account). You have also to register a ssh key (see git on Savannah)
and then use the command

git clone ssh://savannah-login@git.sv.gnu.org:/srv/git/getfem.git

2.2 How to contribute

Before modifying any file, you have to create a development branch because it is not allowed to make
a modification directly in the master branch. It is recommended that the branch name is of the type
devel-name-subject where name is your name or login and subject the main subject of the changes. For
instance, if you chose devel-me-rewrite-fem-kernel as the branch name, the creation of the branch reads

git branch devel-me-rewrite-fem-kernel
git checkout devel-me-rewrite-fem-kernel

3

https://savannah.nongnu.org/task/?group=getfem
https://savannah.gnu.org
https://savannah.nongnu.org/projects/getfem
http://git.savannah.nongnu.org/gitweb/?p=getfem.git;a=tree
http://git.savannah.nongnu.org/gitweb/?p=getfem.git;a=tree
http://savannah.gnu.org/maintenance/UsingGit/

Description of the Project, Release 5.4.4

The first command create the branch and the second one position you on your branch. After that you
are nearly ready to makes some modifications. You can specify your contact name and e-mail with the
following commands in order to label your changes

git config --global user.name "Your Name Comes Here"
git config --global user.email you@yourdomain.example.com

2.3 Specific branch for doc improvements and typo-fixes

If you want to contribute to the documentation only, it is not necessary to build a specific branch. You
can just checkout to the fixmisspell branch which has been created for this purpose with

git checkout fixmisspell

2.4 Locally commit your changes

Once you made some modifications of a file or you added a new file, say src/toto.cc, the local commit is
done with the commands:

git add src/toto.cc
git commit -m "Your extensive commit message here"

At this stage the commit is done on your local repository but not in the Savannah one.

2.5 Push you changes in the Savannah repository

You can now transfer your modifications to the Savannah repository with

git push origin devel-me-rewrite-fem-kernel

where of course devel-me-rewrite-fem-kernel is still the name of your branch. At this stage your modifi-
cations are registered in the branch devel-me-rewrite-fem-kernel of Savannah repository. Your role stops
here, since you are not allowed to modify the master branch of GetFEM.

2.6 Ask for an admin to merge your modifications to the master
branch of GetFEM

Once you validated your modifications with sufficient tests, you can ask an admin of GetFEM to
merge your modifications. For this, contact one of them directly, or send an e-mail to getfem-
commits@nongnu.org with the message : “please merge branch devel-me-rewrite-fem-kernel” with even-
tually a short description of the modifications. IMPORTANT : by default, your branch will be deleted
after the merge, unless you express the need to keep it.

4 Chapter 2. How to contribute / Git repository on Savannah

Description of the Project, Release 5.4.4

2.7 Merge modifications done by other contributors

You can run a

git pull origin master
git merge master

in order to integrate the modifications which has been validated and integrated to the master branch. This
is recommended to run this command before any request for integration of a modification in the master
branch.

2.8 Some useful git commands

git status : status of your repository / branch

git log --follow "filepath" : Show all the commits modifying the specified␣
→˓file (and follow the eventual change of name of the file).

gitk --follow filename : same as previous but with a graphical interface

2.9 Contributing to document translation

The recommended way for new contributors to translate document is to join Getfem translation team on
Transifex . For contribution, please make account in transifex and click request language and fill form
. After translation, pull translated po file from site by using transifex-client. You need api token which
you can get in transifex site.

cd doc/sphinx
tx pull -l <lang>

Set code for your native language to <lang> (see Currently supported languages by Sphinx are).

Warning: DO NOT tx push to transifex. It will have some trouble. You can upload file one by one
in team page.

After pulling translated po files, set <lang> to LANGUAGE in doc/sphinx/Makefile.am .

LANGUAGE = <lang>
SPHINXOPTS = -D language=$(LANGUAGE)

Then, you can run a following commands in order to make html localization document.

cd doc/sphinx
make html

If you want to make pdf file in your language, you can run a

2.7. Merge modifications done by other contributors 5

https://www.transifex.com/tkoyama010/getfem-doc/dashboard
https://www.transifex.com/tkoyama010/getfem-doc/dashboard
https://www.transifex.com
https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-language

Description of the Project, Release 5.4.4

make latex
cd build/latex
make all-pdf-<lang>

See details in Sphinx Internationalization .

You can see translated document at Read the Docs by switch language.

6 Chapter 2. How to contribute / Git repository on Savannah

http://www.sphinx-doc.org/en/master/intl.html
https://getfem.readthedocs.io

CHAPTER

THREE

THE FEM DESCRIPTION IN GETFEM

The aim of this section is to briefly introduce the FEM description in GetFEM mainly in order to fix the
notation used in the rest of the document (definition of element, reference element, geometric transfor-
mation, gradient of the geometric transformation . . .).

3.1 Convex structures

Finite element methods are defined on small convex domains called elements. The simplest element on
which a finite element method can be defined is a segment (simplex of dimension 1), other possibilities
are triangles, tetrahedrons (simplices of dimension 2 and 3), prisms, parallelepiped, etc. In GetFEM, a
type of element (for us, a convex) is described by the object bgeot::convex_structure defined in the
file bgeot_convex_structure.h.

It describes only the structure of the convex not the coordinates of the vertices. This structure is not to
be manipulated by itself, because it is not necessary that more than one structure of this type describe
the same type of convex. What will be manipulated is a pointer on such a descriptor which has to be
declared with the type bgeot::pconvex_structure

The following functions give a pointer onto the descriptor of the usual type of elements:

bgeot::simplex_structure(dim_type d)
description of a simplex of dimension d.

bgeot::parallelepiped_structure(dim_type d)
description of a parallelepiped of dimension d.

bgeot::convex_product_structure(bgeot::pconvex_structure p1, pconvex_structure p2)
description of the direct product of p1 and p2.

bgeot::prism_P1_structure(dim_type d)
description of a prism of dimension d.

For instance if one needs the description of a square, one can call equivalently:

p = bgeot::parallelepiped_structure(2);

or:

p = bgeot::convex_product_structure(bgeot::simplex_structure(1),
bgeot::simplex_structure(1));

The descriptor contains in particular the number of faces (p->nb_faces()), the dimension of the convex
(p->dim()), for the number of vertices (p->nb_points()). Other information is the number of vertices

7

Description of the Project, Release 5.4.4

of each face, the description of a face and the eventual reference to a more basic description (used for the
description of geometric transformations).

Fig. 1: usual elements

3.2 Convexes of reference

A convex of reference is a particular real element, i.e. a structure of convex with a list of ver-
tices. It describes the particular element from which a finite element method is defined. In the file
bgeot_convex_ref.h the object bgeot::convex_of_referencemakes this description. The library
keeps only one description for each type of convex. So what will be manipulated is a pointer of type
bgeot::pconvex_ref on the descriptor.

The following functions build the descriptions:

bgeot::simplex_of_reference(dim_type d)
description of the simplex of reference of dimension d.

bgeot::simplex_of_reference(dim_type d, short_type k)
description of the simplex of reference of dimension d with degree k Lagrange grid.

bgeot::convex_ref_product(pconvex_ref a, pconvex_ref b)
description of the direct product of two convexes of reference.

8 Chapter 3. The FEM description in GetFEM

Description of the Project, Release 5.4.4

bgeot::parallelepiped_of_reference(dim_type d)
description of the parallelepiped of reference of dimension d.

The vertices correspond to the classical vertices for such reference element. For instance the vertices
for the triangle are (0, 0), (1, 0) and (0, 1). It corresponds to the configuration shown in Figure usual
elements

If p is of type bgeot::pconvex_ref then p->structure() is the corresponding convex struc-
ture. Thus for instance p->structure()->nb_points() gives the number of vertices. The func-
tion p->points() give the array of vertices and p->points()[0] is the first vertex. The function
p->is_in(const base_node &pt) return a real which is negative or null if the point pt is in the ele-
ment. The function p->is_in_face(short_type f, const base_node &pt) return a real which is
null if the point pt is in the face f of the element. Other functions can be found in bgeot_convex_ref.h
and bgeot_convex.h.

3.3 Shape function type

Most of the time the shape functions of finite element methods are polynomials, at least on the convex of
reference. But, the possibility is given to have other types of elements. It is possible to define other kind
of base functions such as piecewise polynomials, interpolant wavelets, etc.

To be used by the finite element description, a shape function type must be able to be evaluated on a point
(a = F.eval(pt), where pt is a base_node) and must have a method to compute the derivative with
respect to the ith variable (F.derivative(i)).

For the moment, only polynomials and piecewise polynomials are defined in the files bgeot_poly.h
and bgeot_poly_composite.h.

3.4 Geometric transformations

Fig. 2: geometric transformation

3.3. Shape function type 9

Description of the Project, Release 5.4.4

A geometric transformation is a polynomial application:

𝜏 : ̂︀𝑇 ⊂ IRP −→ T ⊂ IRN,

which maps the reference element ̂︀𝑇 to the real element 𝑇 . The geometric nodes are denoted:

𝑔𝑖, 𝑖 = 0, . . . , 𝑛𝑔 − 1.

The geometric transformation is described thanks to a 𝑛𝑔 components polynomial vector (In fact, as an
extention, non polynomial geometric transformation can also be supported by GetFEM, but this is very
rarely used)

𝒩 (̂︀𝑥),
such that

𝜏(̂︀𝑥) = 𝑛𝑔−1∑︁
𝑖=0

𝒩𝑖(̂︀𝑥)𝑔𝑖.
Denoting

𝐺 = (𝑔0; 𝑔1; ...; 𝑔𝑛𝑔−1),

the 𝑁 × 𝑛𝑔 matrix containing of all the geometric nodes, one has

𝜏(̂︀𝑥) = 𝐺 · 𝒩 (̂︀𝑥).
The derivative of 𝜏 is then

𝐾(̂︀𝑥) := ∇𝜏(̂︀𝑥) = 𝐺 · ∇𝒩 (̂︀𝑥),
where𝐾(̂︀𝑥) = ∇𝜏(̂︀𝑥) is a𝑁×𝑃 matrix and ∇𝒩 (̂︀𝑥) a 𝑛𝑔×𝑃 matrix. The (transposed) pseudo-inverse
of ∇𝜏(̂︀𝑥) is a 𝑁 × 𝑃 matrix denoted 𝐵(̂︀𝑥):

𝐵(̂︀𝑥) := 𝐾(̂︀𝑥)(𝐾(̂︀𝑥)𝑇𝐾(̂︀𝑥))−1,

Of course, when 𝑃 = 𝑁 , one has 𝐵(̂︀𝑥) = 𝐾(̂︀𝑥)−𝑇 .

Pointers on a descriptor of a geometric transformation can be obtained by the following function defined
in the file bgeot_geometric_trans.h:

bgeot::pgeometric_trans pgt = bgeot::geometric_trans_descriptor("name of trans
→˓");

where "name of trans" can be chosen among the following list.

• "GT_PK(n,k)"

Description of the simplex transformation of dimension n and degree k (Most of the time, the
degree 1 is used).

• "GT_QK(n,k)"

Description of the parallelepiped transformation of dimension n and degree k.

• "GT_PRISM(n,k)"

Description of the prism transformation of dimension n and degree k.

10 Chapter 3. The FEM description in GetFEM

Description of the Project, Release 5.4.4

• "GT_PRODUCT(a,b)"

Description of the direct product of the two transformations a and b.

• "GT_LINEAR_PRODUCT(a,b)"

Description of the direct product of the two transformations a and b keeping a linear transformation
(this is a restriction of the previous function). This allows, for instance, to use exact integrations
on regular meshes with parallelograms.

3.5 Finite element methods description

A finite element method is defined on a reference element ̂︀𝑇 ⊂ IRP by a set of 𝑛𝑑 nodes 𝑎𝑖 and corre-
sponding base functions

(̂︀𝜙)𝑖 : ̂︀𝑇 ⊂ IRP −→ IRQ

Denoting

𝜓𝑖(𝑥) = (̂︀𝜙)𝑖(̂︀𝑥) = (̂︀𝜙)𝑖(𝜏−1(𝑥)),

a supplementary linear transformation is allowed for the real base function

𝜙𝑖(𝑥) =

𝑛𝑑−1∑︁
𝑗=0

𝑀𝑖𝑗𝜓
𝑗(𝑥),

where 𝑀 is a 𝑛𝑑 × 𝑛𝑑 matrix possibly depending on the geometric transformation (i.e. on the real
element). For basic elements as Lagrange elements this matrix is the identity matrix (it is simply ignored).
In this case, we will say that the element is 𝜏 -equivalent.

This approach allows to define hermite elements (Argyris for instance) in a generic way, even with non
linear transformations (i.e. mainly for curved boundaries). We denote [̂︀𝜙(̂︀𝑥)] the 𝑛𝑑 ×𝑄 matrix whose
ith line is (̂︀𝜙)𝑖(̂︀𝑥). Whis this notation, for a function is defined by

𝑓(𝑥) =

𝑛𝑑−1∑︁
𝑖=0

𝛼𝑖𝜙
𝑖(𝑥),

one has

𝑓(𝜏(̂︀𝑥)) = 𝛼𝑇𝑀 [̂︀𝜙(̂︀𝑥)],
where 𝛼 is the vector whose ith component is 𝛼𝑖.

A certain number of description of classical finite element method are defined in the file getfem_fem.h.
See ud-appendixa for an exhaustive list of available finite element methods.

A pointer to the finite element descriptor of a method is obtained using the function:

getfem::pfem pfe = getfem::fem_descriptor("name of method");

We refer to the file getfem_fem.cc for how to define a new finite element method.

3.5. Finite element methods description 11

Description of the Project, Release 5.4.4

12 Chapter 3. The FEM description in GetFEM

CHAPTER

FOUR

DESCRIPTION OF THE DIFFERENT PARTS OF THE LIBRARY

Figure Diagram of GetFEM library describes the diagram of the different modules of the GetFEM library.
The current state and perspective for each module is described in section Description of the different parts
of the library.

4.1 Gmm library

4.1.1 Description

Gmm++ is a template linear algebra library which was originally designed to make an interface between
the need in linear algebra procedures of GetFEM and existing free linear algebra libraries (MTL, Superlu,
Blas, Lapack originally). It rapidly evolves to an independent self-consistent library with its own vector
and matrix types. It is now used as a base linear algebra library by several other projects.

However, it preserves the characteristic to be a potential interface for more specific packages. Any vector
or matrix type having the minimum of compatibility can be used by generic algorithms of Gmm++
writing a linalg_traits structure.

A Gmm++ standalone version is distributed since release 1.5 of GetFEM. It is however developed inside
the GetFEM project even though since release 3.0 it is completely independent of any GetFEM file.

In addition to the linear algebra procedures, it furnishes also the following utilities to GetFEM.

• Fix some eventual compatibility problems in gmm_std.h.

• Error, warning and trace management in gmm_except.h.

• Some extended math definitions in gmm_def.h.

See gmm documenation for more details.

4.1.2 Files

All files in src/gmm

13

Description of the Project, Release 5.4.4

Fig. 1: Diagram of GetFEM library

14 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.1.3 State

For the moment, Gmm++ cover the needs of GetFEM concerning the basic linear algebra procedures.

4.1.4 Perspectives

There is potentially several points to be improved in Gmm++ (partial introduction of expression template
for some base types of matrix and vectors, think about the way to represent in a more coherent manner
sparse sub-vectors and sub-matrices, introduction of C++ concepts, etc.). However, since Gmm++ glob-
ally cover the needs of GetFEM and since there exists some other project like Glas to build a reference
C++ library for linear algebra, a global change seem to be unnecessary. This part is considered to be
stabilized.

The current vocation of Gmm++ is to continue to collect generic algorithms and interfaces to some other
packages (DIFFPACK for instance) in order to cover new needs of the whole project. The library is now
frequently used as a separate package and has also the vocation to collect the contribution of any person
who propose some improvements, new algorithms or new interfaces.

4.2 Dal library

4.2.1 Description

In the very begining of GetFEM (the first files was written in 1995) the S.T.L. was not available and the
containers defined in the dal namespace was used everywhere. Now, in GetFEM, the S.T.L. containers
are mainly used. The remaining uses of dal containers are eather historical or due to the specificities
of these containers. It is however clear that this is not the aim of the GetFEM project to develop new
container concept. So, the use of the dal containers has to be as much as possible reduced.

Furthermore, dal contains a certain number of basic algorithms to deal with static stored objects (de-
scription of finite element methods, intermediary structures for auxiliary computations . . .).

4.2. Dal library 15

http://glas.sourceforge.net/

Description of the Project, Release 5.4.4

4.2.2 Files

File(s) Description
dal_config.h Mainly load Gmm++ header files
dal_basic.h A variable size array container, dal::dynamic_array<T>.
dal_bit_vector.h and
dal_bit_vector.cc

A improved bit vector container based on
dal::dynamic_array<T>.

dal_tas.h A heap container based on dal::dynamic_array<T>.
dal_tree_sorted.h A balanced tree stored array based on dal::dynamic_array<T>.
dal_static_stored_objects.
h and
dal_static_stored_objects.
cc

Allows to store some objects and dependencies between some ob-
jects. Used to store many things in GetFEM (finite element meth-
ods, integration methods, pre-computations, . . .).

dal_naming_system.h A generic object to associate a name to a method descriptor
and store the method descriptor. Used for finite element meth-
ods, integration methods and geometric transformations. Uses
dal::static_stored_object.

dal_shared_ptr.h A simplified version of boost::shared_ptr.
dal_singleton.h and
dal_singleton.cc

A simple singleton implementation which has been made thread
safe for OpenMP (singletons are replicated n each thread).

dal_backtrace.h and
dal_backtrace.cc

For debugging, dump glibc backtrace.

4.2.3 State

Stable, not evolving too much.

4.2.4 Perspectives

No plan.

4.3 Miscellaneous algorithms

4.3.1 Description

A set of miscellaneous basic algorithms and definitions used in GetFEM.

16 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.3.2 Files

File(s) Description
bgeot_comma_init.h Allow to init container with a list of values, from boost init.hpp.
bgeot_ftool.h and
bgeot_ftool.cc

Small language allowing to read a parameter file with a Matlab
syntax like. Used also for structured meshes.

bgeot_kdtree.h and
bgeot_kdtree.cc

Balanced N-dimensional tree. Store a list of points and allows a
quick search of points lying in a given box.

bgeot_rtree.h and
bgeot_rtree.cc

Rectangle tree. Store a list of N-dimensional rectangles and al-
lows a quick search of rectangles containing a given point.

permutations.h Allows to iterate on permutations. Only used in
getfem_integration.cc.

bgeot_small_vector.h and
bgeot_small_vector.cc

Defines a vector of low dimension mainly used to represent mesh
nodes. Optimized operations.

bgeot_tensor.h Arbitrary order tensor. Used in assembly.
bgeot_sparse_tensors.h and
bgeot_sparse_tensors.cc

Arbitrary order sparse tensor. Used in the low-level generic as-
sembly.

getfem_omp.h and
getfem_omp.cc

Tools for multithreaded, OpenMP and Boost based paralleliza-
tion.

getfem_export.h and
getfem_export.cc

Export in pos and vtk formats

getfem_superlu.h and
getfem_superlu.cc

Interface with Superlu (the included version or an external one)

4.3.3 State

4.3.4 Perspectives

4.4 Events management

4.4.1 Description

The mesh, mesh_fem, mesh_im and model description are linked together in the sense that there is some
dependencies between them. For instance, when an element is suppressed to a mesh, the mesh_fem object
has to react.

4.4.2 Files

File(s) Description
getfem_context.h and
getfem_context.cc

Define a class context_dependencies from which all object has to
derive in order to manage events.

4.4. Events management 17

Description of the Project, Release 5.4.4

4.4.3 State

The main tool to deal with simple dependence of object is in getfem_context.h. An object
context_dependencies is defined there. In order to deal with the dependencies of an object, the
object context_dependencies needs to be a parent class of this object. It adds the following methods
to the object:

getfem::context_dependencies::add_dependency(ct)
Add an object (which has to have context_dependencies as a parent class) to the list of objects
from which the current object depend.

getfem::context_dependencies::touch()
Indicates to the dependent objects that something has change in the object.

getfem::context_dependencies::context_check()
Check if the object has to be updated. if it is the case it makes first a check to the dependency
list and call the update function of the object. (the update function of the dependencies are called
before the update function of the current object).

getfem::context_dependencies::context_valid()
Says if the object has still a valid context, i.e. if the object in the dependency list still exist.

Moreover, the object has to define a method:

``void update_from_context(void) const``

which is called after a context_check() if the context has changed.

An additional system is present in the object mesh. Each individual element has a version number in
order for the objects mesh_fem and mesh_im to detect which element has changed between two calls.

4.4.4 Perspectives

The event management of some objects should be analysed with care. This is the case for instance of
mesh_level_set, mesh_fem_level_set, partial_mesh_fem, etc.

The event management still have to be improved to be a fully reactive system.

4.5 Mesh module

4.5.1 Description

This part of the library has the role to store and manage the meshes, i.e. a collection of elements (real
elements) connected to each other by some of their faces. For that, it develops concepts of elements,
elements of reference, structure of meshes, collection of nodes, geometric transformations, subpart of
the boundary or subzone of the mesh.

There is no really effective meshing capabilities available for the moment in GetFEM. The meshes of
complex objects must be imported from existing meshers such as Gmsh or GiD. Some importing func-
tions of meshes have been written and can be easily extended for other formats.

The object which represents a mesh declared in the file getfem_mesh.h and which is used as a basis for
handling of the meshes in GetFEM manages also the possibility for the structures depending on a mesh

18 Chapter 4. Description of the different parts of the library

http://www.geuz.org/gmsh
http://gid.cimne.upc.es

Description of the Project, Release 5.4.4

(see MESHFEM and MESHIM modules) to react to the evolution of the mesh (addition or removal of
elements, etc.).

4.5.2 Files

File(s) Description
bgeot_convex_structure.
h and
bgeot_convex_structure.cc

Describes the structure of an element disregarding the coordinates
of its vertices.

bgeot_mesh_structure.h and
bgeot_mesh_structure.cc

Describes the structure of a mesh disregarding the coordinates of
the nodes.

bgeot_node_tab.h and
bgeot_node_tab.cc

A node container allowing the fast search of a node and store
nodes identifying the too much close nodes.

bgeot_convex.h Describes an element with its vertices.
bgeot_convex_ref.h and
bgeot_convex_ref.cc and
bgeot_convex_structure.cc

Describe reference elements.

bgeot_mesh.h Describes a mesh with the collection of node (but without the
description of geometric transformations).

getfem_mesh_region.h and
getfem_mesh_region.cc

Object representing a mesh region (boundary or part of a mesh).

bgeot_geometric_trans.h
and bgeot_geometric_trans.
cc

Describes geometric transformations.

bgeot_geotrans_inv.h and
bgeot_geotrans_inv.cc

A tool to invert geometric transformations.

getfem_mesh.h and
getfem_mesh.cc

Fully describes a mesh (with the geometric transformations, sub-
parts of the mesh, support for parallelization). Includes the Bank
algorithm to refine a mesh.

getfem_deformable_mesh.h defines an object capable to deform a mesh with respect to a dis-
placement field and capable to restore it

getfem_mesher.h and
getfem_mesher.cc

An experimental mesher, in arbitrary dimension. To be used with
care and quite slow (because of node optimization). It meshes
geometries defined by some level sets.

getfem_import.h and
getfem_import.cc

Import mesh files in various formats

getfem_regular_meshes.h
and getfem_regular_meshes.
cc

Produces structured meshes

getfem_mesh_slicers.h and
getfem_mesh_slicers.cc

A slice is built from a mesh, by applying some slicing operations
(cut the mesh with a plane, intersect with a sphere, take the bound-
ary faces, etc..). They are used for post-treatment (exportation of
results to VTK or OpenDX, etc.).

getfem_mesh_slice.h and
getfem_mesh_slice.cc

Store mesh slices.

4.5. Mesh module 19

Description of the Project, Release 5.4.4

4.5.3 State

Stable and not evolving so much.

4.5.4 Perspectives

For the moment, the module is split into two parts which lie into two different namespaces. Of course, It
would be more coherent to gather the module in only one namespace (getfem).

Note: The file bgeot_mesh.h could be renamed getfem_basic_mesh.h.

A bibliographical review on how to efficiently store a mesh and implement the main operations (add a
node, an element, deal with faces, find the neighbour elements, the isolated faces . . .) would be interesting
to make the mesh structure evolve.

A senstive algorithm is the one (in bgeot_node_tab.cc) which identify the too much close nodes. More
investigations (and documentation) are probably necessary.

4.6 Fem module

4.6.1 Description

The Fem module is the part of GetFEM which describes the finite elements at the element level and the
degrees of freedom. Finite element methods can be of different types. They could be scalar or vectorial,
polynomial, piecewise polynomial or non-polynomial, equivalent via the geometric transformation or
not. Moreover, the description of the degrees of freedom have to be such that it is possible to gather the
compatible degrees of freedom between two neighbour elements in a generic way (for instance connecting
a Lagrange 2D element to another Lagrange 1D element).

20 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.6.2 Files

File(s) Description
bgeot_poly.h and
bgeot_poly_composite.
h and bgeot_poly.cc and
bgeot_poly_composite.cc

Some classes to represent polynomials and piecewise polynomi-
als in order to describe shape functions of a finite element method
on the reference element.

getfem_fem.h and
getfem_fem.cc and
getfem_fem_composite.
cc

Descriptors for finite element and a degree of freedom. Polyno-
mial finite elements are defined in getfem_fem.cc and piece-
wise polynomial finite elements in getfem_fem_composite.cc

getfem_fem_global_function.
h and
getfem_fem_global_function.
cc

Defines a fem with base functions defined as global functions
given by the user. Useful for enrichment with singular functions
and for implementation of meshless methods.

getfem_projected_fem.h and
getfem_projected_fem.cc

Defines a fem which is the projection of a finite element space
(represented by a mesh_fem) on a different mesh. Note that the
high-generic assembly language offers also this functionality by
means of the interpolated transformations.

getfem_interpolated_fem.
h and
getfem_interpolated_fem.
cc

Dfines a fem which is the interpolation of a finite element space
(represented by a mesh_fem) on a different mesh. Note that the
high-generic assembly language offers also this functionality by
means of the interpolated transformations.

4.6.3 State

The two files getfem_fem.cc and getfem_fem_composite.cc mainly contains all the finite element
description for basic elements. A exhaustive list of the defined finite elements is given in ud-appendixa.

Some other files define some specific finite element such as getfem_fem_level_set.h which is a
complex construction which allows to “cut” a existing element by one or several level sets.

The manner to describe the degrees of freedom globally satisfies the needing (connecting dof from an
element to another in a generic way) but is a little bit obscure and too much complicated.

Conversely, the way to represent non-equivalent elements with the supplementary matrix M has proven
its efficiency on several elements (Hermites elements, Argyris, etc.).

4.6.4 Perspectives

The principal dissatisfaction of this module is that description of the degrees of freedom is not completely
satisfactory. It is the principal reason why one documentation on how to build an element from A to Z was
not made for the moment because description of the degrees of freedom was conceived to be temporary.
An effort of design is thus to be provided to completely stabilize this module mainly thus with regard to
the description of degrees of freedom but also perhaps the description of finite elements which could be
partially externalized in a similar way to the cubature methods , at least for the simplest finite elements
(equivalent and polynomial finite elements).

4.6. Fem module 21

Description of the Project, Release 5.4.4

4.7 Integ module

4.7.1 Description

The CUBATURE module gives access to the numerical integration methods on reference elements. In
fact it does not only contain some cubature formulas because it also give access to some exact integration
methods. However, the exact integration methods are only usable for polynomial element and affine geo-
metric transformations. This explain why exact integration methods are not widely used. The description
of cubature formulas is done either directly in the file getfem_integration.h or via a description file
in the directory cubature of GetFEM. The addition of new cubature formulas is then very simple, it suf-
fices to reference the element on which it is defined and the list of Gauss points in a file and add it to this
directory. Additionally, In order to integrate terms defined on a boundary of a domain, the description
should also contains the reference to a method of same order on each face of the element.

4.7.2 Files

File(s) Description
getfem_integration.h and
getfem_integration.cc and
getfem_integration_composite.
cc

Structure of integration methods, basic integration methods,
product of integration method and composite methods.

getfem_im_list.h file generated by cubature/make_getfem_list with the inte-
gration methods defined in cubature directory. This gives the pos-
sibility to define a new integration method just listing the Gauss
points and weigth in a text file.

4.7.3 State

This module meets the present needs for the project and is considered as stabilized. The list of available
cubature formulas is given in ud-appendixb.

4.7.4 Perspectives

No change needed for the moment. An effort could be done on the documentation to describe completely
how to add a new cubature formula (format of descritption files).

4.8 MeshFem module

4.8.1 Description

The MeshFem module aims to represent a finite element method (space) with respect to a given mesh.
The mesh_fem object will be permanently linked to the given mesh and will be able to react to changes in
the mesh (addition or deletion of elements, in particular). A mesh_fem object may associate a different
finite element method on each element of the mesh even though of course, the most common case it that
all the element share the same finite element method.

22 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.8.2 Files

File(s) Description
getfem_mesh_fem.h and
getfem_mesh_fem.cc

Defines the structure representing a finite element on a whole
mesh. Each element of the mesh is associated with a finite el-
ement method. This is a quite complex structure which perform
dof identification and numbering, allows a global linear reduc-
tion.

getfem_mesh_fem_global_function.
h and
getfem_mesh_fem_global_function.
cc

Defines mesh_fem with fem defined as a fem_global_function. It
provides convenience methods for updating the list of base func-
tions in the linked fem_global_function.

getfem_mesh_fem_product.
h and
getfem_mesh_fem_product.
cc

Produces a mesh_fem object which is a kind of direct product of
two finite element method. Useful for Xfem enrichment.

getfem_mesh_fem_sum.h and
getfem_mesh_fem_sum.cc

Produces a mesh_fem object which is a kind of direct sum of two
finite element method. Useful for Xfem enrichment.

getfem_partial_mesh_fem.
h and
getfem_partial_mesh_fem.
cc

Produces a mesh_fem with a reduced number of dofs

getfem_interpolation.h and
getfem_interpolation.cc

Interpolation between two finite element methods, possibly be-
tween different meshes. The interpolation facilities of the high-
level generic assembly can be used instead.

getfem_derivatives.h Interpolation of some derivatives of a finite element field on a
(discontinuous) Lagrange finite element. The interpolation facil-
ities of the high-level generic assembly can be used instead.

getfem_inter_element.h and
getfem_inter_element.cc

An attempt to make framework for inter-element computations
(jump in normal derivative for instance). To be continuated and
perhaps integrated into the generic assembly language.

getfem_error_estimate.h
and getfem_error_estimate.
cc

An attempt to make framework for computation of error esti-
mates. To be continuated and perhaps integrated into the generic
assembly language.

getfem_crack_sif.h Crack support functions for computation of SIF(stress intensity
factors).

getfem_torus.h and
getfem_torus.cc

Adapt a mesh_fem object which extends a 2D dimensional struc-
ture with a radial dimension.

4.8. MeshFem module 23

Description of the Project, Release 5.4.4

4.8.3 State

Stable. Not evolving so much.

4.8.4 Perspectives

Parallelisation of dof numbering to be done. An optimal (an simple) algorithm exists.

4.9 MeshIm module

4.9.1 Description

Defines an integration method on a whole mesh.

4.9.2 Files

File(s) Description
getfem_mesh_im.h and
getfem_mesh_im.cc

Object which defines an integration method on each element of
the mesh. Reacts to the main mesh changes (add or deletion of
elements).

getfem_im_data.h and
getfem_im_data.cc

Define an object representing a scalar, a vector or a tensor on each
Gauss point of a mesh_im object. Used for instance in plastic-
ity approximation. Interpolation of arbitrary expressions can be
made thanks to the weak form language.

4.9.3 State

Stable, not evolving so much.

4.9.4 Perspectives

4.10 Level-set module

4.10.1 Description

Define level-set objects and cut meshes, integration method and finite element method with respect to
one or several level-set.

24 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.10.2 Files

File(s) Description
getfem_level_set.h and
getfem_level_set.cc

Define a level-set function (scalar field defined on a Lagrange
fem) with an optional secondary level-set function.

getfem_mesh_level_set.h
and getfem_mesh_level_set.
cc

Cut a mesh with respect to one or several level-sets.

getfem_fem_level_set.h and
getfem_fem_level_set.cc

Define a special finite element method which depends on the el-
ement and which is cut by one or several level-sets.

getfem_mesh_fem_level_set.
h and
getfem_mesh_fem_level_set.
cc

Produces a mesh_fem object with shape functions cut by one or
several level-sets.

getfem_mesh_im_level_set.
h and
getfem_mesh_im_level_set.
cc

Produce a mesh_im representing an intergration method cut by
the level set and being on on side of level-set, the oter side, both
or only on the levelset itself.

getfem_level_set_contact.
h and
getfem_level_set_contact.
cc

A level set based large sliding contact algorithm for an easy anal-
ysis of implant positioning.

getfem_convect.h Compute the convection of a quantity with respect to a vector
field. Used to computate the evolution of a level-set function for
instance. Galerkin characteristic method.

4.10.3 State

Stable.

4.10.4 Perspectives

Clarify the algorithm computing the different zones.

4.11 The high-level generic assembly module in GetFEM

4.11.1 Description

The high level generic assembly module of GetFEM and its generic weak form language (GWFL) is a
key module which allows to describe weak formulation of partial differential equation problems. See the
description of the language in the user documentation section ud-gasm-high.

4.11. The high-level generic assembly module in GetFEM 25

Description of the Project, Release 5.4.4

4.11.2 Files

File(s) Description
getfem_generic_assembly.h Main header for exported definitions. Only this header has to be

included to use the generic assembly. Other headers of the module
are for internal use only.

getfem_generic_assembly_tree.
h and
getfem_generic_assembly_tree.
cc

Definition of the tree structure and basic operations on it, includ-
ing reading an assembly string and transform it in a syntax tree
and make the invert transformation of a tree into a string.

getfem_generic_assembly_function_and_operators.
h and
getfem_generic_assembly_function_and_operators.
cc

Definition of redefined function and nonlinear operator of GWFL.

getfem_generic_assembly_semantic.
h and
getfem_generic_assembly_semantic.
cc

Semantic analysis and enrichment of the syntax tree. Include
some operations such as making the derivation of a tree with re-
spect to a variable or computing the tree corresponding to the gra-
dient of an expression.

getfem_generic_assembly_workspace.
cc

Methodes of the workspace object (defined in
getfem_generic_assembly.h).

getfem_generic_assembly_compile_and_exec.
h and
getfem_generic_assembly_compile_and_exec.
cc

Definition of the optimized instructions, compilation into a se-
quel of optimize instructions and execution of the instructions on
Gauss point/interpolation points.

getfem_generic_assembly_interpolation.
cc

Interpolation operations and interpolate transformations.

4.11.3 A few implementation details

The assembly string is transformed in an assembly tree by a set of function in src/
getfem_generic_assembly.cc. The process has 6 steps:

• Lexical analysis with the procedure ga_get_token(...).

• Syntax analysis and transformation into a syntax tree by ga_read_string(...).

• Semantic analysis, simplification (pre-computation) of constant expressions and enrichment of the
tree by ga_semantic_analysis(...).

• Symbolic (automatic) differentiation of an assembly tree by ga_derivative(...)

• Symbolic (automatic) gradient computation of an assembly tree by ga_gradient(...)

• Compilation in a sequence of instructions with optimizations by ga_compile(...).

• Execution of the sequence of instructions and assembly by ga_exec(...).

These steps are performed only once at the beginning of the assembly. The final tree is compiled in
a sequence of optimized instructions which are executed on each Gauss point of each element. The
compilation performed some optimizations : repeated terms are automatically detected and evaluated
only once, simplifications if the mesh has uniform type of elements, simplifications for vectorized fnite
element methods.

26 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

Moreover, there is specifics function for interpolation operations (ga_interpolation(. . .),
ga_interpolation_exec(. . .), ga_interpolation_Lagrange_fem, ga_interpolation_mti,
ga_interpolation_im_data, . . .)

4.11.4 Assembly tree

Assembly strings are transformed into assembly trees by ga_read_string(...). Assembly trees are
syntax trees that are progressively enriched in information in the differents steps (semantic analysis,
derivation, compilation).

The object ga_tree represents an assembly tree. It is a copyable object that only contains a pointer to the
root of the tree. Each tree node is an object ga_tree_node that contains the main following information:

• node_type (function, variable value, variable gradient, operation . . .)

• operation type for operation nodes.

• assembly tensor: used at execution time by optimized instructions to compute the intermediary
results. The final result is in the assembly string of the root node at the end of the execution (for
each Gauss point).

• term type: value, order one term (ith order one test functions), order two term (with order two test
functions) or with both order one and order two test functions (tangent term).

• variable name of tests functions for order 1 or 2 terms.

• pointer to the parent node.

• pointers to the children nodes.

For example, the assembly tree for the assembly string “a*Grad_Test2_u.Grad_Test_u” for the stiffness
matrix of a Laplacian problem can be represented as follows with its assembly tensors at each node:

4.11. The high-level generic assembly module in GetFEM 27

Description of the Project, Release 5.4.4

4.11.5 Assembly tensors

Assembly tensors are represented on each node by a bgeot::tensor<double> object. However, there
is a specific structure in src/getfem_generic_assembly.cc for assembly tensors because there is
several format of assembly tensors :

• Normal tensor. The first and second indices may represent the test function local indices if the
node represent a first or second order term. Remember that in GetFEM all tensors are stored with
a Fortran order. This means that for instance t for a 𝑁 × 𝑃 × 𝑄 tensor one has t(i, j, k) =
t[i + j*N + k*N*P].

• Copied tensor. When a node is detected to have exactly the same expression compared to an
already compiled one, the assembly tensor will contain a pointer to the assembly tensor of the
already compiled node. The consequence is that no unnecessary copy is made.

• Sparse tensor with a listed sparsity. When working with a vector field, the finite element method is
applied on each component. This results on vector base functions having only one nonzero com-
ponent and some components are duplicated. The tensor are fully represented because it would be
difficul to gain in efficiency with that kind of small sparse tensor format. However, some operation
can be optimized with the knoledge of a certain sparsity (and duplication). This can change the
order of complexity of a reduction. In order to allows this gain in efficiency, the tensor are label-
lised with some known sparsity format (vectorisation and format coming from operation applied
on vectorized tensors). This results in a certain number of sparsity formats that are listed below:

– 1: Vectorized base sparsity format: The tensor represent a vectorized value. Each value
of the condensed tensor is repeated on 𝑄 components of the vectorized tensor. The mesh
dimensions is denoted 𝑁 . For instance if 𝜙𝑖 are the 𝑀 local base functions on an element
and the evaluation is on a Gauss point 𝑥, then the non vectorized tensor is 𝑡(𝑖) = 𝜙𝑖(𝑥) and
the vectorized one is 𝑡(𝑗, 𝑘) = 𝜙𝑗/𝑄(𝑥)𝛿𝑘,𝑗 mod 𝑄 where 𝑗/𝑀 is the integer division. For
𝑀 = 2,𝑄 = 2 and𝑁 = 3 the components of the two tensors are represented in the following
table

Scalar tensor Vectorized tensor
𝑡(𝑖) = 𝜙𝑖(𝑥) 𝑡(𝑗, 𝑘) = 𝜙𝑗/𝑄(𝑥)𝛿𝑘,(𝑗 mod 𝑄)

[𝜙0(𝑥), 𝜙1(𝑥)] [𝜙0(𝑥), 0, 𝜙1(𝑥), 0, 0, 𝜙0(𝑥), 0, 𝜙1(𝑥)]

– 2: Grad condensed format

Scalar tensor Vectorized tensor
𝑡(𝑖, 𝑗) = 𝜕𝑗𝜙𝑖(𝑥) 𝑡(𝑘, 𝑙,𝑚) = 𝜕𝑚𝜙𝑘/𝑄(𝑥)𝛿𝑙,(𝑚 mod 𝑄)

[𝜕0𝜙0(𝑥), 𝜕0𝜙1(𝑥),
𝜕1𝜙0(𝑥), 𝜕1𝜙1(𝑥),
𝜕2𝜙0(𝑥), 𝜕2𝜙1(𝑥)]

– 3: Hessian condensed format

– 10: Vectorized mass: the tensor represent a scalar product of two vectorised base functions.
This means a tensor 𝑡(·, ·) where 𝑡(𝑖*𝑄+𝑘, 𝑗*𝑄+𝑙) = 0 for 𝑘 ̸= 𝑙 and 𝑡(𝑖*𝑄+𝑘, 𝑗*𝑄+𝑘)
are equals for 0 ≤ 𝑘 < 𝑄.

28 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.11.6 Optimized instructions

Optimized instructions for variable evaluation, operations, vector and matrix assembly . . . to be de-
scribed.

4.11.7 Predefined functions

Some predefined scalar functions are available in GWFL in order to describe a weak formulation (or also to make basic algebraic computations). This is limited to scalar functions of one or two arguments. Due to the automatic differentiation used to obtain the tangent system of described problems, the derivative each function have to be available. The principle retained is the following: For each predefined function is available:

• A C++ function which computes the value given the argument(s).

• The support of the function in the first each argument in term of a (possibly infinite) interval
(this is for simplification of expressions).

• The string corresponding of the derivative in terms of already known functions

A new predefined function is easy to add. See init_predefined_functions() in file src/
getfem_generic_assembly.cc. + describe how to give the derivative . . .

4.11.8 Predefined nonlinear operators

to be described . . .

4.11.9 State

Stable.

4.11.10 Perspectives

• Is a certain extension to complex data possible ?

• More simplifications : study the possibility to automatically factorize some terms (for instance
scalar ones) to reduce the number of operations.

4.12 The low-level generic assembly module in GetFEM

4.12.1 Description

First version of the generic assembly. Base on tensor reduction. Not very convenient for nonlinear terms.
The high-level generic assembly have to be prefered now.

4.12. The low-level generic assembly module in GetFEM 29

Description of the Project, Release 5.4.4

4.12.2 Files

File(s) Description
getfem_mat_elem_type.h and
:file:` getfem_mat_elem_type.cc

Defines base type for components of an elementary matrix.

getfem_mat_elem.h and :file:`
getfem_mat_elem.cc

Describes an compute elementary matrices.

getfem_assembling_tensors.
h and
getfem_assembling_tensors.
cc

Performs the assembly.

getfem_assembling.h Various assembly terms (linear elasticity, generic elliptic term,
Dirichlet condition . . .

4.12.3 State

Stable.

4.12.4 Perspectives

Will not evolve since the efforts are now focused on the high-level generic assembly.

4.13 Model module

4.13.1 Description

Describe a model (variable, data and equation terms linking the variables).

30 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.13.2 Files

File(s) Description
getfem_models.h and
getfem_models.cc

Defines the object models, its internal and the standard bricks (lin-
ear elasticity, generic elliptic brick, Dirichlet boundary conditions
. . .).

getfem_model_solvers.h and
getfem_model_solvers.cc

Defines the the standard solvers for the model object.

getfem_contact_and_friction_common.
h and
getfem_contact_and_friction_common.
cc

Common algorithms for contact/friction conditions on de-
formable bodies

getfem_contact_and_friction_integral.
h and
getfem_contact_and_friction_integral.
cc

Small sliding contact/friction bricks of integral type.

getfem_contact_and_friction_large_sliding.
h and
getfem_contact_and_friction_large_sliding.
cc

Large sliding contact/friction bricks.

getfem_contact_and_friction_nodal.
h and
getfem_contact_and_friction_nodal.
cc

Small sliding nodal contact/friction bricks.

getfem_Navier_Stokes.h An attempt for Navier-Stokes bricks. To be improved.
getfem_fourth_order.h and
getfem_fourth_order.cc

Bilaplacian and Kirchhoff-Love plate bricks

getfem_linearized_plates.
h and
getfem_linearized_plates.
cc

Mindlin-Reissner plate brick

getfem_nonlinear_elasticity.
h and
getfem_nonlinear_elasticity.
cc

Large deformation elasticity bricks.

getfem_plasticity.h and
getfem_plasticity.cc

Plasticity bricks.

4.13. Model module 31

Description of the Project, Release 5.4.4

4.13.3 State

Constant evolution to includes next models.

4.13.4 Perspectives

More plate, load and shell bricks, plasticity in large deformation, . . .

4.14 Continuation module

4.14.1 Description

Allows to follow a solution with respect to a parameter (continuation method), detect a bifurcation and al-
low branching. Work for low regularity problems (Lipschitz regularity). Use an adapted Moore-Penrose
continuation method.

4.14.2 Files

File(s) Description
getfem_continuation.h and
getfem_continuation.cc

The generic continuation and branching method

4.14.3 State

Have already generic and advanced functionalities.

4.14.4 Perspectives

Still in developement.

4.15 Interface with scripting languages (Python, Scilab and Matlab)

A simplified (but rather complete) interface of GetFEM is provided, so that it is possible to use getfem
in some script languages.

32 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

4.15.1 Description

All sources are located in the interface/src directory. The interface is composed of one large library
getfemint (which stands for getfem interaction), which acts as a layer above the GetFEM library, and
is used by the python, matlab and scilab interfaces.

This interface is not something that is generated automatically from c++ sources (as that could be the case
with tools such as swig). It is something that has been designed as a simplified and consistent interface
to getfem. Adding a new language should be quite easy (assuming the language provides some structures
for dense arrays manipulations).

4.15.2 Files

All the files in the directory interfacesrc. A short description of main files:

• getfem_interface.cc.

This is the bridge between the script language and the getfem interface. The function get-
fem_interface_main is exported as an extern "C" function, so this is a sort of c++ barrier between
the script language and the getfem interface (exporting only a C interface avoids many compilation
problems).

• matlab/gfm_mex.c.

The matlab interface. The only thing it knows about getfem is in getfem_interface.h.

• python/getfem_python.c.

The python interface. The only thing it knows about getfem is in getfem_interface.h.

• gfi_array.h, gfi_array.c.

Both gfm_mex.c and getfem_python.c need a simple convention on how to send and receive
arrays, and object handles, from getfem_interface_main(). This file provide such function-
nality.

• getfemint_gsparse.h, getfemint_gprecond.h, getfemint_gmumps.h, etc.

Files specific to an interfaced object if needed. (getfemint_gsparse which export some kind of mu-
table sparse matrix that can switch between different storage types, and real of complex elements).

• gf_workspace.cc, gf_delete.cc.

Memory management for getfem objects. There is a layer which handles the dependency between
for example a mesh and a mesh_fem. It makes sure that no object will be destroyed while there
is still another getfem_object using it. The goal is to make sure that under no circumstances the
user is able to crash getfem (and the host program, matlab, scilab or python) by passing incorrect
argument to the getfem interface.

It also provides a kind of workspace stack, which was designed to simplify handling and cleaning
of many getfem objects in matlab (since matlab does not have “object destructors”).

• getfemint.h, getfemint.cc.

Define the mexarg_in, mexarg_out classes, which are used to parse the list of input and output
arguments to the getfem interface functions. The name is not adequate anymore since any reference
to “mex” has been moved into gfm_mex.c.

4.15. Interface with scripting languages (Python, Scilab and Matlab) 33

Description of the Project, Release 5.4.4

• gf_mesh.cc, gf_mesh_get.cc, gf_mesh_set.cc, gf_fem.cc, etc.

All the functions exported be the getfem interfaces, sorted by object type (gf_mesh*,
gf_mesh_fem*, gf_fem*), and then organized as one for the object construction (gf_mesh), one
for the object modification (gf_mesh_set), and one for the object inquiry (gf_mesh_get). Each
of these files contain one main function, that receives a mexargs_in and mexargs_out stack of
arguments. It parses then, and usually interprets the first argument as the name of a subfunction
(gf_mesh_get('nbpts') in matlab, or Mesh.nbpts() in python).

• matlab/gfm_rpx_mexint.c.

An alternative to gfm_mex.c which is used when the --enable-matlab-rpc is passed to the ./
configure script. The main use for that is debugging the interface, since in that case, the matlab
interface communicates via sockets with a “getfem_server” program, so it is possible to debug that
server program, and identify memory leaks or anything else without having to mess with matlab
(it is pain to debug).

• python/getfem.py.

The python interface is available as a “getfem.py” file which is produced during compilation by
the python script “bin/extract_doc.py”.

4.15.3 Objects, methods and functions of the interface

The main concepts manipulated by the interface are a limited number of objects (Fem, Mesh, MeshFem,
Model . . .), the associated methods and some functions defined on these objects.

A special effort has been done to facilitate the addition of new objects, methods and functions to the
interface without doing it separately for each part supported script language (Python, Scilab, Octave,
Matlab).

All the information needed to build the interface for the different objects, methods and functions is con-
tained in the files interface/src/gf*.cc. A python script (bin/extract_doc) produces all the necessary files
from the information it takes there. In particular, it produces the python file getfem.py, the matlab m-
files for the different functions and objects (including subdirectories) and it also produces the automatic
documentations.

To make all the things work automatically, a certain number of rules have to be respected:

• An object have to be defined by three files on the interface

– gf_objectname.cc : contains the constructors of the object

– gf_objectname_get.cc : contains the methods which only get some information about the
object (if any).

– gf_objectname_set.cc : contains the methods which transform the object (if any).

• A list of function is defined by only one file gf_commandname.cc. It contains a list of sub-
commands.

• For each file, the main commentary on the list of functions or methods is delimited by the tags
‘/@GFDOC’ and ‘@/’. For a file corresponding to the constructors of an object, the commentary
should correspond to the description of the object.

• Each non trivial file gf_*.cc contains a macro allowing to define the methods of the object or
the sub-commands. In particular, this system allows to have a efficient search of the called

34 Chapter 4. Description of the different parts of the library

Description of the Project, Release 5.4.4

method/function. This macro allows to declare a new method/function with the following syn-
tax:

/*@GET val = ('method-name', params, ...)
Documention of the method/function.

@*/
sub_command
("method-name", 0, 0, 0, 1,
...
body of the method/function
...

);

The first three lines are a C++ comment which describes the call of the method/function with a
special syntax and also gives a description of the method/function which will be included in the
documentations. The first line of this comment is important since it will be analyzed to produce
the right interface for Python, Octave, Matlab and Scilab.

The syntax for the description of the call of a method/function is the following: After /*@ a special
keyword should be present. It is either INIT, GET, SET, RDATTR or FUNC. The keyword INITmeans
that this is the description of a constructor of an object. RDATTR is for a short method allowing to
get an attribute of an object. GET is for a method of an object which does not modify it. SET is for
a method which modifies an object and FUNC is for the sub-command of a function list.

If the method/function returns a value, then a name for the return value is given (which is arbitrary)
followed by =.

The parameters of the method/function are described. For a method, the object itself is not
mentionned. The first parameter should be the method or sub-command name between single
quotes (a special case is when this name begins with a dot; this means that it corresponds to a
method/function where the command name is not required).

The other parameters, if any, should be declared with a type. Predefined types are the following:

– @CELL : a cell array,

– @imat : matrix of integers,

– @ivec : vector of integers,

– @cvec : vector of complex values,

– @dcvec : vector of complex values,

– @dvec : vector of real values,

– @vec : vector of real or complex values,

– @dmat : matrix of real values,

– @mat : matrix of real or complex values,

– @str : a string,

– @int : an integer,

– @bool : a boolean,

– @real : a real value,

4.15. Interface with scripting languages (Python, Scilab and Matlab) 35

Description of the Project, Release 5.4.4

– @scalar : a real or complex value,

– @list : a list.

Moreover, @tobj refers to an object defined by the interface. For instance, you can refer to @tmesh,
@tmesh_fem, @tfem, etc. There are some authorized abbreviations:

– @tcs for @tcont_struct

– @tmf for @tmesh_fem

– @tgt for @tgeotrans

– @tgf for @tglobal_function

– @tmo for @tmesher_object

– @tmls for @tmesh_levelset

– @tmim for @tmesh_im

– @tls for @tlevelset

– @tsl for @tslice

– @tsp for @tspmat

– @tpre for @tprecond

– @tmct for @tmumps_context

Three dots at the end of the parameter list (...) mean that additional parameters are possible.
Optional parameters can be described with brackets. For instance /*@SET v = ('name'[, @int
i]). But be careful how it is interpreted by the extract_doc script to build the python interface.

The second to fifth parameters of the macro correspond respectively to the minimum number of
input arguments, the maximum one, the minimum number of output arguments and the maximum
number of output arguments. It is dynamically verified.

Additional parameters for the function lists

For unknown reasons, the body of the function cannot contain multiple declarations such as int
a, b; (c++ believes that it is an additional parameter of the macro).

• The parts of documentation included in the c++ commentaries should be in reStructuredText for-
mat. In particular, math formulas can be included with :math:`f(x) = 3x^2+2x+4` or with:

.. math::

f(x) = 3x^2+2x+4

It is possible to refer to another method or function of the interface with the syn-
tax INIT::OBJNAME('method-name', ...), GET::OBJNAME('method-name', ...),
SET::OBJNAME('method-name', ...), FUNC::FUNCNAME('subcommand-name', ...).
This will be replaced with the right syntax depending on the language (Octave, Matlab, Scilab or
Python).

• Still in the documentations, parts for a specific language can be added by @MATLAB{specific
part ...}, @SCILAB{specific part ...} and @PYTHON{specific part ...}. If a
method/sub-command is specific to an interface, it can be added, for instance for Matlab, replacing

36 Chapter 4. Description of the different parts of the library

http://docutils.sourceforge.net/rst.html

Description of the Project, Release 5.4.4

GET by MATLABGET, FUNC by MATLABFUNC, etc. If a specific code is needed for this ad-
ditional function, it can be added with the tags /*@MATLABEXT, /*@SCILABEXT, /*@PYTHONEXT.
See for instance the file gf_mesh_fem_get.cc.

• For Python and the Matlab object, if a SET method has the same name as a GET method, the SET
method is prefixed by set_.

4.15.4 Adding a new function or object method to the getfem interface

If one want to add a new function gf_mesh_get(m, "foobar", .), then the main file to modify is
gf_mesh_get.cc. Remember to check every argument passed to the function in order to make sure that
the user cannot crash Scilab, Octave, Matlab or Python when using that function. Use the macro defined
in gf_mesh_get.cc to add your function.

Do not forget to add documentation for that function: in gf_mesh_get.cc, this is the documentation
that appears in the Octave/Matlab/Scilab/Python help files (that is when on type “help gf_mesh_get”
at the matlab prompt), and in the getfem_python autogenerated documentation.

IMPORTANT. Note that the array indices start at 0 in Python and 1 in Octave, Matlab and Scilab. A
specific function:

config::base_index()

whose value is 0 in python and 1 in Octave, Matlab and Scilab has to be used to exchange indices and
array of indices. Take care not to make the correction twice. Some Array of indices are automatically
shifted.

4.15.5 Adding a new object to the getfem interface

In order to add a new object to the interface, you have to build the new corresponding sources gf_obj.cc,
gf_obj_get.cc and gf_obj_set.cc. Of course you can take the existing ones as a model.

For the management of the object, you have to declare the class at the begining of getfemint.h (with
respect to the alphabetic order), and declare three functions:

bool is_"name"_object(const mexarg_in &p);
id_type store_"name"_object(const std::shared_ptr<object_class> &shp);
object_class *to_"name"_object(const mexarg_in &p);

where “name” is the name of the object in the interface and object_class is the class name in getfem
(for instance getfem::mesh for the mesh object). Alternatively, for the object that are manipulated by a
shared pointer in GetFEM, the third function can return a shared pointer.

IMPORTANT: In order to be interfaced, a GetFEM object has to derive from
dal::static_stored_object. However, if it is not the case, a wrapper class can be defined
such as the one for bgeot::base_poly (see the end of getfemint.h).

The previous three functions have to be implemented at the end of getfemint.cc.It is possible to use
one of the two macros defined in getfemint.cc. The first macro is for a standard object and the second
one for an object which is manipulated in GetFEM with a shared pointer.

You have also to complete functions name_of_getfemint_class_id and class_id_of_object at
the end of getfemint.cc.

4.15. Interface with scripting languages (Python, Scilab and Matlab) 37

Description of the Project, Release 5.4.4

You have to add the call of the interface function in getfem_interface.cc and modifiy the file bin/
extract_doc and run the configure file.

The methods get('char') and get('display') should be defined for each object. The first one
should give a string allowing the object to be saved in a file and the second one is to give some information
about the object. Additionaly, a constructor from a string is necessary to load the object from a file.

For the Scilab interface the file sci_gateway/c/builder_gateway_c.sce.in has to be modified and
the files in the directory macros/overload.

4.15.6 State

4.15.7 Perspectives

The interface grows in conjunction with GetFEM. The main GetFEM functionalities are interfaced.

38 Chapter 4. Description of the different parts of the library

CHAPTER

FIVE

APPENDIX A. SOME BASIC COMPUTATIONS BETWEEN
REFERENCE AND REAL ELEMENTS

5.1 Volume integral

One has ∫︁
𝑇
𝑓(𝑥) 𝑑𝑥 =

∫︁
̂︀𝑇 ̂︀𝑓(̂︀𝑥)|vol

(︂
𝜕𝜏(̂︀𝑥)
𝜕̂︀𝑥0 ;

𝜕𝜏(̂︀𝑥)
𝜕̂︀𝑥1 ; . . . ;

𝜕𝜏(̂︀𝑥)
𝜕̂︀𝑥𝑃−1

)︂
| 𝑑̂︀𝑥.

Denoting 𝐽𝜏 (̂︀𝑥) the jacobian

𝐽𝜏 (̂︀𝑥) := |vol
(︁
𝜕𝜏(̂︀𝑥)
𝜕̂︀𝑥0

; 𝜕𝜏(̂︀𝑥)𝜕̂︀𝑥1
; . . . ; 𝜕𝜏(̂︀𝑥)

𝜕̂︀𝑥𝑃−1

)︁
| = (det(𝐾(̂︀𝑥)𝑇𝐾(̂︀𝑥)))1/2,

one finally has ∫︀
𝑇 𝑓(𝑥) 𝑑𝑥 =

∫︀̂︀𝑇 ̂︀𝑓(̂︀𝑥)𝐽𝜏 (̂︀𝑥) 𝑑̂︀𝑥.

When 𝑃 = 𝑁 , the expression of the jacobian reduces to 𝐽𝜏 (̂︀𝑥) = |det(𝐾(̂︀𝑥))|.
5.2 Surface integral

With Γ a part of the boundary of 𝑇 a real element and ̂︀Γ the corresponding boundary on the reference
element ̂︀𝑇 , one has ∫︀

Γ 𝑓(𝑥) 𝑑𝜎 =
∫︀̂︀Γ ̂︀𝑓(̂︀𝑥)‖𝐵(̂︀𝑥)̂︀𝑛‖𝐽𝜏 (̂︀𝑥) 𝑑̂︀𝜎,

where ̂︀𝑛 is the unit normal to ̂︀𝑇 on ̂︀Γ. In a same way∫︀
Γ 𝐹 (𝑥) · 𝑛 𝑑𝜎 =

∫︀̂︀Γ ̂︀𝐹 (̂︀𝑥) · (𝐵(̂︀𝑥) · ̂︀𝑛)𝐽𝜏 (̂︀𝑥) 𝑑̂︀𝜎,

For 𝑛 the unit normal to 𝑇 on Γ.

5.3 Derivative computation

One has

∇𝑓(𝑥) = 𝐵(̂︀𝑥)̂︀∇ ̂︀𝑓(̂︀𝑥).
39

Description of the Project, Release 5.4.4

5.4 Second derivative computation

Denoting

∇2𝑓 =

[︂
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

]︂
𝑖𝑗

,

the 𝑁 ×𝑁 matrix and

̂︀𝑋(̂︀𝑥) = 𝑁−1∑︁
𝑘=0

̂︀∇2𝜏𝑘(̂︀𝑥) 𝜕𝑓
𝜕𝑥𝑘

(𝑥) =
𝑁−1∑︁
𝑘=0

𝑃−1∑︁
𝑖=0

̂︀∇2𝜏𝑘(̂︀𝑥)𝐵𝑘𝑖
𝜕 ̂︀𝑓
𝜕̂︀𝑥𝑖 (̂︀𝑥),

the 𝑃 × 𝑃 matrix, then

̂︀∇2 ̂︀𝑓(̂︀𝑥) = ̂︀𝑋(̂︀𝑥) +𝐾(̂︀𝑥)𝑇∇2𝑓(𝑥)𝐾(̂︀𝑥),
and thus

∇2𝑓(𝑥) = 𝐵(̂︀𝑥)(̂︀∇2 ̂︀𝑓(̂︀𝑥)− ̂︀𝑋(̂︀𝑥))𝐵(̂︀𝑥)𝑇 .
In order to have uniform methods for the computation of elementary matrices, the Hessian is computed as
a column vector 𝐻𝑓 whose components are 𝜕2𝑓

𝜕𝑥2
0
, 𝜕2𝑓
𝜕𝑥1𝜕𝑥0

, . . . , 𝜕2𝑓
𝜕𝑥2

𝑁−1
. Then, with 𝐵2 the 𝑃 2 × 𝑃 matrix

defined as

[𝐵2(̂︀𝑥)]𝑖𝑗 = 𝑁−1∑︁
𝑘=0

𝜕2𝜏𝑘(̂︀𝑥)
𝜕̂︀𝑥𝑖/𝑃𝜕̂︀𝑥𝑖 mod 𝑃

𝐵𝑘𝑗(̂︀𝑥),
and 𝐵3 the 𝑁2 × 𝑃 2 matrix defined as

[𝐵3(̂︀𝑥)]𝑖𝑗 = 𝐵𝑖/𝑁,𝑗/𝑃 (̂︀𝑥)𝐵𝑖 mod 𝑁,𝑗 mod 𝑃 (̂︀𝑥),
one has

𝐻𝑓(𝑥) = 𝐵3(̂︀𝑥)(︁ ̂︀𝐻 ̂︀𝑓(̂︀𝑥)−𝐵2(̂︀𝑥)̂︀∇ ̂︀𝑓(̂︀𝑥))︁.

5.5 Example of elementary matrix

Assume one needs to compute the elementary “matrix”:

𝑡(𝑖0, 𝑖1, . . . , 𝑖7) =

∫︁
𝑇
𝜙𝑖0
𝑖1
𝜕𝑖4𝜙

𝑖2
𝑖3
𝜕2
𝑖7/𝑃,𝑖7 mod 𝑃

𝜙𝑖5
𝑖6
𝑑𝑥,

The computations to be made on the reference elements are

̂︀𝑡0(𝑖0, 𝑖1, . . . , 𝑖7) = ∫︁
̂︀𝑇 (̂︀𝜙)𝑖0𝑖1𝜕𝑖4(̂︀𝜙)𝑖2𝑖3𝜕2𝑖7/𝑃,𝑖7 mod 𝑃

(̂︀𝜙)𝑖5𝑖6𝐽(̂︀𝑥) 𝑑̂︀𝑥,
and

̂︀𝑡1(𝑖0, 𝑖1, . . . , 𝑖7) = ∫︁
̂︀𝑇 (̂︀𝜙)𝑖0𝑖1𝜕𝑖4(̂︀𝜙)𝑖2𝑖3𝜕𝑖7(̂︀𝜙)𝑖5𝑖6𝐽(̂︀𝑥) 𝑑̂︀𝑥,

Those two tensor can be computed once on the whole reference element if the geometric transformation
is linear (because 𝐽(̂︀𝑥) is constant). If the geometric transformation is non-linear, what has to be stored
is the value on each integration point. To compute the integral on the real element a certain number of
reductions have to be made:

40 Chapter 5. Appendix A. Some basic computations between reference and real
elements

Description of the Project, Release 5.4.4

• Concerning the first term (𝜙𝑖0
𝑖1

) nothing.

• Concerning the second term (𝜕𝑖4𝜙
𝑖2
𝑖3

) a reduction with respect to 𝑖4 with the matrix 𝐵.

• Concerning the third term (𝜕2
𝑖7/𝑃,𝑖7 mod 𝑃

𝜙𝑖5
𝑖6

) a reduction of ̂︀𝑡0 with respect to 𝑖7 with the matrix
𝐵3 and a reduction of ̂︀𝑡1 with respect also to 𝑖7 with the matrix 𝐵3𝐵2

The reductions are to be made on each integration point if the geometric transformation is non-linear.
Once those reductions are done, an addition of all the tensor resulting of those reductions is made (with
a factor equal to the load of each integration point if the geometric transformation is non-linear).

If the finite element is non-𝜏 -equivalent, a supplementary reduction of the resulting tensor with the matrix
𝑀 has to be made.

5.5. Example of elementary matrix 41

Description of the Project, Release 5.4.4

42 Chapter 5. Appendix A. Some basic computations between reference and real
elements

CHAPTER

SIX

REFERENCES

43

Description of the Project, Release 5.4.4

44 Chapter 6. References

BIBLIOGRAPHY

[AB-ER-PI2018] M. Abbas, A. Ern, N. Pignet. Hybrid High-Order methods for finite deformations of
hyperelastic materials. Computational Mechanics, 62(4), 909-928, 2018.

[AB-ER-PI2019] M. Abbas, A. Ern, N. Pignet. A Hybrid High-Order method for incremental associative
plasticity with small deformations. Computer Methods in Applied Mechanics and Engineer-
ing, 346, 891-912, 2019.

[AL-CU1991] P. Alart, A. Curnier. A mixed formulation for frictional contact problems prone to newton
like solution methods. Comput. Methods Appl. Mech. Engrg. 92, 353–375, 1991.

[Al-Ge1997] E.L. Allgower and K. Georg. Numerical Path Following, Handbook of Numerical Analysis,
Vol. V (P.G. Ciarlet and J.L. Lions, eds.). Elsevier, pp. 3-207, 1997.

[AM-MO-RE2014] S. Amdouni, M. Moakher, Y. Renard, A local projection stabilization of fictitious
domain method for elliptic boundary value problems. Appl. Numer. Math., 76:60-75, 2014.

[AM-MO-RE2014b] S. Amdouni, M. Moakher, Y. Renard. A stabilized Lagrange multiplier method
for the enriched finite element approximation of Tresca contact problems of cracked elastic
bodies. Comput. Methods Appl. Mech. Engrg., 270:178-200, 2014.

[bank1983] R.E. Bank, A.H. Sherman, A. Weiser. Refinement algorithms and data structures for regular
local mesh refinement. In Scientific Computing IMACS, Amsterdam, North-Holland, pp 3-
17, 1983.

[ba-dv1985] K.J. Bathe, E.N. Dvorkin, A four-node plate bending element based on Mindlin-Reissner
plate theory and a mixed interpolation. Internat. J. Numer. Methods Engrg., 21, 367-383,
1985.

[Be-Mi-Mo-Bu2005] Bechet E, Minnebo H, Moës N, Burgardt B. Improved implementation and ro-
bustness study of the X-FEM for stress analysis around cracks. Internat. J. Numer. Methods
Engrg., 64, 1033-1056, 2005.

[BE-CO-DU2010] M. Bergot, G. Cohen, M. Duruflé. Higher-order finite elements for hybrid meshes
using new nodal pyramidal elements J. Sci. Comput., 42, 345-381, 2010.

[br-ba-fo1989] F. Brezzi, K.J. Bathe, M. Fortin. Mixed-interpolated element for Reissner-Mindlin plates.
Internat. J. Numer. Methods Engrg., 28, 1787-1801, 1989.

[bu-ha2010] E. Burman, P. Hansbo. Fictitious domain finite element methods using cut elements: I. A
stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics, 199:41-
44, 2680-2686, 2010.

45

Description of the Project, Release 5.4.4

[ca-re-so1994] D. Calvetti, L. Reichel and D.C. Sorensen. An implicitly restarted Lanczos method for
large symmetric eigenvalue problems. Electronic Transaction on Numerical Analysis}. 2:1-
21, 1994.

[ca-ch-er2019] K. Cascavita, F. Chouly and A. Ern Hybrid High-Order discretizations combined with
Nitsche’s method for Dirichlet and Signorini boundary conditions. hal-02016378v2, 2019

[CH-LA-RE2008] E. Chahine, P. Laborde, Y. Renard. Crack-tip enrichment in the Xfem method using a
cut-off function. Int. J. Numer. Meth. Engng., 75(6):629-646, 2008.

[CH-LA-RE2011] E. Chahine, P. Laborde, Y. Renard. A non-conformal eXtended Finite Element ap-
proach: Integral matching Xfem. Applied Numerical Mathematics, 61:322-343, 2011.

[ciarlet1978] P.G. Ciarlet. The finite element method for elliptic problems. Studies in Mathematics and
its Applications vol. 4, North-Holland, 1978.

[ciarlet1988] P.G. Ciarlet. Mathematical Elasticity. Volume 1: Three-Dimensional Elasticity. North-
Holland, 1988.

[EncyclopCubature] R. Cools, An Encyclopedia of Cubature Formulas, J. Complexity.

[Dh-Go-Ku2003] A. Dhooge, W. Govaerts and Y. A. Kuznetsov. MATCONT: A MATLAB Package for
Numerical Bifurcation Analysis of ODEs. ACM Trans. Math. Software 31, 141-164, 2003.

[Di-Er2015] D.A. Di Pietro, A. Ern. A hybrid high-order locking free method for linear elasticity on
general meshes. Comput. Methods Appl. Mech. Engrg., 283:1-21, 2015

[Di-Er2017] D.A. Di Pietro, A. Ern. Arbitrary-order mixed methods for heterogeneous anisotropic dif-
fusion on general meshes. IMA Journal of Numerical Analysis, 37(1), 40-63. 2017

[Duan2014] H. Duan. A finite element method for Reissner-Mindlin plates. Math. Comp., 83:286, 701-
733, 2014.

[Dr-La-Ek2014] A. Draganis, F. Larsson, A. Ekberg. Finite element analysis of transient thermomechan-
ical rolling contact using an efficient arbitrary Lagrangian-Eulerian description. Comput.
Mech., 54, 389-405, 2014.

[Fa-Po-Re2015] M. Fabre, J. Pousin, Y. Renard. A fictitious domain method for frictionless con-
tact problems in elasticity using Nitsche’s method. preprint, https://hal.archives-ouvertes.
fr/hal-00960996v1

[Fa-Pa2003] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, Vol. II. Springer Series in Operations Research, Springer, New York, 2003.

[Georg2001] K. Georg. Matrix-free numerical continuation and bifurcation. Numer. Funct. Anal. Opti-
mization 22, 303-320, 2001.

[GR-GH1999] R.D. Graglia, I.-L. Gheorma. Higher order interpolatory vector bases on pyramidal ele-
ments IEEE transactions on antennas and propagation, 47:5, 775-782, 1999.

[GR-ST2015] D. Grandi, U. Stefanelli. The Souza-Auricchio model for shape-memory alloys Discrete
and Continuous Dynamical Systems, Series S, 8(4):723-747, 2015.

[HA-WO2009] C. Hager, B.I. Wohlmuth. Nonlinear complementarity functions for plasticity problems
with frictional contact. Comput. Methods Appl. Mech. Engrg., 198:3411-3427, 2009

[HA-HA2004] A Hansbo, P Hansbo. A finite element method for the simulation of strong and weak
discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193 (33-35), 3523-
3540, 2004.

46 Bibliography

http://www.cs.kuleuven.ac.be/~ines/research/ecf/ecf.html
https://hal.archives-ouvertes.fr/hal-00960996v1
https://hal.archives-ouvertes.fr/hal-00960996v1

Description of the Project, Release 5.4.4

[HA-RE2009] J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite
element method. Siam J. on Numer. Anal., 47(2):1474-1499, 2009.

[HI-RE2010] Hild P., Renard Y. Stabilized lagrange multiplier method for the finite element approxima-
tion of contact problems in elastostatics. Numer. Math. 15:1, 101–129, 2010.

[KH-PO-RE2006] Khenous H., Pommier J., Renard Y. Hybrid discretization of the Signorini problem
with Coulomb friction, theoretical aspects and comparison of some numerical solvers. Ap-
plied Numerical Mathematics, 56/2:163-192, 2006.

[KI-OD1988] N. Kikuchi, J.T. Oden. Contact problems in elasticity. SIAM, 1988.

[LA-PO-RE-SA2005] Laborde P., Pommier J., Renard Y., Salaun M. High order extended finite element
method for cracked domains. Int. J. Numer. Meth. Engng., 64:354-381, 2005.

[LA-RE-SA2010] J. Lasry, Y. Renard, M. Salaun. eXtended Finite Element Method for thin cracked
plates with Kirchhoff-Love theory. Int. J. Numer. Meth. Engng., 84(9):1115-1138, 2010.

[KO-RE2014] K. Poulios, Y. Renard, An unconstrained integral approximation of large sliding frictional
contact between deformable solids. Computers and Structures, 153:75-90, 2015.

[LA-RE2006] P. Laborde, Y. Renard. Fixed point strategies for elastostatic frictional contact problems.
Math. Meth. Appl. Sci., 31:415-441, 2008.

[Li-Re2014] T. Ligurský and Y. Renard. A Continuation Problem for Computing Solutions of Discretised
Evolution Problems with Application to Plane Quasi-Static Contact Problems with Friction.
Comput. Methods Appl. Mech. Engrg. 280, 222-262, 2014.

[Li-Re2014hal] T. Ligurský and Y. Renard. Bifurcations in Piecewise-Smooth Steady-State Problems:
Abstract Study and Application to Plane Contact Problems with Friction. Computational
Mechanics, 56:1:39-62, 2015.

[Li-Re2015hal] T. Ligurský and Y. Renard. A Method of Piecewise-Smooth Numerical Branching. Z.
Angew. Math. Mech., 97:7:815–827, 2017.

[Mi-Zh2002] P. Ming and Z. Shi, Optimal L2 error bounds for MITC3 type element. Numer. Math. 91,
77-91, 2002.

[Xfem] N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without
remeshing. Internat. J. Numer. Methods Engrg., 46, 131-150, 1999.

[Nackenhorst2004] U. Nackenhorst, The ALE formulation of bodies in rolling contact. Theoretical foun-
dation and finite element approach. Comput. Methods Appl. Mech. Engrg., 193:4299-4322,
2004.

[NI-RE-CH2011] S. Nicaise, Y. Renard, E. Chahine, Optimal convergence analysis for the eXtended
Finite Element Method. Int. J. Numer. Meth. Engng., 86:528-548, 2011.

[Pantz2008] O. Pantz The Modeling of Deformable Bodies with Frictionless (Self-)Contacts. Archive for
Rational Mechanics and Analysis, Volume 188, Issue 2, pp 183-212, 2008.

[SCHADD] L.F. Pavarino. Domain decomposition algorithms for the p-version finite element method for
elliptic problems. Luca F. Pavarino. PhD thesis, Courant Institute of Mathematical Sciences}.
1992.

[PO-NI2016] K. Poulios, C.F. Niordson, Homogenization of long fiber reinforced composites including
fiber bending effects. Journal of the Mechanics and Physics of Solids, 94, pp 433-452, 2016.

Bibliography 47

Description of the Project, Release 5.4.4

[GetFEM2020] Y. Renard, K. Poulios GetFEM: Automated FE modeling of multiphysics problems based
on a generic weak form language. Preprint, https://hal.archives-ouvertes.fr/hal-02532422/
document

[remacle2003] J.-F. Remacle, M.S. Shephard; An algorithm oriented mesh database. International Jour-
nal for Numerical Methods in Engineering, 58:2, pp 349-374, 2003.

[SE-PO-WO2015] A. Seitz, A. Popp, W.A. Wall, A semi-smooth Newton method for orthotropic plastic-
ity and frictional contact at finite strains. Comput. Methods Appl. Mech. Engrg. 285:228-
254, 2015.

[SI-HU1998] J.C. Simo, T.J.R. Hughes. Computational Inelasticity. Interdisciplinary Applied Mathe-
matics, vol 7, Springer, New York 1998.

[SO-PE-OW2008] E.A. de Souza Neto, D Perić, D.R.J. Owen. Computational methods for plasticity. J.
Wiley & Sons, New York, 2008.

[renard2013] Y. Renard, Generalized Newton’s methods for the approximation and resolution of fric-
tional contact problems in elasticity. Comput. Methods Appl. Mech. Engrg., 256:38-55,
2013.

[SU-CH-MO-BE2001] Sukumar N., Chopp D.L., Moës N., Belytschko T. Modeling holes and inclusions
by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Engrg.,
190:46-47, 2001.

[ZT1989] Zienkiewicz and Taylor. The finite element method. 5th edition, volume 3 : Fluids Dynamics.

48 Bibliography

https://hal.archives-ouvertes.fr/hal-02532422/document
https://hal.archives-ouvertes.fr/hal-02532422/document

INDEX

B
bgeot::convex_product_structure (C++

function), 7
bgeot::convex_ref_product (C++ function),

8
bgeot::parallelepiped_of_reference

(C++ function), 9
bgeot::parallelepiped_structure (C++

function), 7
bgeot::prism_P1_structure (C++ function),

7
bgeot::simplex_of_reference (C++ func-

tion), 8
bgeot::simplex_structure (C++ function), 7

G
getfem::context_dependencies::add_dependency

(C++ function), 18
getfem::context_dependencies::context_check

(C++ function), 18
getfem::context_dependencies::context_valid

(C++ function), 18
getfem::context_dependencies::touch

(C++ function), 18

49

	Introduction
	How to contribute / Git repository on Savannah
	How to get the sources
	How to contribute
	Specific branch for doc improvements and typo-fixes
	Locally commit your changes
	Push you changes in the Savannah repository
	Ask for an admin to merge your modifications to the master branch of GetFEM
	Merge modifications done by other contributors
	Some useful git commands
	Contributing to document translation

	The FEM description in GetFEM
	Convex structures
	Convexes of reference
	Shape function type
	Geometric transformations
	Finite element methods description

	Description of the different parts of the library
	Gmm library
	Description
	Files
	State
	Perspectives

	Dal library
	Description
	Files
	State
	Perspectives

	Miscellaneous algorithms
	Description
	Files
	State
	Perspectives

	Events management
	Description
	Files
	State
	Perspectives

	Mesh module
	Description
	Files
	State
	Perspectives

	Fem module
	Description
	Files
	State
	Perspectives

	Integ module
	Description
	Files
	State
	Perspectives

	MeshFem module
	Description
	Files
	State
	Perspectives

	MeshIm module
	Description
	Files
	State
	Perspectives

	Level-set module
	Description
	Files
	State
	Perspectives

	The high-level generic assembly module in GetFEM
	Description
	Files
	A few implementation details
	Assembly tree
	Assembly tensors
	Optimized instructions
	Predefined functions
	Predefined nonlinear operators
	State
	Perspectives

	The low-level generic assembly module in GetFEM
	Description
	Files
	State
	Perspectives

	Model module
	Description
	Files
	State
	Perspectives

	Continuation module
	Description
	Files
	State
	Perspectives

	Interface with scripting languages (Python, Scilab and Matlab)
	Description
	Files
	Objects, methods and functions of the interface
	Adding a new function or object method to the getfem interface
	Adding a new object to the getfem interface
	State
	Perspectives

	Appendix A. Some basic computations between reference and real elements
	Volume integral
	Surface integral
	Derivative computation
	Second derivative computation
	Example of elementary matrix

	References
	Bibliography
	Index

