Programming from the Ground Up

Jonathan Bartlett

Edited by
Dominick Bruno, Jr.

Programming from the Ground Up
by Jonathan Bartlett

Edited by Dominick Bruno, Jr.

Copyright © 2003 by Jonathan Bartlett

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is includégpendix H In addition, you are
granted full rights to use the code examples for any purpose without even having to credit the authors.

This book can be purchased in paperback at http://www.bartlettpublishing.com/

This book is not a reference book, it is an introductory book. It is therefore not suitable by itself to learn how to
professionally program in x86 assembly language, as some details have been left out to make the learning process
smoother. The point of the book is to help the student understand how assembly language and computer programming
works, not to be a definitive reference to the subject.

To receive a copy of this book in electronic form, please visit the website http://savannah.nongnu.org/projects/pgubook/
This site contains the instructions for downloading a transparent copy (as defined by the GNU FDL) of this book.

Table of Contents

IR o To [] 1 o] o SRR 1
WelComMeE t0 ProgramiMiNg.......cccoieeriereenieeeesieseesieseesteseessesesssessessessssssesssessesssessesssssseenes 1
D (o 18T g o o USROS 2
2. COMPULET AFCNITECTUIEcueeeeeeeces ettt st e e e ere e teeneessesseesseeneensennnens 5
Structure of COMPULET MEMIOLY......c.uiuiiiiiiieieeeee ettt sr bbb e s 5
LI L4 = 6
Y0 14 [T =] 1 4 PRSPPSO 7
INEEIPIrEtING MEIMOIY. .. i ettt et e st aesre et e sreeteeneesseennenneeneens 8
Data ACCESSING METNOUS........ooiiiiee e 9
REVIBW ...ttt ettt ae et e s s e s be e st e s beentesse et e e neenteeaeeteeneennas 10
3. YOUT FIrSt PrOQIAIMS ...ttt sttt be et sb e b bt et sae et e naeentesae e 13
ENntering in the Program............ooeee e 13
Outline of an Assembly Language Program...........ccceerineneneneneneseseseseseeseseneens 15
Planning the PrOgraml..... ..ottt eas 19
FINdINg @ MaXimuM ValUEL............ooiiiiieie et 21
AdAreSSING IMOUES.... ..ottt esre e e sre et e sae et e eseensesneennas 28
REVIBW ...ttt sttt e s et e s e s teeae e s teeneeeseeneesseentesseenseaneenteeneeeenneenes 30
A, All ADOUL FUNCLIONS ...ttt st st sae b e st et e s e e sae e e e sneennens 33
Dealing With COMPIEXITY......cciuiiiiiieeiiesie et nre e sreeenes 33
HOW FUNCHIONS WOTK.......oiiiiieee s 33
Assembly-Language Functions using the C Calling Conventian.............cccccvveeevvrueenee. 35
A FUNCHON EXAMPIE......iiiieeieeeee ettt 39
RECUISIVE FUNCLIONS.ottt eas 43
REVIBWttt bbbt b bbbt bbbt bbb b e Rt b bt a b neens 49
5. DEAIING WItN FIES......cuieeeeee bbbt 51
The UNIDX FIlE CONCEPL......ociieciiecie ettt ettt te e be e s ne e snneenaeesneas 51
BUFFEIS @NADSS ... 52
Standard and SPecCial FileS.........coueiiieiiiiee et 53
USING FIlES IN @ PrOQIam.......cooiiiieeeesie e 54
REVIBW ...ttt ettt b e et e be et e e bt et e e be e beeneeteeneenas 63
6. Reading and Writing SIMPIe RECOIUS........ccoiiiiiiiiii et re e 65
WIHEING RECOIUS. ...ttt bbb bbbt b e bbbt bt bbb eneens 68
REAING RECOITS. ...ttt bbbttt ens 72
MOdifyiNg the RECOIUS.......c.eiiii e sre e 76
REVIBW ...ttt bt b et b et e bt e b e bt et s ae e eesae e 78

7. Developing RODUSE PrOgrams..........ooiieenesesese sttt 81
Where D0ES the TIME GQ2......coiiiieeeeseeese et ae e sreeeesneeneas 81
Some Tips for Developing RODUSE Programs...........ccccveveeieeiieciecsiee e eses s 82
Handling Errors EffECHVEIY..........viieeceecee et 84
Making Our Program MOre RODUSL.........cccuiiriiiiiresise e 85
REVIBW ...ttt sttt b et e et e st e st et e eseesteeneesteeneesseenteeneenteeneentenneenes 87

8. Sharing Functions with Code LiDraries..........cccueiirininiseeeeeseee e 89
USING @ Shared LIDIany........cceoeiicie ettt s nne e 89
How Shared LiDraries WOTK...........coieiieeecee e 91
Finding Information about LIDraries...........cccoiiiiineee e 92
Building @ Shared LIDIrary..........c.eoioiieie sttt 96
Advanced Dynamic LinKing TECHNIQUES..........cccviuiiiieiie et 97
REVIBW ...ttt sttt e e s et e s e teese e teeneesteeseesseentesseeneeeneenseeneeneenneeneen 98

9. Intermediate MEMOIY TOPICS......couiierieieriertere ettt sttt bbbt eb e e re b saessesnenneas 101
HOW @ COMPULET VIEWS MEIMOIY.....cccuiiiiieiieeitiesiiecie et seesteesve st sraeereesreesneesneeneens 101
The INSTIUCHION POINTEEL........oiiieiee e 102
The Memory Layout of @ LINUX PrOgramml..........ccouiereninenenenesesesesiesesie e 103
Every Memory AdAreSS iS @ LI ..o 104
1Y i) oo AV (o] d= T \Y/ [T o o YOS 106
A SIMPIE MEMOIY MaNAGEL.........cccieiieieetieiteeee st ee e ee s ete e sresreesreeseesseeeesseesesreennens 106
REVIBW ...ttt et e st e e e ae et e e se et e s seeteeaeesteeseesseeneesseenseaneenseanennsens 121

10. Counting Like @ COMPULETc.oiiieeieieieeeee ettt bbb 123
(70 8] 11 o PSR 123
Truth, Falsehood, and Binary NUMDELS..........ccceeieiieiinice e 127
The Program Status REQISIEN.........cccviiiiiiieresere e 133
Other NUMDBEriNG SYSIEMIS.....c..coiiiieeeieeeere et eas 134
Octal and Hexadecimal NUMDEIS........c.coiiiiiiiiee s 135
Order Of BYteS iN @ WOId......c..oieeececce ettt st ns 137
Converting NUMDETS fOr DISPIAY.......coereriiriirierisere s 137
REVIBW ...ttt ettt s e te e st e teeneesteeneesseeneesseensesseenseaneensens 142

11, High-LeVel LANQUAGES.......ccoiiiieiiiciiee sttt ettt s s st e te e aeesneeeteenreeaneas 145
Compiled and Interpreted LangUAagES.........cccvveiereeieieeie s e 145
YOUT FirSt C PrOGIAM.....ccueiviitirieriisie sttt sttt sttt sttt s sse e sse s st ene s s s 146
5T o PR TSORSN 148
Y1 10 o RSOSSN 149
REVIBW ...ttt bbbt b et b e bbbt e bt bt bt sbe e be bt e b e bt ne e e e nenreene s 149

D2 O o] 1] 4] 2= 11 [0 o 151

WHEN 10 OPLIMIZE.....ceiieeeeee et b et b e b bbb snenae e 151
WHETrE 10 OPLIMIZE.....oiieiicece e et e e e et e e reesnaeereens 152
LOCAl OPLIMIZALIONSociiiieeciecie et a e sr e s re e e teenteesneeeneeenseens 152
(€11] 0T L@ o] 110 1 F4= 11 o] o H USRS 155
REVIBW ...ttt et e e st e et esbe e e e se et e s ae e teese e eeeneesseeneesseeneenrenneens 156
13. MOVING ON FTOM HEIE ..ottt 159
From the BOOM ULcoe ettt sne e e enne s 159
From the TOP DOWL.....ccoiieee bbbt nne s 160
From the MiddI@ OUL...........ooeee e 160
Y o=t Eo L[4 =To I K o] o] (xS J PSP PR 161
F N C10 LI = oo =T 0 12 11 o S 163
Introduction to GUI Programming.........c.cceeeerenenenenenesesese s sse s ssessessens 163
The GNOME LIBIariEs.......ocooiieeceee et 163
A Simple GNOME Program in Several LangUages.......ccccvevuveiieeieeiieesiieesieesessnesnseens 163
(10 LI =071 (o 1= £ RS 175
B. COmMMON X86 INSIIUCTIONS........ceiieeieieeieseee et ee et sae e sae e sae e teeneesreenee e 177
Reading the TaDIES.........oo et 177
Data Transfer INStIUCHIONS.........ooiiiereeeee e 178
INtEQET INSIIUCTIONScoiice ettt e e e e e s re e e sneenaesneennens 178
LOGIC INSITUCTIONS. ...ttt bbbt a e s snenne s 179
FIOW CONLrOl INSTIUCTIONScoiieiieiieeieesieee et e e enee s 181
ASSEMDIET DIFECHIVES.oiueiieeie ettt bbbt st e e b e b e s beenne 182
Differences in Other Syntaxes and TerminolQgy.........cccccevvvreeieriesiesie e 183
C. IMportant SYSIEM CallS.......ccoiiiiiii e 185
D. Table Of ASCI COUES.......coiiiieieeeeee ettt b et sbe e e s teeneesre e e e 187
E. C Idioms in ASSEMDIY LANGQUAGE.........coiieiieiiiesiie ettt ses et e s sse e neesaee s 189
1S E= =T 0 1T o USSR 189
U Tox 1o 1 | TSR 190
Variables and ASSIGNMENL..........coiiiieiiee ettt e e e s e 190
[0 T0 01 USROS 192
8 1 1o £SO R R RR 193
0] 1 (= TSRS 194
GettiNng GCC T0 HEIP....eeeeeeeeeee ettt st nas 196
F. USING the GDB DEDUQGUEN.....c.uiiiii ettt ettt st st te e b e sna e beenreenneas 199
An Example Debugging SESSION........ccviieiieiieieereseesieseeieseesseseesseseesseesessseessssseessens 199
Breakpoints and Other GDB FEALULES..........cccuoirireriririeeseses et 202
GDB QUICK-RETEIENCE.......eeieii et 203

(T o oW [41T o1 B = 15 (o YOS
H. GNU Free DOCUMENIATION LICENSEo e e et eeeeeeeeeeeeeeeeeeeeeees

Vi

Chapter 1. Introduction

Welcome to Programming

I love programming. | enjoy the challenge to not only make a working program, but to do so with
style. Programming is like poetry. It conveys a message, not only to the computer, but to those
who modify and use your program. With a program, you build your own world with your own
rules. You create your world according to your conception of both the problem and the solution.
Masterful programmers create worlds with programs that are clear and succinct, much like a
poem or essay.

One of the greatest programmers, Donald Knuth, describes programming not as telling a
computer how to do something, but telling a person how they would instruct a computer to do
something. The point is that programs are meant to be read by people, not just computers. Your
programs will be modified and updated by others long after you move on to other projects. Thus,
programming is not as much about communicating to a computer as it is communicating to those
who come after you. A programmer is a problem-solver, a poet, and an instructor all at once.
Your goal is to solve the problem at hand, doing so with balance and taste, and teach your
solution to future programmers. | hope that this book can teach at least some of the poetry and
magic that makes computing exciting.

Most introductory books on programming frustrate me to no end. At the end of them you can still
ask "how does the computer really work?" and not have a good answer. They tend to pass over
topics that are difficult even though they are important. | will take you through the difficult issues
because that is the only way to move on to masterful programming. My goal is to take you from
knowing nothing about programming to understanding how to think, write, and learn like a
programmer. You won't know everything, but you will have a background for how everything fits
together. At the end of this book, you should be able to do the following:

- Understand how a program works and interacts with other programs

Read other people’s programs and learn how they work

Learn new programming languages quickly
- Learn advanced concepts in computer science quickly

I will not teach you everything. Computer science is a massive field, especially when you
combine the theory with the practice of computer programming. However, | will attempt to get
you started on the foundations so you can easily go wherever you want afterwards.

There is somewhat of a chicken and egg problem in teaching programming, especially assembly
language. There is a lot to learn - it's almost too much to learn almost at once, but each piece

Chapter 1. Introduction

depends on all the others. Therefore, you must be patient with yourself and the computer while
learning to program. If you don’t understand something the first time, reread it. If you still don’t
understand it, it is sometimes best to take it by faith and come back to it later. Often after more
exposure to programming the ideas will make more sense. Don'’t get discouraged. It's a long
climb, but very worthwhile.

At the end of each chapter are three sets of review exercises. The first set is more or less
regurgitation - they check to see if can you give back what you learned in the chapter. The second
set contains application questions - they check to see if you can apply what you learned to solve
problems. The final set is to see if you are capable of broadening your horizons. Some of these
guestions may not be answerable until later in the book, but they give you some things to think
about. Other questions require some research into outside sources to discover the answer. Still
others require you to simply analyze your options and explain a best solution. Many of the
guestions don’t have right or wrong answers, but that doesn’t mean they are unimportant.
Learning the issues involved in programming, learning how to research answers, and learning
how to look ahead are all a major part of a programmer’s work.

If you have problems that you just can’t get past, there is a mailing list for this book where
readers can discuss and get help with what they are reading. The address is
pgubook-readers@nongnu.org . This mailing list is open for any type of question or
discussion along the lines of this book.

Your Tools

This book teaches assembly language for x86 processors and the GNU/Linux operating system.
Therefore we will be giving all of the examples using the GNU/Linux standard GCC tool set. If
you are not familiar with GNU/Linux and the GCC tool set, they will be described shortly. If you
are new to Linux, you should check out the guide available at http://rute.sourceforgé/hat/|

intend to show you is more about programming in general than using a specific tool set on a
specific platform, but standardizing on one makes the task much easier.

Those new to Linux should also try to get involved in their local GNU/Linux User’s Group.
User’'s Group members are usually very helpful for new people, and will help you from
everything from installing Linux to learning to use it most efficiently. A listing of GNU/Linux
User’s Groups is available at http://www.linux.org/groups/

All of these programs have been tested using Red Hat Linux 8.0, and should work with any other
GNUY/Linux distribution, toc® They will not work with non-Linux operating systems such as

1. Thisis quite a large document. You certainly don't need to know everything to get started with this book.
You simply need to know how to navigate from the command line and how to use an editwctikeemacs,

orvi (or others).

2. By "GNU/Linux distribution”, | mean an x86 GNUY/Linux distribution. GNU/Linux distributions for the
Power Macintosh, the Alpha processor, or other processors will not work with this book.

Chapter 1. Introduction

BSD or other systems. However, all of thkills learned in this book should be easily transferable
to any other system.

If you do not have access to a GNU/Linux machine, you can look for a hosting provider who
offers a Linuxshell accountwhich is a command-line only interface to a Linux machine. There
are many low-cost shell account providers, but you have to make sure that they match the
requirements above (i.e. - Linux on x86). Someone at your local GNU/Linux User’s Group may
be able to give you one as well. Shell accounts only require that you already have an Internet
connection and a telnet program. If you use Windows, you already have a telnet client - just click
onstart ,thenrun , then type inelnet . However, it is usually better to download PuTTY from
http://www.chiart.greenend.co.uk/~sgtatham/putty/ because Windows’ telnet has some weird
problems. There are a lot of options for the Macintosh, too. NiftyTelnet is my favorite.

If you don't have GNU/Linux and can't find a shell account service, then you can download
Knoppix from http://www.knoppix.org/ Knoppix is a GNU/Linux distribution that boots from CD
so that you don’t have to actually install it. Once you are done using it, you just reboot and
remove the CD and you are back to your regular operating system.

So what is GNU/Linux? GNU/Linux is an operating system modeled after UNIX. The GNU part
comes from the GNU Project (http://www.gnu.ofgiyhich includes most of the programs you

will run, including the GCC tool set that we will use to program with. The GCC tool set contains
all of the programs necessary to create programs in various computer languages.

Linux is the name of th&ernel The kernel is the core part of an operating system that keeps
track of everything. The kernel is both an fence and a gate. As a gate, it allows programs to access
hardware in a uniform way. Without the kernel, you would have to write programs to deal with
every device model ever made. The kernel handles all device-specific interactions so you don’t
have to. It also handles file access and interaction between processes. For example, when you
type, your typing goes through several programs before it hits your editor. First, the kernel is
what handles your hardware, so it is the first to receive notice about the keypress. The keyboard
sends irscancodeto the kernel, which then converts them to the actual letters, numbers, and
symbols they represent. If you are using a windowing system (like Microsoft Windows or the X
Window System), then the windowing system reads the keypress from the kernel, and delivers it
to whatever program is currently in focus on the user’s display.

Example 1-1. How the computer processes keyboard sigals
Keyboard -> Kernel -> Windowing system -> Application program

The kernel also controls the flow of information between programs. The kernel is a program’s
gate to the world around it. Every time that data moves between processes, the kernel controls the

3. The GNU Project is a project by the Free Software Foundation to produce a complete, free operating
system.

Chapter 1. Introduction

messaging. In our keyboard example above, the kernel would have to be involved for the
windowing system to communicate the keypress to the application program.

As a fence, the kernel prevents programs from accidentally overwriting each other’s data and
from accessing files and devices that they don’t have permission to. It limits the amount of
damage a poorly-written program can do to other running programs.

In our case, the kernel is Linux. Now, the kernel all by itself won’t do anything. You can't even

boot up a computer with just a kernel. Think of the kernel as the water pipes for a house. Without
the pipes, the faucets won’t work, but the pipes are pretty useless if there are no faucets. Together,
the user applications (from the GNU project and other places) and the kernel (Linux) make up the
entire operating system, GNU/Linux.

For the most part, this book will be using the computer’s low-level assembly language. There are
essentially three kinds of languages:

Machine Language

This is what the computer actually sees and deals with. Every command the computer sees
IS given as a number or sequence of numbers.

Assembly Language

This is the same as machine language, except the command numbers have been replaced by
letter sequences which are easier to memorize. Other small things are done to make it easier
as well.

High-Level Language

High-level languages are there to make programming easier. Assembly language requires
you to work with the machine itself. High-level languages allow you to describe the program
in a more natural language. A single command in a high-level language usually is equivalent
to several commands in an assembly language.

In this book we will learn assembly language, although we will cover a bit of high-level
languages.

Chapter 2. Computer Architecture

Before learning how to program, you need to first understand how a computer interprets
programs. You don’t need a degree in electrical engineering, but you need to understand some
basics.

Modern computer architecture is based off of an architecture called the Von Neumann
architecture, named after its creator. The Von Neumann architecture divides the computer up into
two main parts - the CPU (for Central Processing Unit) and the memory. This architecture is used
in all modern computers, including personal computers, supercomputers, mainframes, and even
cell phones.

Structure of Computer Memory

To understand how the computer views memory, imagine your local post office. They usually

have a room filled with PO Boxes. These boxes are similar to computer memory in that each are
numbered sequences of fixed-size storage locations. For example, if you have 256 megabytes of
computer memory, that means that your computer contains roughly 256 million fixed-size storage
locations. Or, to use our analogy, 256 million PO Boxes. Each location has a number, and each
location has the same, fixed-length size. The difference between a PO Box and computer memory
is that you can store all different kinds of things in a PO Box, but you can only store a single
number in a computer memory storage location.

You may wonder why a computer is organized this way. It is because it is simple to implement. If
the computer were composed of a lot of differently-sized locations, or if you could store different
kinds of data in them, it would be difficult and expensive to implement.

The computer’s memory is used for a number of different things. All of the results of any
calculations are stored in memory. In fact, everything that is "stored" is stored in memory. Think
of your computer at home, and imagine what all is stored in your computer’'s memory.

« The location of your cursor on the screen

« The size of each window on the screen

« The shape of each letter of each font being used
« The layout of all of the controls on each window
« The graphics for all of the toolbar icons

« The text for each error message and dialog box

« The list goes on and on...

Chapter 2. Computer Architecture

In addition to all of this, the Von Neumann architecture specifies that not only computer data
should live in memory, but the programs that control the computer’s operation should live there,
too. In fact, in a computer, there is no difference between a program and a program’s data except
how it is used by the computer. They are both stored and accessed the same way.

The CPU

So how does the computer function? Obviously, simply storing data doesn’t do much help - you
need to be able to access, manipulate, and move it. That's where the CPU comes in.

The CPU reads in instructions from memory one at a time and executes them. This is known as
thefetch-execute cycl@he CPU contains the following elements to accomplish this:

« Program Counter

« Instruction Decoder

- Data bus

« General-purpose registers
« Arithmetic and logic unit

Theprogram counteis used to tell the computer where to fetch the next instruction from. We
mentioned earlier that there is no difference between the way data and programs are stored, they
are just interpreted differently by the CPU. The program counter holds the location of the next
instruction to be executed. The CPU begins by looking at the program counter, and fetching
whatever number is stored in memory at the location specified. It is then passed on to the
instruction decodewhich figures out what the instruction means. This includes what process
needs to take place (addition, subtraction, multiplication, data movement, etc.) and what memory
locations are going to be involved in this process. Computer instructions usually consist of both
the actual instruction and the list of memory locations that are used to carry it out.

Now the computer uses tliata busto fetch the memory locations to be used in the calculation.

The data bus is the connection between the CPU and memory. It is the actual wire that connects
them. If you look at the motherboard of the computer, the wires that go out from the memory are
your data bus. Some of the memory locations may actuallyemeral-purpose registers
special-purpose registers register is a memory location that is located on the CPU itself. Data
operations are much quicker when performed on the registers than when they are performed on
memory. However, computers have very few registers. General-purpose registers can be used for
anything, while special-purpose registers are restricted in their use.

Now that the CPU has retrieved all of the data it needs, it passes on the data and the decoded
instruction to thearithmetic and logic unitor further processing. Here the instruction is actually

Chapter 2. Computer Architecture

executed. After the results of the computation have been calculated, the results are then placed on
the data bus and sent to the appropriate location in memory, as specified by the instruction.

This is a very simplified explanation. Processors have advanced quite a bit from where they used
to be. Although the basic operation is still the same, it is complicated by the use of cache
hierarchies, superscalar processors, pipelining, branch prediction, out-of-order execution,
microcode translation, coprocessors, and other optimizations. Don’t worry if you don’t know

what those words mean, you can just use them as Internet search terms if you want to learn more
about the CPU.

Some Terms

Computer memory is a numbered sequence of fixed-size storage locations. The number attached
to each storage location is called i#ddress The size of a single storage location is calldayte
On x86 processors, a byte is a number between 0 and 256.

You may be wondering how computers can display and use text, graphics, and even large
numbers when all they can do is store numbers between 0 and 255. First of all, specialized
hardware like graphics cards have special interpretations of each number. When displaying to the
screen, the computer uses ASCII code tables to translate the numbers you are sending it into
letters to display on the screen, with each number translating to exactly one letter or numeral.

For example, the capital letter A is represented by the number 65. The numeral 1 is represented
by the number 49. So, to print out "HELLO", you would actually give the computer the sequence
of numbers 72, 69, 76, 76, 79. To print out the number 100, you would give the computer the
sequence of numbers 49, 48, 48. A list of ASCII characters and their numeric codes is found in
Appendix D

In addition to using numbers to represent ASCII characters, you as the programmer get to make
the numbers mean anything you want them to, as well. For example, if | am running a store, |
would use a number to represent each item | was selling. Each number would be linked to a series
of other numbers which would be the ASCII codes for what | wanted to display when the items
were scanned in. | would have more numbers for the price, how many | have in inventory, and so
on.

So what about if we need numbers larger than 255? We can simply use a combination of bytes to
represent larger numbers. Two bytes can be used to represent any number between 0 and 65536.
Four bytes can be used to represent any number between 0 and 4294967295. Now, it is quite
difficult to write programs to stick bytes together to increase the size of your numbers, and

1. With the advent of international character sets and Unicode, this is not entirely true anymore. However,
for the purposes of keeping this simple for beginners, we will use the assumption that one number translates
directly to one character. For more information, sependix D

Chapter 2. Computer Architecture

requires a bit of math. Luckily, the computer will do it for us for numbers up to 4 bytes long. In
fact, four-byte numbers are what we will work with by default.

We mentioned earlier that in addition to the regular memory that the computer has, it also has
special-purpose storage locations calegisters Registers are what the computer uses for
computation. Think of a register as a place on your desk - it holds things you are currently
working on. You may have lots of information tucked away in folders and drawers, but the stuff
you are working on right now is on the desk. Registers keep the contents of numbers that you are
currently manipulating.

On the computers we are using, registers are each four bytes long. The size of a typical register is
called a computer's/ord size. In our case, we have four-byte words. This means that it is most
natural on these computers to do computations four bytes at a time. This gives us roughly 4

billion values.

Addresses are also four bytes (1 word) long, and therefore also fit into a register. x86 processors
can access up to 4294967296 bytes if enough memory is installed. Notice that this means that we
can store addresses the same way we store any other number. In fact, the computer can't tell the
difference between a value that is an address, a value that is a number, a value that is an ASCII
code, or a value that you have decided to use for another purpose. A number becomes an ASCII
code when you attempt to display it. A number becomes an address when you try to look up the
byte it points to. Take a moment to think about this, because it is crucial to understanding how
computer programs work.

Addresses which are stored in memory are also caitedters because instead of having a
regular value in them, they point you to a different location in memory.

As we've mentioned, computer instructions are also stored in memory. In fact, they are stored
exactly the same way that other data is stored. The only way the computer knows that a memory
location is an instruction is that a special-purpose register called the instruction pointer points to
them at one point or another. If the instruction pointer points to a memory word, it is loaded as an
instruction. Other than that, the computer has no way of knowing the difference between
programs and other types of déta.

Interpreting Memory

Computers are very exact. Because they are exact, you have to be equally exact. A computer has
no idea what your program is supposed to do. Therefore, it will only do exactly what you tell it to
do. If you accidentally print out a regular number instead of the ASCII codes that make up the
number’s digits, the computer will let you - and you will wind up with jibberish on your screen (it

2. Note that here we are talking about general computer theory. Some processors and operating systems
actually mark the regions of memory that can be executed with a special marker that indicates this.

Chapter 2. Computer Architecture

will try to look up what your number represents in ASCII and print that). If you tell the computer
to start executing instructions at a location containing data instead of program instructions, who
knows how the computer will interpret that - but it will certainly try.

The point is, the computer will do exactly what you tell it, no matter how little sense it makes.
Therefore, as a programmer, you need to know exactly how you have your data arranged in
memory. Remember, computers can only store numbers, so letters, pictures, music, web pages,
documents, and anything else are just long sequences of numbers in the computer, which
particular programs know how to interpret.

For example, say that you wanted to store customer information in memory. One way to do so
would be to set a maximum size for the customer’s name and address - say 50 ASCII characters
for each, which would be 50 bytes for each. Then, after that, have a number for the customer’s age
and their customer id. In this case, you would have a block of memory that would look like this:

Start of Record:
Customer’'s name (50 bytes) - start of record
Customer’s address (50 bytes) - start of record + 50 bytes
Customer’'s age (1 word - 4 bytes) - start of record + 100 bytes
Customer’s id number (1 word - 4 bytes) - start of record + 104 bytes

This way, given the address of a customer record, you know where the rest of the data lies.
However, it does limit the customer’s name and address to only 50 ASCII characters each.

What if we didn’t want to specify a limit? Another way to do this would be to have in our record
pointers to this information. For example, instead of the customer’s name, we would have a
pointer to their name. In this case, the memory would look like this:

Start of Record:
Customer’s name pointer (1 word) - start of record
Customer’s address pointer (1 word) - start of record + 4
Customer’s age (1 word) - start of record + 8
Customer’s id number (1 word) - start of record + 12

The actual name and address would be stored elsewhere in memory. This way, it is easy to tell
where each part of the data is from the start of the record, without explicitly limitting the size of
the name and address. If we put variable-length data within our record, it would be difficult to
find where the other pieces of data were from the start of the record.

Data Accessing Methods

Processors have a number of different ways of accessing data, known as addressing modes. The
simplest mode ismmediate modan which the data to access is embedded in the instruction

Chapter 2. Computer Architecture

itself. For example, if we want to initialize a register to 0, instead of giving the computer an
address to read the 0 from, we would specify immediate mode, and give it the number O.

In thedirect addressing modéhe instruction contains the address to load the data from. For
example, | could say, please load this register with the data at address 2002. The computer would
go directly to byte number 2002 and copy the contents into our register.

In theindexed addressing modie instruction contains an address to load the data from, and

also specifies amdex registeto offset that address. For example, we could specify address 2002
and an index register. If the index register contains the number 4, the actual address the data is
loaded from would be 2006. This way, if you have a set of numbers starting at location 2002, you
can cycle between each of them using an index register. On x86 processors, you can also specify
amultiplier for the index. This allows you to access memory a byte at a time or a word at a time
(4 bytes). If you are accessing an entire word, your index will need to be multiplied by 4 to get
the exact location of the fourth element from your address. For example, if you wanted to access
the fourth byte from location 2002, you would load your index register with 3 (remember, we
start counting at 0) and set the multiplier to 1 since you are going a byte at a time. This would get
you location 2005. However, if you wanted to access the fourth word from location 2002, you
would load your index register with 3 and set the multiplier to 4. This would load from location
2014 - the fourth word.

In theindirect addressing modé¢he instruction contains a register that contains a pointer to
where the data should be loaded from. For example, if we used indirect addressing mode and
specified th&veax register, and théoeax register contained the value 4, whatever value was at
memory location 4 would be used. In direct addressing, we would just load the value 4, but in
indirect addressing, we use 4 as the address to use to find the data we want.

Finally, there is théase-pointer addressing modéfhis is similar to indirect addressing, but you
also include a number called thésetto add to the registers value before using it for lookup. We
will use this mode quite a bit in this book.

In the Section callethterpreting Memorywe discussed having a structure in memory holding
customer information. Let's say we wanted to access the customer’s age, which was the eighth
byte of the data, and we had the address of the start of the structure in a register. We could use
base-pointer addressing and specify the register as the base pointer, and 8 as our offset. This is a
lot like indexed addressing, with the difference that the offset is constant and the pointer is held in
a register, and in indexed addressing the offset is in a register and the pointer is constant.

There are other forms of addressing, but these are the most important ones.

10

Chapter 2. Computer Architecture
Review

Know the Concepts

- Describe the fetch-execute cycle.

« What is a register? How would computation be more difficult without registers?

« How do you represent numbers larger than 2557

« How big are the registers on the machines we will be using?

« How does a computer know how to interpret a given byte or set of bytes of memory?
« What are the addressing modes and what are they used for?

« What does the instruction pointer do?

Use the Concepts

+ What data would you use in an employee record? How would you lay it out in memory?

- If I had the pointer the the beginning of the employee record above, and wanted to access a
particular piece of data inside of it, what addressing mode would | use?

« Write a paragraph describing how to increase the customer’s age by one year in the customer
record in this chapter. Assume that the registeax has the pointer to the record stored. Do
not use any pronouns. At each step, make sure you are explicit as to where the intermediate
results will be stored.

« If a machine instruction has to contain a command, two source memory locations, and a
destination memory location, how many bytes long does it have to be at a minimum?

Going Further

« What are the minimum number of addressing modes needed for computation?
« Why include addressing modes that aren’t strictly needed?
« Research and then describe how pipelining affects the fetch-execute cycle.

+ Research and then describe the tradeoffs between fixed-length instructions and variable-length
instructions.

11

Chapter 2. Computer Architecture

12

Chapter 3. Your First Programs

In this chapter you will learn the process for writing and building Linux assembly-language
programs. In addition, you will learn the structure of assembly-language programs, and a few
assembly-language commands.

These programs may overwhelm you at first. However, go through them with diligence, read
them and their explanations as many times as necessary, and you will have a solid foundation of
knowledge to build on. Please tinker around with the programs as much as you can. Even if your
tinkering does not work, every failure will help you learn.

Entering in the Program

Okay, this first program is simple. In fact, it's not going to do anything but exit! It's short, but it
shows some basics about assembly language and Linux programming. You need to enter the
program in an editor exactly as written, with the filenagmie.s . The program follows. Don’t
worry about not understanding it. This section only deals with typing it in and runningtheln
Section calledutline of an Assembly Language Prograra will describe how it works.

#PURPOSE: Simple program that exits and returns a
status code back to the Linux kernel
#

#INPUT: none
#

#OUTPUT: returns a status code. This can be viewed

by typing

#

echo $?

#

after running the program

#

#VARIABLES:

%eax holds the system call number
(this is always the case)

#

%ebx holds the return status
#

.section .data

.section .text

13

Chapter 3. Your First Programs

.globl _start
_start:
movl $1, %eax # this is the linux kernel command
number (system call) for exiting
a program
movl $0, %ebx # this is the status number we will
return to the operating system.
Change this around and it will
return different things to
echo $?
int $0x80 # this wakes up the kernel to run

the exit command

What you have typed in is called tlseurce codeSource code is the human-readable form of a
program. In order to transform it into a program that a computer can run, we nasddgmble
andlink it.

The first step is tassemblét. Assembling is the process that transforms what you typed into
instructions for the machine. The machine itself only reads sets of numbers, but humans prefer
words. Anassembly language a more human-readable form of the instructions a computer
understands. Assembling transforms the human-readable file into a machine-readable one. To
assembly the program type in the command

as exit.s -o exit.o

as is the command which runs the assembdeit.,s is the source file, ané exito tells the
assemble to put it's output in the fiéggit.o .exit.o is anobject file An object file is code that

is in the machine’s language, but has not been completely put together. In most large programs,
you will have several source files, and you will convert each one into an object file. The linker is
the program that is responsible for putting the object files together and adding information to it so
that the kernel knows how to load and run it. In our case, we only have one object file, so the
linker is only adding the information to enable it to run.liftk the file, enter the command

Id exit.o -0 exit

Id is the command to run the linkexxit.o is the object file we want to link, and exit
instructs the linker to output the new program into a file caded .* If any of these commands

1. If you are new to Linux and UNIX, you may not be aware that files don’'t have to have extensions. In
fact, while Windows uses thexe extension to signify an executable program, UNIX executables usually
have no extension.

14

Chapter 3. Your First Programs

reported errors, you have either mistyped your program or the command. After correcting the
program, you have to re-run all the commandsu must always re-assemble and re-link
programs after you modify the source file for the changes to occur in the prodf@ncan run

exit by typing in the command

Jexit

The./ is used to tell the computer that the program isn’t in one of the normal program
directories, but is the current directory instéadu’ll notice when you type this command, the
only thing that happens is that you'll go to the next line. That’s because this program does
nothing but exit. However, immediately after you run the program, if you type in

echo $?

It will say 0. What is happening is that every program when it exits gives Linuss@rstatus

code which tells it if everything went all right. If everything was okay, it returns 0. UNIX

programs return numbers other than zero to indicate failure or other errors, warnings, or statuses.
The programmer determines what each number means. You can view this code by tyguimg in

$7?. In the following section we will look at what each part of the code does.

Outline of an Assembly Language Program

Take a look at the program we just entered. At the beginning there are lots of lines that begin with
hashes#). These areommentsComments are not translated by the assembler. They are used
only for the programmer to talk to anyone who looks at the code in the future. Most programs
you write will generally be modified by others. Get into the habit of writing comments in your
code that will help them understand both why the program exists and how it works. Always
include the following in your comments:

« The purpose of the code
« An overview of the processing involved
- Anything strange your program does and why it dogs it

After the comments, the next line says

.section .data

2. . refersto the current directory in Linux and UNIX systems.

3. You'll find that many programs end up doing things strange ways. Usually there is a reason for that, but,
unfortunately, programmers never document such things in their comments. So, future programmers either
have to learn the reason the hard way by modifying the code and watching it break, or just leaving it alone
whether it is still needed or not. You showdtivaysdocument any strange behavior your program performs.
Unfortunately, figuring out what is strange and what is straightforward comes mostly with experience.

15

Chapter 3. Your First Programs

Anything starting with a period isn’t directly translated into a machine instruction. Instead, it's an
instruction to the assembler itself. These are calegembler directivesr pseudo-operations
because they are handled by the assembler and are not actually run by the computer. The
.section command breaks your program up into sections. This command starts the data
section, where you list any memory storage you will need for data. Our program doesn’t use any,
so we don’t need the section. It’s just here for completeness. Almost every program you write in
the future will have data.

Right after this you have

.section .text

which starts the text section. The text section of a program is where the program instructions live.

The next instruction is

.globl _start

This instructs the assembler thatart is important to rememberstart is asymbo] which

means that it is going to be replaced by something else either during assembly or linking.
Symbols are generally used to mark locations of programs or data, so you can refer to them by
name instead of by their location number. Imagine if you had to refer to every memory location

by it's address. First of all, it would be very confusing because you would have to memorize or
look up the numeric memory address of every piece of code or data. In addition, every time you
had to insert a piece of data or code you would have to change all the addresses in your program!
Symbols are used so that the assembler and linker can take care of keeping track of addresses,
and you can concentrate on writing your program.

.globl means that the assembler shouldn’t discard this symbol after assembly, because the
linker will need it._start is a special symbol that always needs to be marked wlitbl

because it marks the location of the start of the proghiaithout marking this location in this

way, when the computer loads your program it won’t know where to begin running your program

The next line

_start:

defineghe value of the start label. Alabelis a symbol followed by a colon. Labels define a
symbol’s value. When the assembler is assembling the program, it has to assign each data value
and instruction an address. Labels tell the assembler to make the symbol’s value be wherever the
next instruction or data element will be. This way, if the actual physical location of the data or
instruction changes, you don’t have to rewrite any references to it - the symbol automatically gets
the new value.

Now we get into actual computer instructions. The first such instruction is this:

16

Chapter 3. Your First Programs
movl $1, %eax

When the program runs, this instruction transfers the numl@o the%eax register. On x86
processors, there are several general-purpose registers:

+ %eax
* %ebx
« Ooecx
» %edx

In addition to these general-purpose registers, there are also several special-purpose registers,
including

» %edi
* %ebp
+ %esp
+ %eip

We’'ll discuss these later, just be aware that they éxds0, %edi can also be used as a
general-purpose register.

So, themovl instruction moves the numberinto %eax. The dollar-sign in front of the one
indicates that we want to use immediate mode addressing (refer btk $®ction calle®ata
Accessing Methoda Chapter 2. Without the dollar-sign it would do direct addressing, loading
whatever number is at addresswWe want the actual numberloaded in, so we have to use
immediate mode.

This instruction is preparing for when we call the Linux kernel. The numbksithe number of

theexit system call We will discuss system calls in more depth soon, but basically they are
requests for the operating system’s help. Normal programs can’t do everything. Many operations
such as calling other programs, dealing with files, and exiting have to be handled by the operating
system through system calls. When you make a system call, which we will do shortly, the system
call number has to be loaded irf@eax.

4. You may be wonderingwhy do all of these registers begin with the letéé&¥ The reason is that early
generations of x86 processors were 16 bits rather than 32 bits. Therefore, the registers were only half the
length they are now. In later generations of x86 processors, the size of the registers doubled. They kept the
old names to refer to the first half of the register, and added anrefer to the extended versions of the
register. Usually you will only use the extended versions. Newer models also offer a 64-bit mode, which
doubles the size of these registers yet again and usegeafix to indicate the larger registers (i%rax is

the 64-bit version ofoeax). However, these processors are not widely used, and are not covered in this book.

17

Chapter 3. Your First Programs

The operating system, however, usually needs more information than just which call to make. For
example, when dealing with files, the operating system needs to know which file you are dealing
with, what data you want to write, and other details. The extra details, qadieanetersare

stored in other registers. In the case of¢he system call, the operating system requires a

status code be loaded dvebx. This value is then returned to the system. This is the value you
retrieved when you typedcho $? So, we loadsebx with 0 by typing the following:

movl $0, %ebx

Now, loading registers with these numbers doesn’t do anything itself. Registers are used for all
sorts of things besides system calls. They are where all program logic such as addition,
subtraction, and comparisons take place. Linux simply requires that certain registers be loaded
with certain parameter values before making a systemahx is always required to be loaded

with the system call number. For the other registers, however, each system call has different
requirements. In thexit system call%ebx is required to be loaded with the exit status. We will
discuss different system calls as they are needed. For a list of common system calls and what is
required to be in each register, s&gpendix C

The next instruction is the "magic" one. It looks like this:

int $0x80

Theint stands fointerrupt The0x80 is the interrupt number to useAn interruptinterrupts

the normal program flow, and transfers control from our program to Linux so that it will do a
system calf. You can think of it as like signaling Batman(or Larry-Boif you prefer). You need
something done, you send the signal, and then he comes to the rescue. You don’t care how he
does his work - it's more or less magic - and when he’s done you're back in control. In this case,
all we're doing is asking Linux to terminate the program, in which case we won'’t be back in
control. If we didn’t signal the interrupt, then no system call would have been performed.

Quick System Call Review: To recap - Operating System features are accessed through
system calls. These are invoked by setting up the registers in a special way and issuing the
instruction int $0x80 . Linux knows which system call we want to access by what we
stored in the %eax register. Each system call has other requirements as to what needs to be

5. You may be wondering why it'9x80 instead of jusi80. The reason is that the number is written in
hexadecimal. In hexadecimal, a single digit can hold 16 values instead of the normal 10. This is done by
utilizing the lettersa throughf in addition to the regular digita represents 1(represents 11, and so on.

0x10 represents the number 16, and so on. This will be discussed more in depth later, but just be aware that
numbers starting withx are in hexadecimal. Tacking on &rat the end is also sometimes used instead, but

we won't do that in this book. For more information about this, Gaapter 10

6. Actually, the interrupt transfers control to whoever set upndéerrupt handlerfor the interrupt number.

In the case of Linux, all of them are set to be handled by the Linux kernel.

7. If you don't watch Veggie Tales, you should.

18

Chapter 3. Your First Programs

stored in the other registers. System call number 1 is the exit system call, which requires
the status code to be placed in %ebx.

Now that you've assembled, linked, run, and examined the program, you should make some basic
edits. Do things like change the number that is loaded%dbx, and watch it come out at the end

with echo $? Don'’t forget to assemble and link it again before running it. Add some comments.
Don’t worry, the worse thing that would happen is that the program won't assemble or link, or

will freeze your screen. That'’s just part of learning!

Planning the Program

In our next program we will try to find the maximum of a list of numbers. Computers are very
detail-oriented, so in order to write the program we will have to have planned out a number of
details. These details include:

« Where will the original list of numbers be stored?
« What procedure will we need to follow to find the maximum number?

« How much storage do we need to carry out that procedure?

Will all of the storage fit into registers, or do we need to use some memory as well?

You might not think that something as simple as finding the maximum number from a list would
take much planning. You can usually tell people to find the maximum number, and they can do so
with little trouble. However, our minds are used to putting together complex tasks automatically.
Computers need to be instructed through the process. In addition, we can usually hold any
number of things in our mind without much trouble. We usually don’t even realize we are doing

it. For example, if you scan a list of numbers for the maximum, you will probably keep in mind
both the highest number you've seen so far, and where you are in the list. While your mind does
this automatically, with computers you have to explicitly set up storage for holding the current
position on the list and the current maximum number. You also have other problems such as how
to know when to stop. When reading a piece of paper, you can stop when you run out of numbers.
However, the computer only contains numbers, so it has no idea when it has reached the last of
your numbers.

In computers, you have to plan every step of the way. So, let’s do a little planning. First of all, just
for reference, let's name the address where the list of numbers staesmaieems . Let's say

that the last number in the list will be a zero, so we know where to stop. We also need a value to
hold the current position in the list, a value to hold the current list element being examined, and
the current highest value on the list. Let’s assign each of these a register:

19

Chapter 3. Your First Programs

« %edi will hold the current position in the list.

« %ebxwill hold the current highest value in the list.

+ %eaxwill hold the current element being examined.

When we begin the program and look at the first item in the list, since we haven’t seen any other
items, that item will automatically be the current largest element in the list. Also, we will set the
current position in the list to be zero - the first element. From then, we will follow the following
steps:

1. Check the current list elemertbéax) to see if it's zero (the terminating element).
2.1fitis zero, exit.
3. Increase the current positio?édi).

4. Load the next value in the list into the current value registesalk). What addressing mode
might we use here? Why?

5. Compare the current valugsgax) with the current highest valuéugebx).

6. If the current value is greater than the current highest value, replace the current highest value
with the current value.

7. Repeat.

That is the procedure. Many times in that procedure | made use of the word "if". These places are
where decisions are to be made. You see, the computer doesn’t follow the exact same sequence of
instructions every time. Depending on which "if"s are correct, the computer may follow a

different set of instructions. The second time through, it might not have the highest value. In that
case, it will skip step 6, but come back to step 7. In every case except the last one, it will skip step
2. In more complicated programs, the skipping around increases dramatically.

These "if"s are a class of instructions calfemv controlinstructions, because they tell the

compute which steps to follow and which paths to take. In the previous program, we did not have
any flow control instructions, as there was only one possible path to take - exit. This program is
much more dynamic in that it is directed by data. Depending on what data it receives, it will
follow different instruction paths.

In this program, this will be accomplished by two different instructions, the conditional jump and
the unconditional jump. The conditional jump changes paths based on the results of a previous
comparison or calculation. The unconditional jJump just goes directly to a different path no matter
what. The unconditional jump may seem useless, but it is very necessary since all of the
instructions will be laid out on a line. If a path needs to converge back to the main path, it will
have to do this by an unconditional jump. We will see more of both of these jumps in the next
section.

20

Chapter 3. Your First Programs

Another use of flow control is in implementing loops. A loop is a piece of program code that is
meant to be repeated. In our example, the first part of the program (setting the current position to
0 and loading the current highest value with the current value) was only done once, so it wasn’t a
loop. However, the next part is repeated over and over again for every number in the list. It is only
left when we have come to the last element, indicated by a zero. This is cétled laecause it

occurs over and over again. It is implemented by doing unconditional jumps to the beginning of
the loop at the end of the loop, which causes it to start over. However, you have to always
remember to have a conditional jump to exit the loop somewhere, or the loop will continue
forever! This condition is called anfinite loop If we accidentally left out step 1, 2, or 3, the

loop (and our program) would never end.

In the next section, we will implement this program that we have planned. Program planning
sounds complicated - and it is, to some degree. When you first start programming, it's often hard
to convert our normal thought process into a procedure that the computer can understand. We
often forget the number of "temporary storage locations" that our minds are using to process
problems. As you read and write programs, however, this will eventually become very natural to
you. Just have patience.

Finding a Maximum Value

Enter the following program asaximum.s :

#PURPOSE: This program finds the maximum number of a
set of data items.
#

#VARIABLES: The registers have the following uses:

%edi - Holds the index of the data item being examined
%ebx - Largest data item found

%eax - Current data item

The following memory locations are used:

data_items - contains the item data. A O is used
to terminate the data

HoHHHHHHHFH R

.section .data

data_items: #These are the data items
Jong 3,67,34,222,45,75,54,34,44,33,22,11,66,0

21

Chapter 3. Your First Programs

.section .text

.globl _start
_start:

movl $0, %edi # move 0 into the index register
mov!l data_items(,%edi,4), %eax # load the first byte of data

movl %eax, %ebx # since this is the first item, %eax is

the biggest

start_loop: # start loop

cmpl $0, %eax # check to see if we've hit the end
je loop_exit

incl %edi # load next value

movl data_items(,%edi,4), %eax

cmpl %ebx, %eax # compare values

jle start_loop # jump to loop beginning if the new

one isn’'t bigger

movl %eax, %ebx # move the value as the largest
jmp start_loop # jump to loop beginning

loop_exit:

%ebx is the return value, and it already has the number

movl $1, %eax #1 is the exit() syscall
int $0x80

Now, assemble and link it with these commands:

as maximum.s -0 maximum.o
I[d maximum.o -0 maximum

Now run it, and check it's status.

Jmaximum
echo $?

You'll notice it returns the value22. Let’s take a look at the program and what it does. If you

look in the comments, you'll see that the program finds the maximum of a set of numbers (aren’t
comments wonderful!). You may also notice that in this program we actually have something in
the data section. These lines are the data section:

22

Chapter 3. Your First Programs

data_items: #These are the data items
long 3,67,34,222,45,75,54,34,44,33,22,11,66,0

Lets look at thisdata_items is a label that refers to the location that follows it. Then, there is a
directive that starts wittlong . That causes the assembler to reserve memory for the list of
numbers that follow itdata_items refers to the location of the first one. There are several
different types of memory locations other th&omg that can be reserved. The main ones are as
follows:

.byte

Bytes take up one storage location for each number. They are limited to numbers between 0
and 255.

.int

Ints (which differ from thent instruction) take up two storage locations for each number.
These are limitted to numbers between 0 and 65535.

long

Longs take up four storage locations. This is the same amount of space the registers use,
which is why they are used in this program. They can hold numbers between 0 and
4294967295.

.ascii

The.ascii directive is to enter in characters into memory. Characters each take up one
storage location (they are converted into bytes internally). So, if you gave the directive
.ascii "Hello there\0" , the assembler would reserve 12 storage locations (bytes). The
first byte contains the numeric code farthe second byte contains the numeric codesfor

and so forth. The last character is represente@hyand it is the terminating character (it

will never display, it just tells other parts of the program that that’s the end of the
characters). All of the letters are in quotes.

In our example, the assembler reserveddst s, one right after another. Since each long takes
up 4 bytes, that means that the whole list takes up 56 bytes. These are the numbers we will be
searching through to find the maximudata_items is used by the assembler to refer to the
address of the first of these values.

Take note that the last data item in the list is a zero. | decided to use a zero to tell my program that
it has hit the end of the list. | could have done this other ways. | could have had the size of the list

8. Note that no numbers in assembly language (or any other computer language I've seen) have commas
embedded in them. So, always write numbers 6i&&35 , and never likes5,535 .

23

Chapter 3. Your First Programs

hard-coded into the program. Also, | could have put the length of the list as the first item, or in a
separate location. | also could have made a symbol which marked the last location of the list
items. No matter how I do it, | must have some method of determining the end of the list. The
computer knows nothing - it can only do what its told. It's not going to stop processing unless |
give it some sort of signal. Otherwise it would continue processing past the end of the list into the
data that follows it, and even to locations where we haven’t put any data.

Notice that we don’'t have globl declaration fodata_items . This is because we only refer

to these locations within the program. No other file or program needs to know where they are
located. This is in contrast to thatart symbol, which Linux needs to know where it is so that

it knows where to begin the program'’s execution. It's not an error to wiidél

data_items , it’s just not necessary. Anyway, play around with this line and add your own
numbers. Even though they ateng , the program will produce strange results if any number is
greater than 255, because that'’s the largest allowed exit status. Also notice that if you move the 0
to earlier in the list, the rest get ignordfemember that any time you change the source file, you
have to re-assemble and re-link your program. Do this now and see the results

All right, we've played with the data a little bit. Now let’s look at the code. In the comments you

will notice that we've marked someariablesthat we plan to use. A variable is a dedicated

storage location used for a specific purpose, usually given a distinct name by the programmer. We
talked about these in the previous section, but didn’t give them a name. In this program, we have
several variables:

« avariable for the current maximum number found
« avariable for which number of the list we are currently examining, called the index
«+ avariable holding the current number being examined

In this case,we have few enough variables that we can hold them all in registers. In larger
programs, you have to put them in memory, and then move them to registers when you are ready
to use them. We will discuss how to do that later. When people start out programming, they
usually underestimate the number of variables they will need. People are not used to having to
think through every detail of a process, and therefore leave out needed variables in their first
programming attempts.

In this program, we are usirigebx as the location of the largest item we've fouptkdi is used

as theindexto the current data item we’re looking at. Now, let’s talk about what an index is.
When we read the information frodata_items , we will start with the first one (data item

number 0), then go to the second one (data item number 1), then the third (data item number 2),
and so on. The data item number is thdexof data_items . You'll notice that the first

instruction we give to the computer is:

movl $0, %edi

24

Chapter 3. Your First Programs

Since we are usingpedi as our index, and we want to start looking at the first item, we load
%edi with 0. Now, the next instruction is tricky, but crucial to what we're doing. It says:

movl data_items(,%edi,4), %eax

Now to understand this line, you need to keep several things in mind:

- data_items is the location number of the start of our number list.
« Each number is stored across 4 storage locations (because we declared.lbnging
+ %edi is holding O at this point

So, basically what this line does is say, "start at the beginning of data_items, and take the first
item number (becauggedi is 0), and remember that each number takes up four storage
locations." Then it stores that numberieax. This is how you write indexed addressing mode
instructions in assembly language. The instruction in a general form igrtbws:
BEGINNINGADDRESS(,%INDEXREGISTER,WORDSIZE)n our casalata_items was our
beginning addres%pedi was our index register, and 4 was our word size.

If you look at the numbers idata_items , you will see that the number 3 is nowdteax. If

%edi was set to 1, the number 67 would bedbeax, and if it was set to 2, the number 34 would

be in%eax, and so forth. Very strange things would happen if we used a number other than 4 as
the size of our storage locatioh$he way you write this is very awkward, but if you know what
each piece does, it’'s not too difficult. For more information about thistlee&ection called
Addressing Modes

Let’s look at the next line:

movl %eax, %ebx

We have the first item to look at storeddseax. Since it is the first item, we know it’s the biggest
one we've looked at. We store it tebx, since that's where we are keeping the largest number
found. Also, even thougimovl stands formove it actually copies the value, Seeax and%ebx
both contain the starting vald@.

Now we move into doop. A loop is a segment of your program that might run more than once.
We have marked the starting location of the loop in the symtaol loop . The reason we are
doing a loop is because we don’t know how many data items we have to process, but the
procedure will be the same no matter how many there are. We don’t want to have to rewrite our

9. The instruction doesn't really use 4 for the size of the storage locations, although looking at it that way
works for our purposes now. It's actually what's calleahaltiplier. basically, the way it works is that you start

at the location specified byata_items , then you addiedi *4 storage locations, and retrieve the number
there. Usually, you use the size of the numbers as your multiplier, but in some circumstances you’ll want to
do other things.

10. Also, thel in movl stands fomove longsince we are moving a value that takes up four storage locations.

25

Chapter 3. Your First Programs

program for every list length possible. In fact, we don’t even want to have to write out a
comparison for every list item. Therefore, we have a single section of code that we execute over
and over again for every elementdata_items

In the previous section, we outlined what this loop needed to do. Let’s review:

« Check to see if the current value being looked at is zero. If so, that means we are at the end of
our data and should exit the loop.

+ We have to load the next value of our list.

+ We have to see if the next value is bigger than our current biggest value.

- Ifitis, we have to copy it to the location we are holding the largest value in.
« Now we need to go back to the beginning of the loop.

Okay, so now lets go to the code. We have the beginning of the loop markesitavithoop
That is so we know where to go back to at the end of our loop. Then we have these instructions:

cmpl $0, %eax
je end_loop

Thecmpl instruction compares the two values. Here, we are comparing the number 0 to the
number stored ifoeax This compare instruction also affects a register not mentioned here, the
%eflags register. This is also known as the status register, and has many uses which we will
discuss later. Just be aware that the result of the comparison is stored in the status register. The
next line is a flow control instruction which saysjtonpto theend_loop location if the values

that were just compared are equal (that's whatetloéje means). It uses the status register to

hold the value of the last comparison. We ugedbut there are many jump statements that you
can use:

je

Jump if the values were equal
9

Jump if the second value was greater than the first Value
jge

Jump if the second value was greater than or equal to the first value

11. notice that the comparison is to see if fecondvalue is greater than the first. | would have thought it
the other way around. You will find a lot of things like this when learning programming. It occurs because
different things make sense to different people. Anyway, you'll just have to memorize such things and go on.

26

Chapter 3. Your First Programs
jl
Jump if the second value was less than the first value
jle
Jump if the second value was less than or equal to the first value
jmp
Jump no matter what. This does not need to be preceeded by a comparison.

In this case, we are jumpingdeax holds the value of zero. If so, we are done and we go to
loop_exit .2

If the last loaded element was not zero, we go on to the next instructions:

incl %edi
movl data_items(,%edi,4), %eax

If you remember from our previous discussi@tedi contains the index to our list of values in
data_items .incl increments the value @bedi by one. Then thenovl is just like the one we
did beforehand. However, since we incremertedii, it is getting the next value from the list.
Now, %eax has the next value to be tested. So, let’s test it!

cmpl %ebx, %eax
jle start_loop

Here we compare our current value, storeéoiax to our biggest value so far, stored%sebx. If
the current value is less or equal to our biggest value so far, we don’t care about it, so we just
jump back to the beginning of the loop. Otherwise, we need to record that value as the largest one:

movl %eax, %ebx
jmp start_loop

which moves the current value inebx, which we are using to store the current largest value,
and starts the loop over again.

Okay, so the loop executes until it reaches a 0, when it jump®poexit . This part of the

program calls the Linux kernel to exit. If you remember from the last program, when you call the
operating system (remember it’s like signaling Batman), you store the system call number in
%eax (1 for theexit call), and store the other values in the other registers. The exit call requires

12. The names of these symbols can be anything you want them to be, as long as they only contain letters
and the underscore charactgr(The only one that is forced istart , and possibly others that you declare

with .globl . However, if its a symbol you define and only you use, feel free to call it anything you want that

is adequately descriptive (remember that others will have to modify your code later, and will have to interpret
what your symbols mean).

27

Chapter 3. Your First Programs

that we put our exit status #ebx We already have the exit status there since we are @séhgy
as our largest number, so all we have to do is lg@dx with the number one and call the kernel
to exit. Like this:

movl $1, %eax
int 0x80

Okay, that was a lot of work and explanation, especially for such a small program. But hey,
you're learning a lot! Now, read through the whole program again, paying special attention to the
comments. Make sure that you understand what is going on at each line. If you don’t understand
a line, go back through this section and figure out what the line means.

You might also grab a piece of paper, and go through the program step-by-step, recording every
change to every register, so you can see more clearly what is going on.

Addressing Modes

In the Section calleata Accessing Methods Chapter 2ve learned the different types of
addressing modes available for use in assembly language. This section will deal with how those
addressing modes are represented in assembly language instructions.

The general form of memory address references is this:

ADDRESS_OR_OFFSET(%BASE_OR_OFFSET,%INDEX,MULTIPLIER)

All of the fields are optional. To calculate the address, simply perform the following calculation:

FINAL ADDRESS = ADDRESS OR_OFFSET + %BASE_OR_OFFSET + MULTIPLIER * %INDEX
ADDRESS OR_OFFSEMNdMULTIPLIER must both be constants, while the other two must be
registers. If one of the pieces is left out, it is just substituted with zero in the equation.

All of the addressing modes mentionediire Section calle®ata Accessing Methods Chapter
2 except immediate-mode can be represented in this fashion.

direct addressing mode

This is done by only using theDDRESS_OR_OFFSHYortion. Example:
movl ADDRESS, %eax
This loads»eax with the value at memory addreA®DRESS

28

Chapter 3. Your First Programs
indexed addressing mode

This is done by using theDDRESS_OR_OFFSHEINd thexsINDEXportion. You can use any
general-purpose register as the index register. You can also have a constant multiplier of 1, 2,
or 4 for the index register, to make it easier to index by bytes, double-bytes, and words. For
example, let's say that we had a string of bytesteisg_start and wanted to access the

third one (an index of 2 since we start counting the index at zero)¥amed held the value

2. If you wanted to load it int@seax you could do the following:

movl string_start(,%ecx,1), %eax

This starts astring_start , and addq * %ecx to that address, and loads the value into
%eax.

indirect addressing mode

Indirect addressing mode loads a value from the address indicated by a register. For
example, ifoeax held an address, we could move the value at that addréssitoby doing
the following:

mov!l (%eax), %ebx

base-pointer addressing mode

Base-pointer addressing is similar to indirect addressing, except that it adds a constant value
to the address in the register. For example, if you have a record where the age value is 4
bytes into the record, and you have the address of the recétddr you can retrieve the
age into%ebx by issuing the following instruction:

movl 4(%eax), %ebx

immediate mode

Immediate mode is very simple. It does not follow the general form we have been using.
Immediate mode is used to load direct values into registers or memory locations. For
example, if you wanted to load the number 12 isdeax, you would simply do the

following:

movl $12, %eax

Notice that to indicate immediate mode, we used a dollar sign in front of the number. If we
did not, it would be direct addressing mode, in which case the value located at memory
location 12 would be loaded intaeax rather than the number 12 itself.

29

Chapter 3. Your First Programs
Register addressing mode

Register mode simply moves data in or out of a register. In all of our examples, register
addressing mode was used for the other operand.

These addressing modes are very important, as every memory access will use one of these. Every
mode except immediate mode can be used as either the source or destination operand. Immediate
mode can only be a source operand.

In addition to these modes, there are also different instructions for different sizes of values to

move. For example, we have been usimgyl to move data a word at a time. in many cases, you

will only want to move data a byte at a time. This is accomplished by the instruatieb.

However, since the registers we have discussed are word-sized and not byte-sized, you cannot use
the full register. Instead, you have to use a portion of the register.

Take for instancé&oeax. If you only wanted to work with two bytes at a time, you could just use
%ax. Yaxis the least-significant half of thiéeax register, and is useful when dealing with
two-byte quantitiesxaxis further divided up int@oal and%ah %al is the least-significant byte
of %ax, and%ahis the most significant byt€.Loading a value int@seax will wipe out whatever
was in%al and%ah(and als®bax, since%axis made up of them). Similarly, loading a value into
either%al or %ahwill corrupt any value that was formerly #eax. Basically, it's wise to only

use a register for either a byte or a word, but never both at the same time.

For a more comprehensive list of instructions, Appeendix B

Review

Know the Concepts

« What does if mean if a line in the program starts with the '# character?

« What is the difference between an assembly language file and an object code file?
« What does the linker do?

« How do you check the result status code of the last program you ran?

« What is the difference betweemvl $1, %eax andmovl 1, %eax ?

« Which register holds the system call number?

13. When we talk about theignificabyte, it may be a little confusing. Let's take the number 5432. In that
number, 54 is the most significant half of that number and 32 is the least significant half. You can't quite
divide it like that for registers, since they operate on base 2 rather than base 10 numbers, but that’s the basic
idea. For more information on this topic, séhapter 10

30

Chapter 3. Your First Programs
What are indexes used for?
Why do indexes usually start at 0?

If I issued the commanohovl data_items(,%edi,4), %eax and data_items was address
3634 and»edi held the value 13, what address would you be using to moveYatx?

List the general-purpose registers.

What is the difference betweamvl andmovb?

What is flow control?

What does a conditional jump do?

What things do you have to plan for when writing a program?

Go through every instruction and list what addressing mode is being used for each operand.

Use the Concepts

Modify the first program to return the value 3.
Modify the maximum program to find the minimum instead.
Modify the maximum program to use the number 255 to end the list rather than the number O

Modify the maximum program to use an ending address rather than the number 0 to know when
to stop.

Modify the maximum program to use a length count rather than the number 0 to know when to
stop.

What would the instructiomovl _start, %eax do? Be specific, based on your knowledge
of both addressing modes and the meaningsadrt . How would this differ from the
instructionmovl $_start, %eax ?

Going Further

Modify the first program to leave off thiet instruction line. Assemble, link, and execute the
new program. What error message do you get. Why do you think this might be?

So far, we have discussed three approaches to finding the end of the list - using a special
number, using the ending address, and using the length count. Which approach do you think is
best? Why? Which approach would you use if you knew that the list was sorted? Why?

31

Chapter 3. Your First Programs

32

Chapter 4. All About Functions

Dealing with Complexity

In Chapter 3the programs we wrote only consisted of one section of code. However, if we wrote
real programs like that, it would be impossible to maintain them. It would be really difficult to get
multiple people working on the project, as any change in one part might adversely affect another
part that another developer is working on.

To assist programmers in working together in groups, it is necessary to break programs apart into
separate pieces, which communicate with each other through well-defined interfaces. This way,
each piece can be developed and tested independently of the others, making it easier for multiple
programmers to work on the project.

Programmers usieinctionsto break their programs into pieces which can be independently
developed and tested. Functions are units of code that do a defined piece of work on specified
types of data. For example, in a word processor program, | may have a function called
handle_typed_character which is activated whenever a user types in a key. The data the
function uses would probably be the keypress itself and the document the user currently has open.
The function would then modify the document according to the keypress it was told about.

The data items a function is given to process are callegarametersin the word processing
example, the key which was pressed and the document would be considered parameters to the
handle_typed_characters function. Much care goes into determining what parameters a
function takes, because if it is called from many places within a project, it is difficult to change if
necessary.

A typical program is composed of thousands of functions, each with a small, well-defined task to
perform. However, ultimately there are things that you cannot write functions for which must be
provided by the system. Those are calpgonitive functions they are the basics which

everything else is built off of. For example, imagine a program that draws a graphical user
interface. There has to be a function to create the menus. That function probably calls other
functions to write text, to write icons, to paint the background, calculate where the mouse pointer
is, etc. However, ultimately, they will reach a set of primitives provided by the operating system
to do basic line or point drawing. Programming can either be viewed as breaking a large program
down into smaller pieces until you get to the primitive functions, or building functions on top of
primitives until you get the large picture in focus.

33

Chapter 4. All About Functions
How Functions Work

Functions are composed of several different pieces:

function name

A function’s name is a symbol that represents the address where the function’s code starts.
In assembly language, the symbol is defined by typing the the function’s name followed by a
colon immediately before the function’s code. This is just like labels you have used for
jumping.

function parameters

A function’s parameters are the data items that are explicitly given to the function for
processing. For example, in mathematics, there is a sine function. If you were to ask a
computer to find the sine of 2, sine would be the function’s name, and 2 would be the
parameter. Some functions have many parameters, others have none. Function parameters
can also be used to hold data that the function wants to send back to the program.

local variables

Local variables are data storage that a function uses while processing that is thrown away it
returns. It’s kind of like a scratch pad of paper. You get a new piece of paper every time the
function is activated, and you have to throw it away when you are finished processing. Local
variables of a function are not accessible to any other function within a program.

static variables

Static variables are data storage that a function uses while processing that is not thrown
away afterwards, but is reused for every time the function’s code is activated. This data is
not accessible to any other part of the program. Static variables should not be used unless
absolutely necessary, as they can cause problems later on.

global variables

Global variables are data storage that a function uses for processing which are managed
outside the function. For example, a simple text editor may put the entire contents of the file
it is working on in a global variable so it doesn’t have to be passed to every function that
operates on it.Configuration values are also often stored in global variables.

1. Thisis generally considered bad practice. Imagine if a program is written this way, and in the next version
they decided to allow a single instance of the program edit multiple files. Each function would then have to
be modified so that the file that was being manipulated would be passed as a parameter. If you had simply
passed it as a parameter to begin with, most of your functions could have survived your upgrade unchanged.

34

Chapter 4. All About Functions
return address

The return address is an "invisible" parameter in that it isn’t directly used during the

function, but instead is used to find where the processor should start executing after the
function is finished. This is needed because functions can be called to do processing from
many different parts of your program, and the function needs to be able to get back to
wherever it was called from. In most languages, this parameter is passed automatically when
the function is called.

return value

The return value is the main method of transferring data back to the main program. Most
languages only allow a single return value for a function, although some allow multiple.

These pieces are present in most programming languages. How you specify each piece is
different in each one, however.

The way that the variables are stored and the parameters and return values are transferred by the
computer varies from language to language as well. This variance is known as a language’s
calling conventionbecause it describes how functions expect to get and receive data when they
are called

Assembly language can use any calling convention it wants to. You can even make one up
yourself. However, if you want to interoperate with functions written in other languages, you
have to obey their calling conventions. We will use the calling convention of the C programming
language because it is the most widely used for our examples, and then show you some other
possibilities.

Assembly-Language Functions using the C Calling Convention

You cannot write assembly-language functions without understanding how the comptatek’s
works. Each computer program that runs uses a region of memory called the stack to enable
functions to work properly. Think of a stack as a pile of papers on your desk which can be added
to indefinitely. You generally keep the things that you are working on toward the top, and you
take things off as you are finished working with them.

Your computer has a stack, too. The computer’s stack lives at the very top addresses of memory.
You can push values onto the top of the stack through an instruction galiét , which pushes

either a register or value onto the top of the stack. Well, we say it's the top, but the "top" of the
stack is actually the bottom of the stack’s memory. Although this is confusing, the reason for it is

2. A conventionis a way of doing things that is standardized, but not forcibly so. For example, it is a
convention for people to shake hands when they meet. If | refuse to shake hands with you, you may think |
don't like you. Following conventions is important because it makes it easier for others to understand what
you are doing.

35

Chapter 4. All About Functions

that when we think of a stack of anything - dishes, papers, etc. - we think of adding and removing
to the top of it. However, in memory the stack starts at the top of memory and grows downward
due to other architectural considerations. Therefore, when we refer to the "top of the stack”
remember it's at the bottom of the stack’s memory. When we are referring to the top or bottom of
memory, we will specifically say so. You can also pop values off the top using an instruction
calledpopl .

When we push a value onto the stack, the top of the stack moves to accomodate the addition
value. We can actually continually push values onto the stack and it will keep growing further and
further down in memory until we hit our code or data. So how do we know where the current
"top" of the stack is? The stack regist&esp, always contains a pointer to the current top of the
stack, wherever it is.

Every time we push something onto the stack withhl , %esp gets subtracted by 4 so that it
points to the new top of the stack (remember, each word is four bytes long, and the stack grows
downward). If we want to remove something from the stack, we simply useotsie instruction,
which adds 4 t@sesp and puts the previous top value in whatever register you speqfietl

andpopl each take one operand - the register to push onto the stapldiar , or receive the

data that is popped off the stack faopl .

If we simply want to access the value on the top of the stack, we can simply ugethe
register. For example, the following code moves whatever is at the top of the staékeiato

movl (%esp), %eax

If we were to just do

movl %esp, %eax

%eax would just hold the pointer to the top of the stack rather than the value at the top. Putting
%esp in parenthesis causes the computer to go to indirect addressing mode , and therefore we get
the value pointed to byeesp. If we want to access the value right below the top of the stack, we

can simply do

movl 4(%esp), Yeax
This uses the base pointer addressing mode tfee8ection calle®ata Accessing Methodss

Chapter 2which simply adds 4 t@cesp before looking up the value being pointed to.

In the C language calling convention, the stack is the key element for implementing a function’s
local variables, parameters, and return address.

Before executing a function, a program pushes all of the parameters for the function onto the
stack in the reverse order that they are documented. Then the program isalliesi@struction
indicating which function it wishes to start. Thell instruction does two things. First it pushes

36

Chapter 4. All About Functions

the address of the next instruction, which is the return address, onto the stack. Then it modifies
the instruction pointer to point to the start of the function. So, at the time the function starts, the
stack looks like this:

Parameter #N

Parameter 2
Parameter 1
Return Address <--- (%esp)

Now the function itself has some work to do. The first thing it does is save the current base
pointer register, %ebp, by doingpushl %ebp. The base pointer is a special register used for
accessing function parameters and local variables. Next, it copies the stack pouasbiptoy
doingmovl %esp, %ebp. This allows you to be able to access the function parameters as fixed
indexes from the base pointer. You may think that you can use the stack pointer for this. However,
during your program you may do other things with the stack such as pushing arguments to other
functions. Copying the stack pointer into the base pointer at the beginning of a function allows
you to always know where in the stack your parameters are (and as we will see, local variables
to0). So, at this point, the stack looks like this:

Parameter #N <--- N*4+4(%ebp)

Parameter 2 <--- 12(%ebp)

Parameter 1 <--- 8(%ebp)

Return Address <--- 4(%ebp)

Old %ebp <--- (%esp) and (%ebp)

This also shows how to access each parameter the function has.

Next, the function reserves space on the stack for any local variables it needs. This is done by
simply moving the stack pointer out of the way. Let's say that we are going to need 2 words of
memory to run a function. We can simply move the stack pointer down 2 words to reserve the

space. This is done like this:

subl $8, %esp

This subtracts 8 froreesp (remember, a word is four bytes long$o now, we have 2 words for
local storage. Our stack now looks like this:

Parameter #N <--- N*4+4(%ebp)

Parameter 2 <--- 12(%ebp)

3. Just a reminder - the dollar sign in front of the eight indicates immediate mode addressing, meaning that
we load the number 8 int@esp rather than the value at address 8.

37

Chapter 4. All About Functions

Parameter 1 <--- 8(%ebp)
Return Address <--- 4(%ebp)
Old %ebp <--- (%ebp)

Local Variable 1 <--- -4(%ebp)
Local Variable 2 <--- -8(%ebp) and (%esp)

So we can now access all of the data we need for this function by using base pointer

addressing using different offsets franebp %ebpwas made specifically for this purpose, which

is why it is called the base pointer. You can use other registers for base pointer addressing, but the
x86 architecture makes using ttxebp register a lot faster.

Global variables and static variables are accessed just like we have been accessing memory in
previous chapters. The only difference between the global and static variables is that static
variables are only used by the function, while global variables are used by many functions.
Assembly language treats them exactly the same, although most other languages distinguish
them.

When a function is done executing, it does two things. First, it stores it’s return valdesia

Second, it returns control back to wherever it was called from. Returning control is done using
theret instruction, which pops whatever value is at the top of the stack, and sets the instruction
pointer to that value. However, in our program right now, the top of the stack isn’t pointing to the
return address. Therefore, we have to restore the stack pointer to what it was. So to terminate the
program, you have to do the following:

movl %ebp, %esp
popl %ebp
ret

This restores the %ebp register and moves the stack pointer back to pointing at the return address.
At this point, you should consider all local variables to be disposediltd. reason is that after

you move the stack pointer, future stack operations will overwrite everything you put there.
Therefore, you should never save the address of a local variable past the life of the function it was
created in, or else it will be overwritten on future pushes. Control is now handed back to the

calling program or function, which can then exam#aeax for the return value. The calling

program also needs to pop off all of the parameters it pushed onto the stack in order to get the
stack pointer back where it was (you can also simply add 4*number of paramegespaising

theadd! instruction, if you don’t need the values of the parameters anymore).

38

Chapter 4. All About Functions

Destruction of Registers

When you call a function, you should assume that everything currently in your
registers will be wiped out. The only register that is guaranteed to be left with the
value it started with is %ebp. %eax is guaranteed to be overwritten, and the others
likely are. If there are registers you want to save before calling a function, you need to
save them by pushing them on the stack before pushing the function’s paramters. You
can then pop them back off in reverse order after popping off the parameters. Even if
you know a function does not overwrite a register you should save it, because future
versions of that function may. Other calling conventions may be different. For
example, other calling conventions may place the burden on the function to save any
registers it uses.

Extended Specification: Details of the calling convention (also known as the ABI, or
Application Binary Interface) is available online. We have oversimplified and left out several
important pieces to make this simpler for new programmers. For full details, you should
check out the documents available at http://www.linuxbase.org/spec/refspecs/ Specifically,
you should look for the System V Application Binary Interface - Intel386 Architecture
Processor Supplement.

A Function Example

Let’s take a look at how a function call works in a real program. The function we are going to
write is thepower function. We will give the power function two parameters - the number and

the power we want to raise it to. For example, if we gave it the paramters 2 and 3, it would raise 2
to the power of 3, or 2*2*2, giving 8. In order to make this program simple, we will only allow
numbers 1 and greater.

The following is the code for the complete program. As usual, an explanation follows:

#PURPOSE: Program to illustrate how functions work

This program will compute the value of
2"3 + 572
#

#Everything in the main program is stored in registers,
#so the data section doesn’t have anything.
.section .data

.section .text

39

Chapter 4. All About Functions

.globl _start
_start:
pushl $3 #push second argument
pushl $2 #push first argument
call power #call the function
addl $8, %esp #move the stack pointer back
pushl %eax #save the first answer before
#calling the next function
pushl $2 #push second argument
pushl $5 #push first argument
call power #call the function
addl $8, %esp #move the stack pointer back
popl %ebx #The second answer is already
#in %eax. We saved the
#first answer onto the stack,
#s0 now we can just pop it
#out into %ebx
addl %eax, %ebx #add them together
#result in %ebx
movl $1, %eax #exit (%ebx is returned)
int $0x80

#PURPOSE: This function is used to compute

the value of a number raised to
a power.

#

#INPUT: First argument - the base number
Second argument - the power to
raise it to
#

#OUTPUT: Will give the result as a return value
#
#NOTES: The power must be 1 or greater

#

#VARIABLES:

%ebx - holds the base number
%ecx - holds the power

#

40

Chapter 4. All About Functions

-4(%ebp) - holds the current result

#

%eax is used for temporary storage

#

type power, @function

power:

pushl %ebp #save old base pointer

movl %esp, %ebp #make stack pointer the base pointer
subl $4, %esp #get room for our local storage

movl 8(%ebp), %ebx #put first argument in %eax
movl 12(%ebp), %ecx #put second argument in %ecx

movl %ebx, -4(%ebp) #store current result

power_loop_start:

cmpl $1, %ecx #if the power is 1, we are done
je end_power

movl -4(%ebp), %eax #move the current result into %eax
imul %ebx, %eax #multiply the current result by

#the base number
movl %eax, -4(%ebp) #store the current result

decl %ecx #decrease the power
jmp power_loop_start #run for the next power

end_power:

movl -4(%ebp), %eax #return value goes in %eax
movl %ebp, %esp #restore the stack pointer
popl %ebp #restore the base pointer
ret

Type in the program, assemble it, and run it. Try calling power for different values, but remember
that the result has to be less than 256 when it is passed back to the operating system. Also try
subtracting the results of the two computations. Try adding a third call tpcther function, and

add it’s result back in.

The main program code is pretty simple. You push the arguments onto the stack, call the
function, and then move the stack pointer back. The result is stosdadr Note that between
the two calls tgpower , we save the first value onto the stack. This is because the only register

41

Chapter 4. All About Functions

that is guaranteed to be savedidsbp. Therefore we push the value onto the stack, and pop the
value back off after the second function call is complete.

Let's look at how the function itself is written. Notice that before the function, there is
documentation as to what the function does, what it's arguments are, and what it gives as a return
value. This is useful for programmers who use this function. This is the function’s interface. This
lets the programmer know what values are needed on the stack, and what withbaxat the

end.

We then have the following line:
type power,@function

This tells the linker that the symbpbwer should be treated as a function. This isn’t useful now,
but it will be when you start building larger programs that run multiple f@&sapter &as

additional information on what this is used for. Since this program is only in one file, it would
work just the same with this left out, however, it is good practice. After that, we define the value
of thepower label:

power:

As mentioned previously, this defines the symbmker to be the address where the instructions
following the label begin. This is howall power works. It transfers control to this spot of the
program. The difference betweeall andjmp is thatcall also pushes the return address onto
the stack so that the function can return, whilejthe does not.

Next, we have our instructions to set up our function:

pushl %ebp
movl %esp, %ebp
subl $4, %esp

At this point, our stack looks like this:

Base Number <--- 12(%ebp)

Power <--- 8(%ebp)
Return Address <--- 4(%ebp)
Old %ebp <--- (%ebp)

Current result <--- -4(%ebp) and (%esp)

Although we could use a register for temporary storage, this program uses a local variable in
order to show how to set it up. Often times there just aren’t enough registers to store everything,
so you have to offload them into a local variable. Other times, your function will need to call
another function and send it a pointer to some of your data. You can’t have a pointer to a register,
S0 you have to store it in a local variable in order to send a pointer to it.

42

Chapter 4. All About Functions

Basically, what the program does is start with the base number, and store it both as the multiplier
(stored in%ebx) and the current value (stored in -4(%ebp)). It also has the power stoteetin

It then continually multiplies the current value by the multiplier, decreases the power, and leaves
the loop if power gets down to 1.

By now, you should be able to go through the program without help. The only things you should
need to know is thatul does integer multiplication and stores the result in the second operand,
anddecl decreases the given register by 1.

Need to have defined operand a long time before now. Need to differentiate operands and parameters by the
fact that operands are for instructions and parameters are for functions.

A good project to try now is to extend the program so it will return the value of a number if the
power is O (hint, anything raised to the zero power is 1). Keep trying. If it doesn’t work at first, try
going through your program by hand with a scrap of paper, keeping track of wetyeand

%esp are pointing, what is on the stack, and the values in each register.

Recursive Functions

This next part was just cut out from the previous section. | decided it was too much without a formal
introduction to functions. Anyway, it needs to be molded to fit this chapter.

The next program will stretch your brains even more. The program will compufadtaial of

a number. A factorial is the product of a number and all the numbers between it and one. For
example, the factorial of 7 is 7*6*5*4*3*2*1, and the factorial of 4 is 4*3*2*1. Now, one thing
you might notice is that the factorial of a number is the same as the product of a number and the
factorial just below it. For example, the factorial of 4 is 4 times the factorial of 3. The factorial of
3 is 3 times the factorial of 2. 2 is 2 times the factorial of 1. The factorial of 1 is 1. This type of
definition is called a recursive definition. That means, the definition of the factorial function
includes the factorial funtion. However, since all functions need to end, a recursive definition
must include dase caseThe base case is the point where recursion will stop. Without a base
case, the function would go on forever. In the case of the factorial, it is the number 1. When we
hit the number 1, we don’t run the factorial again, we just say that the factorial of 1 is 1. So, let’'s
run through what we want the code to look like for our factorial funcfion:

1. Examine the number
2.ls the number 1?
3.1f so, the answer is one

4. Otherwise, the answer is the number times the factorial of the number minus one

4. Thisis a function, not a program, because it is called more than once (specifically, its called from itself)

43

Chapter 4. All About Functions

This presents a problem. Previously, we named our storage locations in memory where we held
the values we were working oddta_items in the first example). This program, however, will

call itself before it is finished. Therefore, if we store our data in a register or fixed location in
memory, it will be overwritten when we call the function from itself. When the second function
returns, all of our data will be overwritten with the data from the call that just returned. To get
around this, we use a section of memory calledsiaek The stack is like a stack of dishes. You

put one dish at a time on top, and then you take the dishes off in the reverse order (the last dish
you put on the stack becomes the first dish you take off). In your computer, there is a stack of
data, that you can put stuff on the top and take stuff off the top. The way this helps us with
functions, is that whenever we call a function, we can put the stuff we’re working with on the
stack, call the function, and then afterwards take it back off. We just have to be sure that we take
off everything we put on, or the functions that calls us will be confused, because then they won't
know where on the stack their stuff is. We would be leaving our dishes on top instead of cleaning
up after ourselves. Confused yet? Let's take a look at some real code to see how this works.

#PURPOSE - Given a number, this program computes the

factorial. For example, the factorial of
3is3*2*1 or 6. The factorial of
4 is 4 *3 *2 * 1, or 24, and so on.
#

#This program shows how to call a function. You
#call a function by first pushing all the arguments,
#then you call the function, and the resulting

#ivalue is in %eax. The program can also change the
#passed parameters if it wants to.

.section .data
#This program has no global data

.section .text

.globl _start
.globl factorial #this is unneeded unless we want to share
#this function among other programs
_start:
pushl $4 #The factorial takes one argument - the number
#we want a factorial of. So, it gets pushed
call factorial #run the factorial function
popl %ebx #always remember to pop anything you pushed
movl %eax, %ebx #factorial returns the answer in %eax, but we

#want it in %ebx to send it as our exit status

44

Chapter 4. All About Functions

movl $1, %eax #call the kernel's exit function
int $0x80

#This is the actual function definition

type factorial,@function

factorial:

pushl %ebp #standard function stuff - we have to restore
#ebp to its prior state before returning,
#so we have to push it

movl %esp, %ebp #This is because we don’'t want to modify
#the stack pointer, so we use %ebp instead.
#This is also because %ebp is more flexible

movl 8(%ebp), %eax #This moves the first argument into %eax
#4(%ebp) holds the return address, and
#8(%ebp) holds the address of the first parameter

cmpl $1, %eax #If the number is 1, that is our base case, and
#we simply return (1 is already in %eax as the
#return value)

je end_factorial

decl %eax #otherwise, decrease the value

pushl %eax #push it for our next call to factorial

call factorial #call factorial

popl %ebx #this is the number we called factorial with

#we have to pop it off, but we also need

#it to find the number we were called with
incl %ebx #(which is one more than what we pushed)
imul %ebx, %eax #multiply that by the result of the last

#call to factorial (stored in %eax)

#the answer is stored in %eax, which is

#good since that's where return values

#go.
end_factorial;
movl %ebp, %esp #standard function return stuff - we
popl %ebp #have to restore %ebp and %esp to where
#they were before the function started
ret #return to the function (this pops the return value, too)

and assemble, link, and run it with

45

Chapter 4. All About Functions

as factorial.s -0 factorial.o
Id factorial.o -o factorial
Ufactorial

echo $?

which should give you the value 24. 24 is the factorial of 4, you can test it out yourself with a
calculator-4*3*2*1=24.

I’'m guessing you didn’t understand the whole code listing. Let’s go through it a line at a time to
see what is happening.

_start:
pushl $4
call factorial

Okay, this program is intended to compute the factorial of the number 4. When programming
functions, you are supposed to put the parameters of the function on the top of the stack right
before you call it. A function’parametersare the data that you want the function to work with.

In this case, the factorial function takes 1 parameter, the number you want the factorial of. For
any function you call, though, you have to get the parameters in the right order, or else the
program will be operating on the wrong numbers. In this case, we have only one parameter, so
it's not a problem.

Thepushl instruction puts the given value at the top of the stack. The next instructithn, is a
lot like thejmp instruction. The difference is thaall will put the address of the next instruction
on top of the stack first, so the factorial function knows where to go when its finished.

Next we have the lines

popl %ebx

movl %eax, %ebx
movl $1, %eax

int $0x80

This takes place aftdactorial has finished and computed the factorial of 4 for us. Now we
have to clean up the stack. Thepl instruction removes the top item from the stack, and places

it in the given register. Since the factorial function isn’t changing any of our parameters, we don’t
have a use for it, but you should always clean up the stack after messing with it. The next
instruction moves$oeax to %ebx. What's in%eax? It isfactorial s return value A return value

is a value that isn’t in the function’s arguments that needs to be returned. In our case, itis the
value of the factorial function. With 4 as our parameter, 24 should be our return value. Return

46

Chapter 4. All About Functions

values are always stored 9seax.> However, Linux requires that the program’s exit status be
stored int%ebx, Nnot%eax, SO we have to move it. Then we do the standard exit syscall.

The nice thing about thiactorial function is that

« Other programmers don’t have to know anything about it except it's arguments to use it

« It can be called multiple times and it always knows how to get back to where it was since call
pushes the location of the instruction to return to

These are the main advantages of functions. Larger programs also use functions to break down
complex pieces of code into smaller, simpler ones. In fact, almost all of programming is writing
and calling functions. Let’s look at hofactorial is implemented.

Before the function starts, we have

type factorial,@function
factorial:

The.type directive tells the linker thahctorial is a function. This isn’t really needed unless
we were usindactorial in other programs. We have included it for completeness. The line
that saydactorial: gives the symbadiactorial the storage location of the next instruction.
That’s howcall knew where to go when we sagdll factorial . The first instructions of the
function are

pushl %ebp
movl %esp, %ebp

The registepoebpis the only register that is saved by the function itself. A function can use any
other register without saving it. The calling program is responsible for saving any other registers
it needs. The calling program should push them onto the stack before pushing the function’s
parameterxebpis then set to the value @besp. %espis the value of thestack pointer The

stack pointer contains the memory location of the last item pushed onto the%tagds

modified with every push, pop, or call instruction. We need the val@gesb to find our

arguments, since they were just pushed onto the stack. Therefore, we save the starting value of
%esp into %ebpin order to always know where the stack started when the program was called,
even if we have to push things later on. That way we always know where our parameters are.

The next instruction is

5. Different operating systems and platforms have different ways of calling functions. You actually can
call functions any way you want, as long as you aren't calling functions written by other people or in other
languages. However, it's best to stick with the standard, because it makes your code more readable, and if
you ever need to mix languages, you are ready. The ways functions are called is knowi\Bs$, tivhich

stands for Application Binary Interface.

47

Chapter 4. All About Functions

movl 8(%ebp), %eax

This odd instruction moves the value at the memory locatehp + 8 into the%eax register.

What'’s in locatiorteebp + 8? Well, let’s think back. What is iflebp? The current stack position.
What have we put on the stack? We've put the number we want to find the factorial of (with
pushl $4), the address of the where we wanted to return to after the function was over (this
happens with theall factorial), and then the old value @bebp. Each of these values is four
locations big. So%ebp holds the location of the olehebp, %ebp+ 4 will be the return address,
and%ebp + 8 will be the number we want to find the factorial of. So, this line moves the function
parameter int@oeax. This will be 4 the first time through, then 3 the next time, then 2, then 1.

Next, we check to see if we've hit our base case (a parameter of 1). If so, we jump to the
instruction labele@nd_factorial , Where it will be returned (it's already #eax, which we
mentioned earlier is where you put return values). That is accomplished by the lines

cmpl $1, %eax
je end_factorial

If it's not our base case, what did we say we would do? We would cafbtherial function
again with our parameter minus one. So, first we decr&ase by one with

decl %eax

decl stands for decrement. It subtracts 1 fregaax. incl stands for increment, and it adds 1.
After decrementingoeax, we push it onto the stack, since it’'s going to be the parameter of the
next function call. And then we cafthctorial again!

pushl %eax
call factorial

Okay, now we've calledactorial . One thing to remember is that after a function call, we can
never know what the registers are (exc&gsp and%ebp). So even though we had the value we

were called with irteeax, it's not there any more. So, we can either pull it off the stack from the
same place we got it the first time @®oebp)) or, since we have to pop the value we called the
function with anyway, we can just increment that by one. So, we do

popl %ebx
incl %ebx

Now, we want to multiply that number with the result of the factorial function. If you remember
our previous discussion, the result of functions are lefbéax. So, we need to multiplyeebx
with %eax. This is done with the command

imul %ebx, %eax

48

Chapter 4. All About Functions

This also stores the result #eax, which is exactly where we want the return value for the
function to be! Now we just need to leave the function. If you remember, at the start of the
function, we pusheébebp, and movedoesp into %ebp. Now we reverse the operation:

end_factorial:
movl %ebp, %esp
popl %ebp

Now we're already to return, so we issue the following command

ret

This pops the top value off of the stack, and then jumps to it. If you remember our discussion
aboutcall , we said thatall first pushed the address of the next instruction onto the stack
before it jumped to the beginning of the function. So, here we pop it back off so we can return
there. The function is done, and we have our answer!

Like our previous program, you should look over the program again, and make sure you know
what everything does, looking back through the section for the explanation of anything you don’t
understand. Then, take a piece of paper, and go through the program step-by-step, keeping track
of what the values of the registers are at each step, and what values are on the stack. Doing this
should deepen your understanding of what is going on.

Review

Know the Concepts

« What are primitives?

« What are calling conventions?

« What is the stack?

« How dopush andpop affect the stack? What registers do they affect?
« What are local variables and what are they used for?

- What are2sebp and%esp used for?

- What is flow control?

49

Chapter 4. All About Functions
Use the Concepts

- Write a function calledquare which receives 1 argument and returns the square of that
argument.

« Write a program to test yowgquare function.

« Convert the maximum program giventime Section calle#inding a Maximum Value
Chapter 30 that it is a function which takes a pointer to several values and returns their
maximum. Write a program that calls maximum with 3 different lists, and returns the result of
the last one as the program’s exit status code.

« Thecall instruction pushes the location of the next instruction onto the stack, and then jumps
to the subroutine. Rewrite the code in this chapter to not useathe function, but to do these
explicitly.

« Try to write the program without usingt either.

+ Explain the problems that would arise without a standard calling convention.

Going Further

- Do you think it's better for a system to have a large set of primitives or a small one, assuming
that the larger set can be written in terms of the smaller one?

- The factorial function can be written non-recursively. Do so.

- Find an application on the computer you use regularly. Try to locate a specific feature, and
practice breaking that feature out into functions. Define the function interfaces between that
feature and the rest of the program.

« Come up with your own calling convention. Rewrite the programs in this chapter using it. An
example of a different calling convention would be to pass paramters in registers rather than
the stack, to pass them in a different order, to return values in other registers or memory
locations. Whatever you pick, be consistent and apply it throughout the whole program.

+ Can you build a calling convention without using the stack? What limitations might it have?

« What test cases should we use in our example program to check to see if it is working properly?

50

Chapter 5. Dealing with Files

A lot of computer programming deals with files. After all, when we reboot our computers, the
only thing that remains from previous sessions are what has been put on disk. Data which is
stored in files is callegersistentata, because it persists between sessions.

The UNIX File Concept

Each operating system has it's own way of dealing with files. However, the UNIX method, which

is used on Linux, is the simplest and most universal. UNIX files, no matter what program created
them, can all be accessed as a stream of bytes. When you access a file, you start by opening it by
name. The operating system then gives you a number, cafleddescriptor which you use to

refer to the file until you are through with it. You can then read and write to the file using its file
descriptor. When you are done reading and writing, you then close the file, which then makes the
file descriptor useless.

In our programs we will use the following system calls to deal with files:

1. Tell Linux the name of the file to open, and what you want to do with it (read, write, both
read and write, create it if it doesn't exist, etc.). This is handled witloflea system call,
which takes a filename, a number representing your read/write intentions, and a permission
set as its parameters. Having the number %&ax when you signal the interrupt will
indicate theopen system call to Linux. The storage location of the first character of the
filename should be stored #ebx. The read/write intentions, represented as a number,
should be stored ifecx. For now, use 0 for files you want to read from, and 03101 for files
you want to write to. This will be explained in more detailtire Section calledruth,
Falsehood, and Binary Numbeirs Chapter 10Finally, the permission set should be stored
as a number ifoedx. If you are unfamiliar with UNIX permissions, just useeé for the
permissions.

2. Linux will then return to you dile descriptorin %eax, which is a number that you use to
refer to this file throughout your program.

3. Next you will operate on the file doing reads and/or writes, each time giving Linux the file
descriptor you want to usesad is system call 3, and to call it you need to have the file
descriptor inebx, the address of a buffer for storing the data that is read, and the size of the
buffer. Buffers will be explained belowead will return with either the number of characters
read from the file, or an error code. Error codes can be distinguished because they are always
negative numbersvrite is system call 4, and it requires the same parameters asdthe
system call, except that the buffer should already be filled with the data to write out. The
write system call will give back the number of bytes writtertbeax or an error code.

51

Chapter 5. Dealing with Files

4. When you are through with them, you then tell Linux to close your file. Afterwards, your
file descriptor is no longer valid. This is done usirigse , system call 6. The only
parameter telose is the file descriptor, which is placed %ebx.

Buffers and .bss

In the previous section we mentioned buffers without explaining what they were. A buffer is a
continuous block of bytes used for bulk data transfer. When you request to read a file, the
operating system needs to have a place to store the data it reads. That place is called a buffer.
Usually, buffers are only used temporarily, while the data is transformed to another form. For
example, let’s say that you want to read in a single line of text from a file. However, you do not
know how long that line is. Therefore, you will simply read a large number of bytes from the file
into a buffer, look for the end-of-line character, copy that to another location, and start looking for
the next line.

Another thing to note is that buffers are a fixed size, set by the programmer. So, if you want to
read in data 500 bytes at a time, you sendréla@ system call the address of a 500-byte unused
location, and send it the number 500 so it knows how big it is. You can make it smaller or bigger,
depending on your application needs.

To create a buffer, you need to either reserve static or dynamic storage. Static storage is what we
have talked about so far, storage locations declared usimg or .byte directives. Dynamic
storage will be discussed the Section calle@Getting More Memoryn Chapter 9Now, there are
problems with declaring buffers usingyte . First, it is tedious to type. You would have to type

500 numbers after théyte declaration, and they wouldn’t be used for anything but to take up
space. Second, it uses up space in the executable. In the examples we've used so far, it doesn’t
use up too much, but that can change in larger programs. In order to get around this if you want
500 bytes you have to type in 500 numbers and it wastes 500 bytes in the executable. There is a
solution to both of these. So far, we have discussed two program sectiorsxtheand the

.data sections. There is another section callest . This section is like the data section, except
that it doesn’t take up space in the executable. This section can reserve storage, but it can'’t
initialize it. In the.data section, you could reserve storage and set it to an initial value. In the
.bss section, you can't set an initial value. This is useful for buffers because we don’'t need to
initialize them anyway, we just need to reserve storage. In order to do this, we do the following
commands:

.section .bss
dcomm my_buffer, 500

52

Chapter 5. Dealing with Files

This will create a symboy_buffer , that refers to a 500-byte storage location that we can use
as a buffer. We can then do the following, assuming we have opened a file for reading and have
placed the file descriptor ¥bebx:

movl $my_buffer, %ecx
movl 500, %edx

movl 3, %eax

int $0x80

which will read up to 500 bytes into our buffer. In this example, | placed a dollar sign in front of
my_buffer . Remember that the reason for this is that without the dollar signbuffer is

treated as a memory location, and is accessed in direct addressing mode. Instead of moving the
address ofy_buffer into %ecx, without the dollar sign it would move the first word of the data
contained there int&ecx. Remember the dollar sign makes the assembler use immediate mode
addressing, so thaty buffer is treated as a value, not a storage location. The address itself,
rather than what is stored there, gets movethéox.

Standard and Special Files

You might think that programs start without any files open by default. This is not true. Linux
programs always have at least three open file descriptors when they begin. They are:

STDIN
This is thestandard inputlt is a read-only file, and usually represents your keybddiuis
is always file descriptory 0.

STDOUT
This is thestandard outputlt is a write-only file, and usually represents your screen
display. This is always file descriptor 1.

STDERR

This is yourstandard error It is a write-only file, and usually represents your screen
display. Most regular processing output goeST®@OUT but any error messages that come
up in the process go ®TDERRThis way, if you want to, you can split them up into separate
places. This is always file descriptor 2.

1. In Linux, almost everything is a "file". Your keyboard input is considered a file, and so is your screen
display.

53

Chapter 5. Dealing with Files

Any of these "files" can be redirected from or to a real file, rather than a screen or a keyboard.
This is outside the scope of this book, but any good book on the UNIX command-line will
describe it in detalil.

Notice that many of the files you write to aren't files at all. UNIX-based operating systems treat

all input/output systems as files. Network connections are treated as files, your serial port is
treated like a file, your audio devices are treated as files, even your hard drive can be read and
written to like a file. Communication between processes is usually done through files called
pipes. Some of these files have different methods of opening and creating them than regular files,
but they can all be read from and written to using the standadl andwrite system calls.

Using Files in a Program

We are going to write a simple program to illustrate these concepts. The program will take two
files, and read from one, convert all of its lower-case letters to upper-case, and write to the other
file. Before we do so, let’s think about what we need to do to get the job done:

« Have a function that takes a block of memory and converts it to upper-case. This function
would need an address of a block of memory and its size as parameters.

« Have a section of code that repeatedly reads in to a buffer, calls our conversion function on the
buffer, and then writes the buffer back out to the other file.

« Begin the program by opening the necessary files.

Notice that I've specified things in reverse order that they will be done. That’s a useful trick in
writing complex programs - first decide the meat of what is being done. In this case, it's
converting blocks of characters to upper-case. Then, you think about what all needs to happen to
get that done. In this case, you have to open files, and continually read and write blocks to disk.
One of the keys of programming is continually breaking down problems into smaller and smaller
chunks until it's small enough that you can easily solve the proBlem.

You may have been thinking that you will never remember all of these numbers being thrown at
you - the system call numbers, the interrupt number, etc. In this program we will also introduce a
new directive,equ which should help outequ allows you to assign names to numbers. For
example, if you didequ LINUX_SYSCALL, 0x80 , any time after that you wrote

LINUX_SYSCALL, the assembler would substitae80 for that. So now, you can writiet
$LINUX_SYSCALL, which is much easier to read, and much easier to remember. Coding is
complex, but there are a lot of things we can do like this to make it easier.

2. Maureen Sprankle’®roblem Solving and Programming Concetsin excellent book on the problem-
solving process applied to computer programming.

54

Chapter 5. Dealing with Files

Here is the program. Note that we have more labels than we use for jumps, but some of them are
there for clarity and consistency. Try to trace through the program and see what happens in
various cases. An in-depth explanation of the program will follow.

#PURPOSE: This program converts an input file to an output file with all
letters converted to uppercase.
#

#PROCESSING: 1) Open the input file
2) Open the output file
4) While we're not at the end of the input file
a) read part of the file into our piece of memory
b) go through each byte of memory
if the byte is a lower-case letter, convert it to uppercase
c) write the piece of memory to the output file

HOoHHH HH

.section .data #we actually don’'t put anything in the data section in
#this program, but it's here for completeness

HHAHHHHCONSTANT St

#system call numbers
.equ OPEN, 5

.equ WRITE, 4

.equ READ, 3

.equ CLOSE, 6

.equ EXIT, 1

#options for open (look at /usrf/include/asm/fcntl.h for

various values. You can combine them
by adding them)
.equ O_RDONLY, 0 #0Open file options - read-only

.equ O_CREAT_WRONLY_TRUNC, 03101 #Open file options - these options are:
#CREAT - create file if it doesn't exist
#WRONLY - we will only write to this file
#TRUNC - destroy current file contents, if any ex-
ist

#system call interrupt
.equ LINUX_SYSCALL, 0x80

#end-of-file result status
.equ END_OF_FILE, O #This is the return value of read() which
#means we've hit the end of the file

55

Chapter 5. Dealing with Files
HiHHHHHBUFFER SHtHHHHHHH

.section .bss

#This is where the data is loaded into from

#the data file and written from into the output file. This
#should never exceed 16,000 for various reasons.

.equ BUFFER_SIZE, 500

dcomm BUFFER_DATA, BUFFER_SIZE

#H##H#HPROGRAM CODE###
.section .text

#STACK POSITIONS

.equ ST_SIZE_RESERVE, 8

.equ ST _FD_IN, O

.equ ST_FD_OUT, 4

.equ ST_ARGC, 8 #Number of arguments
.equ ST_ARGV_O0, 12 #Name of program
.equ ST_ARGV_1, 16 #lnput file name

.equ ST_ARGV_2, 20 #Output file name

.globl _start
_start:

###INITIALIZE PROGRAM###

subl $ST_SIZE_RESERVE, %esp #Allocate space for our pointers on the stack
movl %esp, %ebp

open_files:

open_fd_in:

##OPEN INPUT FILE###

movl ST_ARGV_1(%ebp), %ebx #input filename into %ebx

movl $O_RDONLY, %ecx #read-only flag

movl $0666, %edx #this doesn’t really matter for reading
movl $OPEN, %eax #open syscall

int $LINUX_SYSCALL #call Linux

store_fd_in:

movl %eax, ST_FD_IN(%ebp) #save the given file descriptor
open_fd_out:

##OPEN OUTPUT FILE###
movl ST_ARGV_2(%ebp), %ebx #output filename into %ebx

56

Chapter 5. Dealing with Files

movl $O_CREAT_WRONLY_TRUNC, %ecx #flags for writing to the file

movl $0666, %edx #mode for new file (if it's created)
movl $OPEN, %eax #open the file
int $LINUX_SYSCALL #call Linux

store_fd_out:
movl %eax, ST _FD_OUT(%ebp) #store the file descriptor here

##H#BEGIN MAIN LOOP###
read_loop_begin:

###READ IN A BLOCK FROM THE INPUT FILE###

movl ST _FD_IN(%ebp), %ebx #get the input file descriptor
movl $BUFFER_DATA, %ecx #the location to read into
movl $BUFFER_SIZE, %edx #the size of the buffer
movl $READ, %eax

int $LINUX_SYSCALL #Size of buffer read is

#returned in %eax

#HHEXIT IF WE'VE REACHED THE END###
cmpl $END_OF FILE, %eax #check for end of file marker
jle end_loop #if found, go to the end

continue_read_loop:
##CONVERT THE BLOCK TO UPPER CASE###

pushl $BUFFER_DATA #location of the buffer
pushl %eax #size of the buffer

call convert_to_upper

popl %eax

popl %ebx

##H#WRITE THE BLOCK OUT TO THE OUTPUT FILE###
movl ST_FD_OUT(%ebp), %ebx #file to use

movl $BUFFER_DATA, %ecx #location of the buffer
movl %eax, %edx #size of the buffer
movl S$WRITE, %eax

int $LINUX_SYSCALL

##CONTINUE THE LOOP###
jmp read_loop_begin

end_loop:

###CLOSE THE FILES###
#NOTE - we don't need to do error checking on these, because

57

Chapter 5. Dealing with Files

error conditions don’t signify anything special here
movl ST _FD_OUT(%ebp), %ebx

movl $CLOSE, %eax

int $LINUX_SYSCALL

movl ST_FD_IN(%ebp), %ebx
movl $CLOSE, %eax
int $LINUX_SYSCALL

HHHEXI THH

movl $0, %ebx

movl $EXIT, %eax

int SLINUX_SYSCALL

####H#H#FUNCTION convert_to_upper

#

#PURPOSE: This function actually does the conversion to upper case for a block
#

#INPUT: The first parameter is the location of the block of memory to convert
The second parameter is the length of that buffer
#
#OUTPUT: This function overwrites the current buffer with the upper-casified
version.
#
#VARIABLES:
%eax - beginning of buffer
%ebx - length of buffer
%edi - current buffer offset
%cl - current byte being examined (%cl is the first byte of %ecx)
#

#H##CONSTANTSH#

.equ LOWERCASE_A, & #The lower boundary of our search
.equ LOWERCASE Z, 7’ #The upper boundary of our search

.equ UPPER_CONVERSION, 'A’ - 'a’ #Conversion between upper and lower case

###STACK POSITIONS#H##

.equ ST BUFFER_LEN, 8 #lLength of buffer
.equ ST _BUFFER, 12 #actual buffer
convert_to_upper:

pushl %ebp

movl %esp, %ebp

###SET UP VARIABLES###

58

Chapter 5. Dealing with Files

movl ST_BUFFER(%ebp), %eax
movl ST _BUFFER_LEN(%ebp), %ebx
movl $0, %edi

#if a buffer with zero length was given us, just leave
cmpl $0, %ebx
je end_convert_loop

convert_loop:
#get the current byte
movb (%eax,%edi,1), %cl

#go to the next byte unless it is between 'a’ and 'z’
cmpb $LOWERCASE_A, %:cl

jl next_byte

cmpb $LOWERCASE_Z, %cl

I[o} next_byte

#otherwise convert the byte to uppercase
addb $UPPER_CONVERSION, %cl
#and store it back

movb %cl, (Y%eax,%edi,1)

next_byte:
incl %edi #next byte
cmpl %edi, %ebx #continue unless we've reached the end

jne convert_loop

end_convert_loop:

#no return value, just leave
movl %ebp, %esp

popl %ebp

ret

Type in this program asupper.s , and then enter in the following commands:

as toupper.s -0 toupper.o
Id toupper.o -0 toupper

This builds a program calledupper , which converts all of the lowercase characters in a file to
uppercase. For example, to convert thethlgper.s to uppercase, type in the command

Jtoupper toupper.s toupper.uppercase

and you will find in the filetoupper.uppercase an uppercase version of your original file.

59

Chapter 5. Dealing with Files
Let's examine how the program works.

The first section of the program is marke@NSTANTSN programming, a constant is a value

that is assigned when a program assembles or compiles, and is never changed. | make a habit of
placing all of my constants together at the beginning of the program. It's only necessary to
declare them before you use them, but putting them all at the beginning makes them easy to find.
Making them all upper-case makes it obvious in your program which values are constants and
where to find theni.In assembly language, we declare constants withetpe directive as

mentioned before. Here, we simply give names to all of the standard numbers we've used so far,
like system call numbers, the syscall interrupt number, and file open options.

The next section is markeBlUFFERS We only use one buffer in this program, which we call
BUFFER_DATAWEe also define a constamtyFFER_SIZE, which holds the size of the buffer. If

we always refer to this constant rather than typing out the number 500 whenever we need to use
the size of the buffer, if it later changes, we only need to modify this value, rather than having to
go through the entire program and changing all of the values individually.

Instead of going on the thestart section of the program, go to the end where we define the
convert_to_upper function. This is the part that actually does the conversion. Starting out, we
have a set of constants we are using. The reason these are put here rather than at the top is that
they only deal with this one function. We have:

.equ LOWERCASE A, 'a #The lower boundary of our search
.equ LOWERCASE_Z, 7’ #The upper boundary of our search
.equ UPPER_CONVERSION, 'A’ - 'a’ #Conversion between upper and lower case

The first two simply define the letters that are the boundaries of what we are searching for.
Remember that in the computer, letters are represented as numbers. Therefore, we can use
LOWERCASE_ia comparisons, additions, subtractions, or anything else we can use numbers in.
Also, notice we define the constasPPER_CONVERSIO$ince letters are represented as

numbers, we can subtract them. Subtracting an upper-case letter from the same lower-case letter
gives us how much we need to add to a lower-case letter to make it upper case. If that doesn’t
make sense, look at the AS€dode tables themselves (s&ppendix D and do the math

yourself.

After this, we have some constants labelBItACK POSITIONS Remember that function

parameters are pushed onto the stack before function calls. These constants, prefigadavith
clarity, define where in the stack we should expect to find each piece of data. The return address
is at position 4, the length of the buffer is at position 8, and the address of the buffer is at position
12. This way, when | use these stack addresses in the program, it's easier to see what is
happening.

3. This is fairly standard practice among all programmers.
4. ASCIl is the numbering scheme which encodes letters and digits as numbers

60

Chapter 5. Dealing with Files

Next comes the labebnvert_to_upper . This is the entry point of the function. The first two
lines are our standard function lines to save the stack pointer. The next two lines

movl ST_BUFFER(%ebp), %eax
movl ST _BUFFER_LEN(%ebp), %ebx

move the function parameters into the appropriate registers for use. Then, we load zero into
%edi. What we are going to do is iterate through each byte of the buffer by loading from the
location%eax + %edi, incrementingsedi, and repeating untthoedi is equal to the buffer length
in %ebx. The lines

cmpl $0, %ebx
je end_convert_loop

is just a sanity check to make sure that noone gave us a buffer of zero size. If they did, we just
clean up and leave. Guarding against potential user and programming errors is an important task
of a programmer, and is what makes usable, reliable software.

Now we start our loop. First, it moves a byte i@l . The code for this is
movb (%eax,%edi,1), %cl

This says to start @&eax and go%edi locations forward, with each location being 1 byte big.

Take the value found there, and put ittel . Then, it checks to see if that value is in the range of
lower-casea to lower-case. To check the range, it simply checks to see if the letter is smaller
thana. If itis, it can’t be a lower-case letter. Likewise, if it is larger thaiit can’t be a lower-case
letter. So, in each of these cases, it simply moves on. If itis in the proper range, it then adds the
uppercase conversion, and stores it back.

Either way, it then goes to the next value by incrementing %cl;. Next it checks to see if we are at
the end of the buffer. If we are not at the end, we jump back to the beginning of the loop (the
convert_loop label). If we are at the end, it simply carries on to the end of the function.
Because we are just modifying the buffer, we don’t need to return anything to the calling program
- the changes are already in the buffer. The |ainel convert_loop is not needed, but it's

there so it’'s easy to see where the parts of the program are.

Now we know how the conversion process works. Now we need to figure out how to get the data
in and out of the files.

Before reading and writing the files we must open them. The UdHeh system call is what
handles this. It takes the following parameters:

+ %eax contains the system call number as usual - 5 in this case.

61

Chapter 5. Dealing with Files

+ %ebx contains a pointer to a string that is the name of the file to open. The string must be
terminated with a null character.

+ %ecx contains the options used for opening the file. These tell Linux how to open the file.
They can indicate things such as open for reading, open for writing, open for reading and
writing, create if it doesn’t exist, delete the file if it already exists, etc. We will not go into how
to create the numbers for the options utfig Section calledruth, Falsehood, and Binary
Numberdn Chapter 10For now, just trust the numbers we come up with.

+ %edx contains the permissions that are used to open the file. This is used in case the file has to
be created first, so Linux knows what permissions to create the file with. These are expressed
in octal, just like regular UNIX permissions.

After making the system call, the file descriptor of the newly-opened file is stosgdar.

So, what files are we opening? In this example, we will be opening the files specified on the
command line. Fortunately, they are already stored in an easy-to-access location, and are already
null-terminated. When a Linux program begins, all pointers to command-line arguments are
stored on the stack. The number of arguments is store@aisp) , the name of the program is

stored atLl2(%esp) , and the arguments are stored fra6{%esp) on. In the C Programming
language, this is referred to as thgv array, so we will refer to it that way in our program.

The first thing our program does is save the current stack position and then reserve some space on
the stack to store the file descriptors. After this, it starts opening files.

The first thing we do is open the input file, which is the first command-line argument. We do this
by setting up the system call. We put the file name tttx, a readonly option flag int&ecx,

the default mode a$0666 into %edx, and the system call number irfleeax After the system

call, the file is open and the file descriptor is storeehigax.® The file descriptor is then

transferred to it's appropriate place on the stack.

The same is then done for the output file, except that it is created with a write-only,
create-if-doesn’t-exist, truncate-if-does-exist set of options. It’s file descriptor is stored as well.

Now we get to the main part - the read/write loop. Basically, we will read fixed-size chunks of
data from the input file, call our conversion function on it, and write it back to the output file.
Although we are reading fixed-size chunks, the size of the chunks don’t matter for this program -
we are just operating on straight lines of data. We could read it in with as little or as large of
chunks as we want, and it still would work properly.

5. If you aren’t familiar with UNIX permissions, just p#0666 here. Don'’t forget the leading zero, as it
means that the number is an octal number.

6. Notice that we don’t do any error checking on this. That is done just to keep the program simple. In
normal programs, every system call should normally be checked for success or failure. In failureseages,

will hold an error code instead of a return value.

62

Chapter 5. Dealing with Files

The first part of the loop is to read the data. This usesd¢he system call. This call just takes a

file descriptor to read from, a buffer to write into, and the size of the buffer (i.e. - the maximum
number of bytes that could be written). The system call returns the number of bytes actually read,
or end-of-file (the number 0).

After reading a block, we checkeax for an end-of-file marker. If found, it exits the loop.
Otherwise we keep on going.

After the data is read, thevnvert_to_upper function is called with the buffer we just read in
and its size. After this call, the buffer should be capitalized and ready to write out. The registers
are then restored with what they had before.

Finally, we issue avrite system call, which is exactly like thread system call, except that it
moves the data from the buffer out to the file. Now we just go back to the beginning of the loop.

After the loop exits (remember, it exits if, after a read, it detects the end of the file), it sSimply
closes its file descriptors and exits. The close system call just takes the file descriptor to close in
%ebx.

The program is then finished!

Review

Know the Concepts

- Describe the lifecycle of a file descriptor.

« What are the standard file descriptors and what are they used for?
« What is a buffer?

- What is the difference between thiata section and thebss section?

« What are the system calls related to reading and writing files?

Use the Concepts

« Modify thetoupper program so that it reads fro8TDIN and writes toSTDOUTInstead of
using the files on the command-line.

« Change the size of the buffer.

63

Chapter 5. Dealing with Files

« Rewrite the program so that it uses storage inlke section rather than the stack to store the
file descriptors.

« Write a program that will create a file call@dynow.txt and write the words "Hey diddle
diddle!" into it.

Going Further

« What difference does the size of the buffer make?
« What error results can be returned by each of these system calls?

« Make the program able to either operate on command-line arguments 8TDB¢or STDOUT
based on the number of command-line arguments specifietRBLC

- Modify the program so that it checks the results of each system call, and prints out an error
message t&eTDOUTwhen it occurs.

64

Chapter 6. Reading and Writing Simple Records

Most applications deal with data thatpsrsistent meaning that the data lives longer than the
program by being stored on disk inf files. You can shut down the program and open it back up,
and you are back where you started. Now, there are two basic kinds of persistent data - structured
and unstructured. Unstructured data is like what we dealt with in the previous program. It just
dealt with text files that were entered by a person. The contents of the files weren't usable by a
program because a program can'’t interpret what the user is trying to say in random text.

Structured data, on the other hand, is what computers excel at handling. This is data that is
divided up into fields and records. For the most part, the fields and records are fixed-length.
Because the data is divided into fixed-length records and fields, the computer can interpret the
data properly. Structured data can contain variable-length fields, but at that point you are usually
better off with a databaseé.

This section deals with reading and writing simple fixed-length records. Let’s create the
following example fixed-length record about people:

« Firstname - 40 bytes
« Lastname - 40 bytes
« Address - 240 bytes
« Age - 4 bytes

In this, everything is character data except for the age, which is simply a numeric field, using a
standard 4-byte word (we could just use a single byte for this, but keeping it at a word makes it
easier to process).

In programming, you often have certain definitions that you will use over and over again within

the program, or perhaps within several programs. It is good to separate these out into files that are
simply included into the assembly language files as needed. For example, we will need to use the
following constants which describe the above structure over and over, and put then in a file
namedrecord-def.s

.equ RECORD_FIRSTNAME, 0
.equ RECORD_LASTNAME, 40
.equ RECORD_ADDRESS, 80
.equ RECORD_AGE, 320

1. A database is a program which handles persistent structured data for you. You don't have to write the
programs to read and write the data to disk, to do lookups, or even to do basic processing. It is a very high-
level interface to structured data which, although it adds some overhead and additional complexity, is very
useful for complex data processing tasks.

65

Chapter 6. Reading and Writing Simple Records
.equ RECORD_SIZE, 324

In addition, there are several constants that we have been defining over and over in our programs,
and it is useful to put them in a file, so that we don’t have to keep entering them over and over
again. Put the following constants in a file calledix.s

#Common Linux Definitions

#System Call Numbers
.equ SYS_EXIT, 1
.equ SYS_READ, 3
.equ SYS_WRITE, 4
.equ SYS_OPEN, 5
.equ SYS_CLOSE, 6
.equ SYS_BRK, 45

#System Call Interrupt Number
.equ LINUX_SYSCALL, 0x80

#Standard File Descriptors
.equ STDIN, 0

.equ STDOUT, 1

.equ STDERR, 2

#Common Status Codes
.equ END_OF FILE, 0

We will write three programs using the structure defined above. The first program will build the
file. The second program will display the file. The third program will add 1 year to the age of
every record.

In addition to the standard constants we will be using throughout the programs, there are also two
functions that we will be using in several of the programs - one which reads a record, and one
which writes a record.

What parameters do these functions need in order to operate? We have already defined the
structure definition, so we don’t need that. We basically need:

- The location of a buffer that we can read a record into

« The file descriptor that we want to read from or write to

66

Chapter 6. Reading and Writing Simple Records

Let’s look at our reading function first:

.include "record-def.s"
.include "linux.s"

#PURPOSE: This function reads a record from the file descriptor

#

#INPUT: The file descriptor and a buffer

#

#OUTPUT: This function writes the data to the buffer and returns
a status code.

#

#STACK LOCAL VARIABLES
.equ ST_READ BUFFER, 8
.equ ST_FILEDES, 12
.section .text
.globl read_record
type, @function

read_record:
pushl %ebp
movl %esp, %ebp

pushl %ebx

movl ST _FILEDES(%ebp), %ebx

movl ST_READ_BUFFER(%ebp), %ecx
movl $RECORD_SIZE, %edx

movl $SYS_READ, %eax

int $LINUX_SYSCALL

#NOTE - %eax has the return value, which we will
give back to our calling program

popl %ebx

movl %ebp, %esp

popl %ebp
ret

It's a pretty simply function. It just writes a buffer the size of our structure to the given file
descriptor. The writing one is similar:

.include "linux.s"

67

Chapter 6. Reading and Writing Simple Records

.include "record-def.s"
#PURPOSE: This function writes a record to the file descriptor

#

#INPUT: The file descriptor and a buffer

#

#OUTPUT: This function produces a status code
#

#STACK LOCAL VARIABLES
.equ ST_WRITE_BUFFER, 8
.equ ST_FILEDES, 12
.section .text
.globl write_record
type, @function

write_record:
pushl %ebp
movl %esp, %ebp

pushl %ebx

movl $SYS WRITE, %eax

movl ST _FILEDES(%ebp), %ebx

movl ST_WRITE_BUFFER(%ebp), %ecx
movl $RECORD_SIZE, %edx

int $LINUX_SYSCALL

#NOTE - %eax has the return value, which we will
give back to our calling program
popl %ebx

movl %ebp, %esp

popl %ebp
ret

Now that we have all of our common definitions down, we are ready to write our programs.

Writing Records

This program will simply write some hardcoded records to disk. It will:

« Open the file
« Write three records

« Close the file

68

Chapter 6. Reading and Writing Simple Records

Type the following code into a file callegrite-records.s

.include "linux.s"
.include "record-def.s"

.section .data

#Constant data of the records we want to write
#Each text data item is padded to the proper
#length with null (i.e. 0) bytes

recordl:

.ascii "Fredrick\0"

rept 31 #Padding to 40 bytes

.byte 0

.endr

.ascii "Bartlett\0"

rept 31 #Padding to 40 bytes
.byte 0

.endr

.ascii "4242 S Prairie\nTulsa, OK 55555\0"
.rept 209 #Padding to 240 bytes

.byte 0

.endr

Jlong 45

record2:

.ascii "Marilyn\0"

rept 32 #Padding to 40 bytes
.byte 0

.endr

.ascii "Taylor\0"

rept 33 #Padding to 40 bytes
.byte 0

.endr

.ascii "2224 S Johannan St\nChicago, IL 12345\0"
.rept 203 #Padding to 240 bytes

.byte 0

.endr

69

Chapter 6. Reading and Writing Simple Records
Jdong 29

record3:

.ascii "Derrick\0"

rept 32 #Padding to 40 bytes
.byte 0

.endr

.ascii "Mclintire\0"

.rept 31 #Padding to 40 bytes
.byte 0

.endr

.ascii "500 W Oakland\nSan Diego, CA 54321\0"
.rept 206 #Padding to 240 bytes

.byte 0

.endr

Jlong 36

#This is the name of the file we will write to
file_name:
.ascii "test.dat\0"

.equ FILE_DESCRIPTOR, -4

.globl _start
_start:

#Copy the stack pointer to %ebp

movl %esp, %ebp

#Allocate space to hold the file descriptor
subl $4, %esp

#0pen the file

movl $SYS OPEN, %eax

movl $file_name, %ebx

movl $0101, %ecx #This says to create if it
#doesn't exist, and open for
#writing

movl $0666, %edx

int $LINUX_SYSCALL

#Store the file descriptor away
movl %eax, FILE_DESCRIPTOR(%ebp)

70

Chapter 6. Reading and Writing Simple Records

#Write the first record

pushl FILE_DESCRIPTOR(%ebp)
pushl $recordl

call write_record

addl $8, %esp

#Write the second record

pushl FILE_DESCRIPTOR(%ebp)
pushl $record2

call write_record

addl $8, %esp

#Write the third record

pushl FILE_DESCRIPTOR(%ebp)
pushl $record3

call write_record

addl $8, %esp

#Close the file descriptor

movl $SYS _CLOSE, %eax

movl FILE_DESCRIPTOR(%ebp), %ebx
int $LINUX_SYSCALL

#Exit the program
movl $SYS_EXIT, %eax
movl $0, %ebx
int SLINUX_SYSCALL

This is a fairly simple program. It merely consists of defining the data we want to write in the
.data section, and then calling the right system calls and function calls to accomplish it. For a
discussion of all of the system calls used, Appendix C

You may have noticed the lines:

.include "linux.s"
.include "record-def.s"

These statements cause the given files to basically be pasted right there in the code. You don't
need to do this with functions, because the linker can take care of combining functions exported
with .globl . However, constants defined in another file do need to be imported in this way.

To build the application, run the commands:

as write-records.s -o write-record.o

71

Chapter 6. Reading and Writing Simple Records

as write-record.s -0 write-record.o
Id write-record.o write-records.o -0 write-records

Here we are assembling two files separately, and then combining them together using the linker.
To run the program, just type the following:

Jwrite-records

This will cause a file calletest.dat to be created containing the records. However, they may
not be viewable by a text editor, so we need the next program to read them for us.

Reading Records

Now we will consider just the opposite - reading records. In this program, we will read each
record, and display the first name listed with each record.

Since each person’s name is a different length, we will need a function to count the number of

characters we want to write. Since we pad each field with null characters, we can simply count
characters until we reach a null bytdlote that this means our records must contain at least one

null byte each. That's okay, though, since we are controlling how the records are written.

Here is the code:

#PURPOSE: Count the characters until a null byte is reached.
#

#INPUT: The address of the character string
#

#OUTPUT: Returns the count in %eax

#

#PROCESS:

Registers used:

%ecx - character count

%al - current character

%edx - current character address

type count_chars, @function
.globl count_chars

.equ DATA_START_ADDRESS, 8
count_chars:

pushl %ebp

movl %esp, %ebp

2. Ifyou have used C, this is what tselen function does.

72

Chapter 6. Reading and Writing Simple Records

#Counter starts at zero
movl $0, %ecx

#Starting address of data
movl DATA_START_ADDRESS(%ebp), %edx

count_loop_begin:

#Grab the current character
movb (%edx), %al

#ls it null?

cmpb $0, %al

#If yes, we're done

je count_loop_end

#Otherwise, increment the counter and the pointer
incl %ecx

incl %edx

#Go back to the beginning of the loop
jmp count_loop_begin

count_loop_end:

#We're done. Move the count into %eax
#and return.

movl %ecx, %eax

popl %ebp
ret

As you can see, it's a fairly straightforward function. It simply loops through the bytes until it hits
a null byte (the number zero, but not the printable digit zero), and then it returns the count. The
program will be fairly straightforward, too. It will do the following:

« Open the file

« Attempt to read a record

« If we are at the end of the file, exit

« Otherwise, count the characters of the first name

- Write the first name t&TDOUT

73

Chapter 6. Reading and Writing Simple Records
- Write a newline tcSTDOUT
« Go back to read another record

Here is the code:

.include "linux.s"
.include "record-def.s"

.section .data
file_name:
.ascii "test.dat\0"

.section .bss
dcomm record_buffer, RECORD_SIZE

.section .text

#Main program

.globl _start

_start:

.equ INPUT_DESCRIPTOR, -4

.equ OUTPUT_DESCRIPTOR, -8

#Copy the stack pointer to %ebp

movl %esp, %ebp

#Allocate space to hold the file descriptors
subl $8, %esp

#0pen the file

movl $SYS_OPEN, %eax

movl $file_name, %ebx

movl $0, %ecx #This says to open read-only
movl $0666, %edx

int $LINUX_SYSCALL

#Save file descriptor

movl %eax, INPUT_DESCRIPTOR(%ebp)
#Even though it's a constant, we are
#saving the output file descriptor in

#a local variable so that if we later

#decide that it isn't always going to
#be STDOUT, we can change it easily.

74

Chapter 6. Reading and Writing Simple Records
movl $STDOUT, OUTPUT_DESCRIPTOR(%ebp)

record_read_loop:

pushl INPUT_DESCRIPTOR(%ebp)
pushl $record_buffer

call read_record

addl $8, %esp

#Returns the number of bytes read.
#If it isn’t the same number we
#requested, then it's either an
#end-of-file, or an error, so we're
#quitting

cmpl $RECORD_SIZE, %eax

jne finished_reading

#Otherwise, print out the first name

#but first, we must know it's size

pushl $RECORD_FIRSTNAME + record_buffer
call count_chars

addl $4, %esp

movl %eax, %edx

movl OUTPUT_DESCRIPTOR(%ebp), %ebx

movl $SYS_WRITE, %eax

movl $RECORD_FIRSTNAME + record_buffer, %ecx
int $LINUX_SYSCALL

pushl OUTPUT_DESCRIPTOR(%ebp)
call write_newline
addl $4, %esp

jmp record_read_loop
finished_reading:
movl $SYS_EXIT, %eax

movl $0, %ebx
int $LINUX_SYSCALL

As you can see, it opens the file and then runs a loop of reading, checking for the end of file, and
writing the firstname. The one construct that might be new is the line that says:

75

Chapter 6. Reading and Writing Simple Records

pushl $RECORD_FIRSTNAME + record_buffer
It looks like we are combining and add instruction with a push instruction, but we are not. You
see, botlRECORD_FIRSTNAMa&ndrecord_buffer are constants. The first is a direct constant,
created through the use ofemu directive, while the latter is defined automatically by the
assemble through its use as a label. Since they are both constants that the assembler knows, it is

able to add them together while it is assembling your program, so the whole instruction is a single
immediate-mode push of a single constant.

TheRECORD_FIRSTNAMEDnstant is the number of bytes after the beginning of a record before
we hit the first namerecord_buffer is the name of our buffer for holding records. Adding
them together gets us the address of the first name member of the record.

Modifying the Records

In this section, we will write a program that:

« Opens an input and output file

« Reads records from the input

« Increments the age

« Writes the new record to the output file

Like most programs we’ve encountered recently, this program is pretty straightfotward.

.include "linux.s"
.include "record-def.s"

.section .data
input_file_name:
.ascii "test.dat\0"
output_file_name:
.ascii "testout.dat\0"
.section .bss

dcomm record_buffer, RECORD_SIZE

#Stack offsets of local variables

3. You will find that after learning the mechanics of programming, most programs are pretty straightforward
once you know exactly what it is you want to do.

76

.equ INPUT_DESCRIPTOR, -4
.equ OUTPUT_DESCRIPTOR, -8

.section .text
.globl _start

_start:

Chapter 6. Reading and Writing Simple Records

#Copy stack pointer and make room for local variables

movl
subl

%esp, %ebp
$8, %esp

#Open file for reading

movl
movl
movl
movl
int

movl

$SYS_OPEN, %eax
$input_file_name, %ebx
$0, %ecx

$0666, %edx
SLINUX_SYSCALL

%eax, INPUT_DESCRIPTOR(%ebp)

#0Open file for writing

movl $SYS_ OPEN, %eax

movl $output_file_name, %ebx

movl $0101, %ecx

movl $0666, %edx

int $LINUX_SYSCALL

movl %eax, OUTPUT_DESCRIPTOR(%ebp)
loop_begin:

pushl INPUT_DESCRIPTOR(%ebp)
pushl $record_buffer

call
addl

read_record

$8, %esp

#Returns the number of bytes read.
#If it isn’t the same number we
#requested, then it's either an
#end-of-file, or an error, so we're
#quitting

cmpl
jne

$RECORD_SIZE, %eax
loop_end

#Increment the age

incl

record_buffer + RECORD_AGE

77

Chapter 6. Reading and Writing Simple Records

#Write the record out

pushl OUTPUT_DESCRIPTOR(%ebp)
pushl $record_buffer

call write_record

addl $8, %esp

jmp loop_begin

loop_end:
movl $SYS _EXIT, %eax
movl $0, %ebx
int SLINUX_SYSCALL

You can type it in agsdd-year.s . To build it, type the followin§

as add-year.s -0 add-year.o
Id add-year.o read-record.o write-record.0 -0 add-year

To run the program, just type in the followihg

Jadd-year

This will add a year to every record listedtast.dat ~ and write the new records to the file
testout.dat

As you can see, writing fixed-length records is pretty simple. You only have to read in blocks of
data to a buffer, process them, and write them back out. Unfortunately, this program doesn’t write
the new ages out so you can verify your program’s effectiveness. This is because we won't get to
displaying numbers untChapter 10After reading that, you may want to come back and rewrite
this program to display the numeric data that we are modifying.

4. This assumes that you have already built the object fl@s$-record.o andwrite-record.o in the
previous examples. If not, you will have to do so. Also, don’t get the files confused with the ones with similar
names.

5. This is assuming you created the file in a previous runviite-records . If not, you need to run
write-records first before running this program.

78

Chapter 6. Reading and Writing Simple Records
Review

Know the Concepts

+ What is a record?

+ What is the advantage of fixed-length records over variable-length records?
« How do you include constants in multiple assembly source files?

« Why might you want to split up a project into multiple source files?

- What does the instructiancl record_buffer + RECORD_AGE do? What addressing
mode is it using? How many operands doesitice instructions have in this case? Which
parts are being handled by the assembler and which parts are being handled when the program
is run?

Use the Concepts

« Add another data member to the person structure defined in this chapter, and rewrite the
reading and writing functions and programs to take them into account. Remember to
reassemble and relink your files before running your programs.

- Create a program that uses a loop to write 30 identical records to a file.

- Create a program to find the largest age in the file and return that age as the status code of the
program.

« Create a program to find the smallest age in the file and return that age as the status code of the
program.

Going Further

« Research the various error codes that can be returned by the system calls made in these
programs. Pick one to rewrite, and add code that will cltéekx for error conditions, and, if
one is found, write a message about iSIMODERRand exit.

« Write a program that will add a single record to the file by reading the data from the keyboard.
Remember, you will have to make sure that the data has at least one null character at the end,
and you need to have a way for the user to indicate they are done typing. Because we have not

79

Chapter 6. Reading and Writing Simple Records

gotten into characters to numbers conversion, you will not be able to read the age in from the
keyboard, so you'll have to have a default age.

« Write a function calledompare-strings that will compare two strings up to 5 characters.
Then write a program that allows the user to enter 5 characters, and have the program return all
records whose first name starts with those 5 characters.

80

Chapter 7. Developing Robust Programs

This chapter deals with developing programs thatrabeist Robust programs are able to handle
error conditions gracefully. They are programs that do not crash no matter what the user does.
Building robust programs is essential to the practice of programming. Writing robust programs
takes discipline and work - it is usually finding every possible problem that can occur, and
coming up with an action plan for your program to take.

Where Does the Time Go?

Programmers schedule poorly. In almost every programming project, programmers will take two,
four, or even eight times as long to develop a program or function than they originally estimated.
There are many reasons for this problem, including:

« Programmers don't always schedule time for meetings or other non-coding activities that make
up every day.

« Programmers often underestimate feedback times (how long it takes to pass change requests
and approvals back and forth) for projects.

« Programmers don't always understand the full scope of what they are producing.

« Programmers often have to estimate a schedule on a totally different kind of project than they
are used to, and thus are unable to schedule accurately.

« Programmers often underestimate the amount of time it takes to get a program fully robust.

The last item is the one we are interested in hitiakes a lot of time and effort to develop robust
programs.More so than people usually guess, including experienced programmers. Programmers
get so focused on simply solving the problem at hand that they fail to look at the possible side
issues.

In thetoupper program, we do not have any course of action if the file the user selects does not
exist. The program will go ahead and try to work anyway. It doesn’t report any error message so
the user won't even know that they typed in the name wrong. Let’s say that the destination file is
on a network drive, and the network temporarily fails. The operating system is returning a status
code to us irveeax, but we aren’t checking it. Therefore, if a failure occurs, the user is totally
unaware. This program is definitely not robust. As you can see, even in a simple program there
are a lot of things that can go wrong.

In a large program, it gets much more problematic. There are usually many more possible error
conditions than possible successful conditions. Therefore, you should always expect to spend the
majority of your time checking status codes, writing error handlers, and performing similar tasks
to make your program robust. If it takes two weeks to develop a program, it will likely take at

81

Chapter 7. Developing Robust Programs

least two more to make it robust. Remember that every error message that pops up on your screen
had to be programmed in by someone.

Some Tips for Developing Robust Programs

User Testing

Testing is one of the most essential things a programmer does. If you haven't tested something,
you should assume it doesn’t work. However, testing isn’t just about making sure your program
works, it's about making sure your program doesn’t break. For example, if | have a program that
is only supposed to deal with positive numbers, you need to test what happens if the user enters a
negative number. Or a letter. Or the number zero. You must test what happens if they put spaces
before their numbers, spaces after their numbers, and other little possibilities. You need to make
sure that you handle the user’s data in a way that makes sense to the user, and that you pass on
that data in a way that makes sense to the rest of your program. When your program finds input
that doesn’t make sense, it needs to perform appropriate actions. Depending on your program,
this may include ending the program, prompting the user to re-enter values, notifying a central
error log, rolling back an operation, or ignoring it and continuing.

Not only should you test your programs, you need to have others test it as well. You should enlist
other programmers and users of your program to help you test your program. If something is a
problem for your users, even if it seems okay to you, it needs to be fixed. If the user doesn’t know
how to use your program correctly, that should be treated as a bug that needs to be fixed.

You will find that user’s find a lot more bugs in your program than you ever could. The reason is
that user’s don’'t know what the computer expects. You know what kinds of data the computer
expects, and therefore are much more likely to enter data that makes sense to the computer.
User’s enter data that makes sense to them. Allowing non-programmers to use your program
usually gives you much more accurate results as to how robust your program truly is.

Data Testing

When designing programs, each of your functions needs to be very specific about the type and
range of data that it will or won’t accept. You then need to test these functions to make sure that
they perform to specification. Most important is testaggner case®r edge casesCorner cases

are the inputs that are most likely to cause problems or behave unexpectedly.

When testing numeric data, there are several corner cases you always need to test:

« The number 0

82

Chapter 7. Developing Robust Programs
« The number 1
« A number within the expected range
« A number outside the expected range
« The first number in the expected range
« The last number in the expected range
« The first number below the expected range
- The first number above the expected range

For example, if | have a program that is supposed to accept values between 5 and 200, | should
testO, 1, 4, 5, 153, 200, 201, and 255 at a minimum (153 and 255 were randomly chosen inside
and outside the range, respectively). The same goes for any lists of data you have. You need to
test that your program behaves as expected for lists of 0 items, 1 item, and so on. In addition, you
should also test any turning points you have. For example, if you have different code to handle
people under and over age 30, for example, you would need to test it on people of ages 29, 30,
and 31 at least.

There will be some internal functions that you assume get good data because you have checked
for errors before this point. However, while in development you often need to check for errors
anyway, as your other code may have errors in it. To verify the consistency and validity of data
during development, most languages have a facility to easily check assumptions about data
correctness. In the C language there isdésert macro. You can simply put in your code

assert(a > b); , and it will give an error if it reaches that code when the condition is not true.

In addition, since such a check is a waste of time after your code is stabkesstte macro

allows you to turn off asserts at compile-time. This makes sure that your functions are receiving
good data, without causing unnecessary slowdowns for code released to the public.

Module Testing

Not only should you test your program as a whole, you need to test the individual pieces of your
program. As you develop your program, you should test individual functions by providing it with
data you create to make sure it responds appropriately.

In order to do this effectively, you have to develop functions whose sole purpose is to call
functions for testing. These are callddvers(not to be confused with hardware drivers) . They
simply loads your function, supply it with data, and check the results. This is especially useful if
you are working on pieces of an unfinished program. Since you can't test all of the pieces
together, you can create a driver program that will test each function individually.

Also, the code you are testing may make calls to functions not developed yet. In order to
overcome this problem, you can write a small function callstl@which simply returns the

83

Chapter 7. Developing Robust Programs

values that function needs to proceed. For example, in an e-commerce application, | had a
function calleds_ready_to_checkout . Before | had time to actually write the function | just
set it to return true on every call so that the functions which relied on it would have an answer.
This allowed me to test functions which relied isnready to_checkout without the

function being fully implemented.

Handling Errors Effectively

Not only is it important to know how to test, but it is also important to know what to do when one
is detected.

Have an Error Code for Everything

Truly robust software has a unique error code for every possible contingency. By simply knowing
the error code, you should be able to find the location in your code where that error was signalled.

This is important because the error code is usually all the user has to go on when reporting errors.
Therefore, it needs to be as useful as possible.

Error codes should also be accompanied by descriptive error messages. However, only in rare
circumstances should the error message try to predigthe error occurred. It should simply

relate what happened. Back in 1995 | worked for an Internet Service Provider. One of the web
browsers we supported tried to guess the cause for every network error, rather than just reporting
the error. If the computer wasn’t connected to the Internet, and the user tried to connect to a
website, it would say that there was a problem with the Internet Service Provider, that the server
was down, and that the user should contact their Internet Service Provider to correct the problem.
Nearly a quarter of our calls were from people who had received this message, but merely needed
to connect to the Internet before trying to use their browser. As you can see, trying to diagnose
what the problem is can lead to a lot more problems than it fixes. It is better to just include a
troubleshooting guide which includes possible reasons and courses for action for each error
message.

Recovery Points

In order to simplify error handling, it is often useful to break your program apart into distinct

units, where each unit fails and is recovered as a whole. For example, you could break your
program up so that reading the configuration file was a unit. If reading the configuration file

failed at any point (opening the file, reading the file, trying to decode the file, etc.) then the

84

Chapter 7. Developing Robust Programs

program would simply treat it as a configuration file problem. This way, you only need one
error-handling mechanism for all of the possible problems that could occur with your program.

Note that even with recovery points, your error messages need to be specific as to what the
problem was. Recovery points are basic units for error reporting and recovery, not for error
detection. Error detection still needs to be extremely exact.

Also, with recovery points, you often need to include cleanup code to handle different
contingencies. For example, in our configuration file example, the recovery function would need
to include code to check and see if the configuration file was open, and, if so, to close it so the
program can return to a consistent state.

The simplest way to handle recovery points is to wrap the whole program into a single recovery
point. You would just have a simple error-reporting function that you can call with an error code
and a message. The function would print them and and simply exit the program.

Making Our Program More Robust

This section will go through making theld-year.s program fromChapter @ little more
robust.

Since this is a pretty simple program, we will limit ourselves to a single recovery point that
covers the whole program. The only thing we will do to recover is to print the error and exit. The
code to do that is pretty simple:

.include "linux.s"

.equ ST_ERROR_CODE, 8
.equ ST_ERROR_MSG, 12
.globl error_exit

type error_exit, @function
error_exit:

pushl %ebp

movl %esp, %ebp

#Write out error code

movl ST _ERROR_CODE(%ebp), %ecx
pushl %ecx

call count _chars

popl %ecx

movl %eax, %edx

movl $STDERR, %ebx

movl $SYS_WRITE, %eax

int $LINUX_SYSCALL

85

Chapter 7. Developing Robust Programs

#Write out error message

movl ST _ERROR_MSG(%ebp), %ecx
pushl %ecx

call count_chars

popl %ecx

movl %eax, %edx

movl $STDERR, %ebx

movl $SYS_WRITE, %eax

int $LINUX_SYSCALL

pushl $STDERR
call write_newline

#Exit with status 1

movl $SYS_EXIT, %eax
movl $1, %ebx

int $LINUX_SYSCALL

Enter it in a file calleckrror-exit.s . To call it, you just need to push the address of an error
message, and then an error code onto the stack, and call the function.

Now let’s look for potential error spots. First of all, we don’t check to see if either obpein
system calls actually complete properly. Linux returns its status codea, so we need to
check and see if there is an error.

#0pen file for reading

movl $SYS OPEN, %eax
movl $input_file_name, %ebx
movl $0, %ecx

movl $0666, %edx

int $LINUX_SYSCALL

movl %eax, INPUT_DESCRIPTOR(%ebp)

#This will test and see if %eax is
#negative. If it is not negative, it
#will jump to continue_processing.
#Otherwise it will handle the error
#condition that the negative number
#represents.

testl $-1, %eax

jns continue_processing

86

Chapter 7. Developing Robust Programs

#Send the error

.section .data
no_open_file_code:

.ascii "0001: \0"
no_open_file_msg:

.ascii "Can’'t Open Input File\0"

.section .text

pushl $no_open_file_msg
pushl $no_open_file_code
call error_exit

continue_processing:
#Rest of program

So, after calling the system call, we check and see if we have an error. If so, we call our error
reporting and exit routine.

After every system call or other location which can have erroneous results, you should add error
checking and handling code.

To assemble and link the files, do:

as add-year.s -0 add-year.o

as error-exit.s -0 error-exit.o

Id add-year.o write-newline.o error-exit.o read-record.o write-record.o count-
chars.o -0 add-year

Now try to run it without the necessary files. It now exits cleanly and gracefully!

Review

Know the Concepts

« What are the reasons programmer’s have trouble with scheduling?

« What are corner cases? Can you list examples of numeric corner cases?

« Why is user testing so important?

« What are stubs and drivers used for? What'’s the difference between the two?

« What are recovery points used for?

87

Chapter 7. Developing Robust Programs

- How many different error codes should a program have?

Use the Concepts

« Gothrough theadd-year.s program and add error-checking code after every system call.
- Find one other program we have done so far, and add error-checking to that program.

« Add a recovery mechanism fadd-year.s that allows it to read from STDIN if it cannot
open the standard file.

Going Further

« What, if anything, should you do if your error-reporting function fails? Why?
« Tryto find bugs in at least one open-source program. File a bug report for it.

« Try to fix the bug you found in the previous exercise.

88

Chapter 8. Sharing Functions with Code Libraries

* Somewhere in here we need to say why we need to put .type label,@function before function labels

By now you should realize that the computer has to do a lot of work even for simple tasks.
Because of that, you have to do a lot of work to write the code for a computer to even do simple
tasks. In addition, programming tasks are usually not very simple. Therefore, we neeed a way to
make this process easier on ourselves. There are several ways to do this, including:

« Write code in a high-level language instead of assembly language
« Have lots of pre-written code that you can cut and paste into your own programs
« Have a set of functions on the system that are shared among any program that wishes to use it

All three of these are usually used in any given project. The first option will be explored further in
Chapter 11The second option is useful but it suffers from some drawbacks, including:

- Every program has to have the same code in it, thus wasting a lot of space
« Ifa bug is found in any of the copied code, it has to be fixed in every application program

Therefore, the second option is usually used sparingly, usually only in cases where you copy and
paste skeleton code, and add in your program-specific details. The third option, however, is used
quite frequently. The third option includes having a central repository of shared code. Then,
instead of each program wasting space storing the same copies of functions, they can simply
point to the shared file which contains the function they need. If a bug is found in one of these
functions, it only has to be fixed within the shared file, and all applications which use it are
automatically updated. The main drawback with this approach is that it creates some dependency
problems, including:

- If multiple applications are all using the shared file, how do we know when it is safe to delete
the file? For example, if three applications are sharing a file of functions and 2 of them are
deleted, how does the system know that there still exists an application that uses that code?

« Some programs accidentally rely on bugs within shared functions. Therefore, if upgrading the
shared program fixes a bug that a program depended on, it could cause that application to cease
functioning.

These problems are what led to what was known as "DLL hell" in windows. However, it is
generally assumed that the advantages outweigh the disadvantages.

In programming, these shared code files are referred $ba®ed libraries shared objects
dynamic-link libraries DLLS, or .so files We will refer to them ashared libraries

89

Chapter 8. Sharing Functions with Code Libraries
Using a Shared Library

The program we will examine here is simple - it writes the charatkgls world to the
screen and exits. The regular progrdml|oworld-nolib.s , looks like this:

#PURPOSE: This program writes the message "hello world" and
exits
#

.section .data

helloworld:
.ascii "hello world\n"
helloworld_end:

.equ helloworld_len, helloworld_end - helloworld

.equ STDOUT, 1

.equ EXIT, 1

.equ WRITE, 4

.equ LINUX_SYSCALL, 0x80

.section .text

.globl _start

_start:

movl $STDOUT, %ebx
movl $helloworld, %ecx
movl $helloworld len, %edx
movl $WRITE, %eax

int SLINUX_SYSCALL

movl $0, %ebx

movl S$EXIT, %eax
int SLINUX_SYSCALL

That’s not too long. However, take a look at how shwitoworld-lib is which uses a library:

#PURPOSE: This program writes the message "hello world" and
exits
#

.section .data

90

Chapter 8. Sharing Functions with Code Libraries

helloworld:
.ascii "hello world\n\0"

.section .text
.globl _start
_start:

pushl $helloworld
call printf

pushl $0
call exit

Pretty short, huh? Now, the first program, you can build normally, by doing

as helloworld-nolib.s -0 helloworld-nolib.o
Id helloworld-nolib.o -o helloworld-nolib

However, in order to build the second program, you have to do

as helloworld-lib.s -0 helloworld-lib.o
Id -dynamic-linker /lib/ld-linux.so0.2 -0 helloworld-lib helloworld-lib.o -
Ic

-dynamic-linker /lib/ld-linux.so.2 allows our program to be linked to libraries, and
the-lc says to link to the library, namedibc.so on GNU/Linux systems. Given a library

name ¢€ in this case) the GNU/Linux linker prepends the stiiibg to the beginning and appends

.so0 to the end to form the filename. Also, most library names are more than one letter long. This
library contains many functions. The two we are usingmirgf , which prints strings, and

exit , which exits the progrant.

How Shared Libraries Work

In our first programs, all of the code was contained within the source file. Such programs are
calledstatically-linked executablebecause they contained all of the necessary functionality for
the program that wasn’t handled by the kernel. Intthgper program, we used both our main
program file and the file containing our memory allocation routines. In this case, we still

1. Notice that the symbolgrintf andexit are simply referred to by name. When the program is run by

the user, the dynamic linker loads the libraries listed in our link statement, and then finds all of the function
and variable names that were named by our program but not found at link time, and matches them up with
corresponding entries in the shared libraries it loads. This sounds time-consuming. It is to a small degree, but
it only happens once, at program startup time.

91

Chapter 8. Sharing Functions with Code Libraries

combined all of the code together using the linker, so it was still statically-linked. However, in the
helloworld-lib program, we started using shared libraries. When you use shared libraries,
your program is then dynamically-linked, which means that not all of the code needed to run the
program is actually contained within the program file itself.

When we put thelc on the command to link thieelloworld program, it told the linker to use
thec library to look up any symbols that weren't already definetlétoworld.o . However, it
doesn’t actually add any code to our program, it just notes in the program where to look. When
thehelloworld program begins, the fildib/Id-linux.so.2 is loaded first. This is the
dynamic linker. This looks at outelloworld program and sees that it needs thiérary to

run. So, it searches for a file calléoc.so |, looks in it for all the needed symbolgrintf and

exit in this case), and then loads the library into the program’s virtual memory. It then replaces
all instances oprintf in the program with the actual location pfintf in the library.

Run the following command:

Idd ./helloworld-nolib

It should report backot a dynamic executable . This is just like we said -
helloworld-nolib is a statically-linked executable. However, try this:

Idd ./helloworld-lib
It will report back something like

libc.s0.6 => /lib/libc.s0.6 (0x4001d000)
/lib/ld-linux.s0.2 => /lib/ld-linux.s0.2 (0x400000000)

Note that the numbers in parenthesis may be different. This means that the phagjoavorld
is linked tolibc.so.6 (the.6 is the version number), which is found/si/libc.so0.6 , and
/lib/ld-linux.s0.2 is found at/lib/Id-linux.so.2

Finding Information about Libraries

Okay, so now that you know about libraries, the question is, how do you find out what libraries
you have on your system and what they do? Well, let’s skip that question for a minute and ask
another question: How do programmers describe functions to each other in their documentation?
Let’s take a look at the functioprintf . It's calling interface (usually referred to agpeototypg

looks like this:

int printf(char *string, ...);

92

Chapter 8. Sharing Functions with Code Libraries

In Linux, functions are described in a language catleth fact, almost all Linux programs are
written in C. This definition means that there is a functipintf . The things inside the
parenthesis are the functions parameters or arguments. The first argumenthere is

*string . This means there is an argument narsgidg (the name isn’t important, except to
use for talking about it), which has a typear * .char means that it wants a character. Fhe
after it means that it doesn’t actually want a character as an argument, but instead it wants the
address of a character or set of characters. If you look back aetiomvorld program , you

will notice that the function call looked like this:

pushl $hello
call printf

So, we pushed the address of tietlo string, rather than the actual characters. The way that
printf found the end of the string was because we ended it with a null chargc)eMany
functions work that way, although not all. Tire before the function definition means that the
function will return anint in %eaxwhen it's through. Now, after thehar *string , we have a
series of periods,. . This means that it can take additional arguments after the string. Most
functions don’t do thisprintf will look into thestring parameter, and everywhere it sées

it will look for another string to insert, and everywhere it se@sdit will look for a number to
insert. Let’s look at an example.

#PURPOSE: This program is to demonstrate how to call printf
#

.section .data
#This string is called the format string. It's the first

#parameter, and printf uses it to find out how many parameters
#it was given, and what kind they are.

firststring:
.ascii "Hello! %s is a %s who loves the number %d\n\0"
name:

.ascii "Jonathan\0"

personstring:

.ascii "person\0"

#This could also have been an .equ, but we decided to give it
#a real memory location just for kicks

numberloved:

dong 3

.equ EXIT, 1
.equ LINUX_SYSCALL, 0x80

93

Chapter 8. Sharing Functions with Code Libraries

.section .text

.globl _start
_start:

#note that the parameters are passed in the
#reverse order that they are listed in the
#function’s prototype.

pushl numberloved #This is the %d
pushl $personstring #This is the second %s

pushl $name #This is the first %s
pushl $firststring #This is the format string in the prototype
call printf

movl $0, %ebx
movl S$EXIT, %eax
int $LINUX_SYSCALL

Type it in with the filenamerintf-example.s , and then do the commands

as printf-example.s -o printf-example.o
Id printf-example.o -o printf-example -lc -dynamic-linker /lib/Id-linux.so.2

Then run the program withlprintf-example, and it should say

Hello! Jonathan is a person who loves the number 3

It doesn’t do anything useful, but that’s okay, it’s just an example. Now, if you look at the code,
you'll see that we actually push the format string last, even though it's the first argument. You
always push the arguments in reverse order. The reason is that the known arguments will then be
in a known position, and the extra arguments will just be further back. If we pushed the known
arguments first, you wouldn’t be able to tell where they were on the stack. You may be wondering
how theprintf function knows how many arguments there are. Well, it searches through your
string, and counts how mamyd and%ss it finds, and then grabs that number of arguments from
the stack. If the argument matche%d it treats it as a number, and if it matche%s it treats it

as a pointer to a null-terminated stringintf has many more features than this, but these are

the most-used ones. So, as you canpéf can make output a lot easier, but it also has a lot

of overhead, because it has to count the number of characters in the string, look through it for all
of the control characters it needs to replace, pull them off the stack, convert them to a suitable
representation (numbers have to be converted to strings, etc), and stick them all together
appropriately. Personally, I'm glad they put that in a library, because it's way too much for me to
write myself!

94

Chapter 8. Sharing Functions with Code Libraries

We've seen how to use theprototypes to call library functions. To use them effectively,
however, you need to know several more of the possible data types for reading functions. Here
are the main ones:

int
An int is an integer number (4 bytes on x86 platforms)

long

Along is also an integer number (4 bytes on an x86 platform)

long long

A long long is an integer number that's larger than a long (8 bytes on an x86 platform)

short

A short is an integer number that’s two bytes long

char
A char is a single-byte integer number. This is mostly used for storing character data, since
strings usually are represented with one byte per character.

float
A float is a floating-point number (4 bytes on an x86 platform). Note that floats represent
approximate values, not exact values.

double

A double is a floating-point number that is larger than a float (8 bytes on an x86 platform).
Like floats, it only represent approximate values. Now, the biggest registers available are
only four bytes long, so doubles take quite a bit of trickery to work with, which we won’t go
into here.

unsigned

unsigned is a modifier used for any of the above types which keeps them from being able to
hold negative numbers.

An asterisk (*) is used to denote that the data isn’t an actual value, but instead is a pointer
(address value) to a location holding the given value (4 bytes on an x86 platform). So, let’'s
say in address 6 you have the number 20 stored. If the prototype said to pass an integer, you

95

Chapter 8. Sharing Functions with Code Libraries

would dopushl $20 . However, if the prototype said to paséa * , you would dopushl
$6. This can also be used for indicating a sequence of locations, starting with the one
pointed to by the given value.

struct

A struct is a set of data items that have been put together under a name. For example you
could declare:

struct teststruct {

int a;

char *b;
h
and any time you ran intstruct teststruct you would know that it is actually two
variables right next to each other, the first being an integer, and the second a pointer to a
character or group of characters. You almost always never see structs passed as arguments to
functions. Instead, you usually see pointers to structs passed as arguments. This is because
passing structs to functions is fairly complicated, since they can take up so many storage
locations.

typedefs

typedefs basically allow you to rename types. For example, | caypédef int

myowntype; in a C program, and any time | typeayowntype , it would be just as if | typed
int . This can get kind of annoying, because you have to look up what all of the typedefs
and structs in a function prototype really mean.

The listed sizes are for intel-compatible (x86) machines. Other machines will have different sizes.
Also, even when shorter-sized parameters are passed to functions, they are passed as longs.

That's how to read function documentation. Now, let’s get back to the question of how to find out
about libraries. Most of your system libraries areusr/lib or/lib . If you want to just see

what symbols they define, just rabdjdump -R FILENAME whereFILENAMEIs the full path to

the library. The output of that isn’t too helpful, though. Usually, you have to know what library
you want at the beginning, and then just read the documentation. Most libraries have manual
pages for their functions. The web is the best source of documentation for libraries. Most libraries
from the GNU project have info pages on them. For example, to see the info page for the C
library, type ininfo libc at the command line. You can navigate info pages usifay next page,

p for previous pagey for up to top-level section, and hit return to follow links. You can scroll an
individual page using your arrow keys. Note that in order to use any library you need to use
malloc andfree from the C library instead ddllocate anddeallocate . You can read their
manual page to see how they work!

96

Chapter 8. Sharing Functions with Code Libraries
Building a Shared Library

Let’s say that we wanted to dynamically link our programs to our memory allocator. First, we
assemble it just like normal

as alloc.s -o alloc.o

Then, we must link it as a shared library, like this:
Id -shared alloc.o -0 liballoc.so

Notice how we added the lettelils in front of the library name, and.ao to the end. This
happens with all shared libraries. Now, let’s build eaupper program so that it is dynamically
linked with this library instead of statically linked:

as toupper.s -0 toupper.o
Id -L . -dynamic-linker /lib/ld-linux.s0.2 -0 toupper toupper.o -l alloc

In the previous commanel, . told the linker to look for libraries in the current directét
usually only searchetib , /usr/lib , and a few others}dynamic-linker

/lib/Id-linux.s0.2 specified the dynamic linker, and alloc said to search for functions
in the library namediballoc.so . We have built the fileoupper , but we can no longer run it.
If you type in./toupper , it will say

Jtoupper: error while loading shared libraries: liballoc.so: cannot open shared ob-
ject file: No such file or directory

This is because, by default, the dynamic linker only seardgites, /usr/lib , and whatever
directories are listed ifetc/ld.so.conf for libraries. In order to run the program, you either
need to move the library to one of these directories, or execute the following command

LD_LIBRARY_PATH=.
export LD_LIBRARY_PATH

If that gives you an error, do instead

setenv LD_LIBRARY_PATH .

Now, you can runoupper normally by typing./toupper. SettingLD_LIBRARY_PATHitells the
linker to add whatever paths you give it to the library search path.

2. Remember means current directory in Linux and means the directory above this one.

97

Chapter 8. Sharing Functions with Code Libraries
Advanced Dynamic Linking Techniques

One advantage of dynamic linking is that, since the code doesn’t look for it’s functions until it's
running, you can change those functions out manually.

Review

Know the Concepts

- What are the advantages and disadvantages of shared libraries?
+ Given a library named 'foo’, what would the library’s filename be?
+ What does thé&dd command do?

« Let’s say we had the file®®o.o andbar.o , and you wanted to link them together, and
dynamically link them to the library ’kramer’. What would the linking command be to
generate the final executable?

« What istypedeffor?
- What arestructs for?

« What is the difference between a data element of tgpandint *? How would you access
them differently in your program?

- If you had a object file calletbo.o , what would be the command to create a shared library
called 'bar’?

« What is the purpose of LD_LIBRARY_PATH?
« What is the purpose of LD_PRELOAD?

Use the Concepts

« Rewrite one or more of the programs from the previous chapters to print their results to the
screen usingrintf rather than returning the result as the exit status code. Also, make the exit
status code be 0.

+ Use the maximum function you developedire Section calletlse the Concepts Chapter 4
to make a shared library. Then re-write the program so that it links with the library
dynamically.

98

Chapter 8. Sharing Functions with Code Libraries

+ Rewrite the program above so that it also links with the 'c’ library. Use the 'c’ library’s
printf function to display the result of each call to maximum. Now that you are printing to
the screen and not using status codes, you can use larger numbers.

Going Further

+ Make a list of all the environment variables used by the GNU/Linux dynamic linker.

- Research the different types of executable file formats in use today and in the history of
computing. Tell the strengths and weaknesses of each.

« Research the difference between strong and weak symbols, and what they are used for.

99

Chapter 8. Sharing Functions with Code Libraries

100

Chapter 9. Intermediate Memory Topics

Okay, so the last chapter was quite a doozy. This may seem overwhelming at first, but if you can
stick it out you will have the background you need to being a successful programmer.

How a Computer Views Memory

Let’s review how memory within a computer works. You may also want to re-@¥apter 2

A computer looks at memory as a long sequence of numbered storage locations. A sequence of
millions of numbered storage locations. Everything is stored in these locations. Your programs

are stored there, your data is stored there, everything. Each storage location looks like every other
one. The locations holding your program are just like the ones holding your data. In fact, the
computer has no idea which are which. So, we've seen how numbers are stored - each value takes
up four storage locations. How are the instructions stored? Each instruction is a different length.
Most instructions take up one or two storage locations for the instruction itself, and then storage
locations for the instruction’s arguments. For example,

movl data_items(,%edi,4), %ebx

takes up 7 storage locations. The first two hold the instruction, the third one tells which registers
to use, and the next four hold the storage locatiodatd_items . In memory, these look just

like all the other numbers, and the instructions themselves can be moved into and out of registers
just like numbers, because that’s what they are. Now, let’s define a few terms:

Address

An address is the number of a storage location. For example, the first storage location on a
computer has an address of 0, the second has an address of 1, arldEs@onpiece of data

on the computer not in a register has an address. Normally, we don’t ever type the exact
address of something, but we use symbols instead (like dsitagitems in our second
program).

Pointer

A pointer is a register or memory storage location whose value is an address. In our second
example %ebpwas a pointer to the current stack position. Programming uses a lot of
pointers, which we will see eventually.

1. You actually never use addresses this low, but it works for discussion.

101

Chapter 9. Intermediate Memory Topics
Byte

This is the size of a storage location. On x86 processors, a byte can hold numbers between 0
and 255

Word

This is the size of a normal register. On x86 processors, a word is four storage
locations(bytes) long.

We have been using terms likéorage locatiorinstead of their proper terms, likg/te This was
so you could have a better grasp on what was being done. From here on, we will be using the
above terms instead, so be sure you know what they mean.

The Instruction Pointer

Previously we have concentrated on general registers and how they work. The only special
register we've dealt with is the status register, and we really didn’t say much about it. The next
special register we will deal with is the instruction pointer¥aip . We mentioned earlier that

the computer sees every byte on the computer in the same way. If we have a number that is an
entire word, the computer doesn’'t know what address that word starts or ends at. The computer
doesn’t know the difference between instructions and data, either. Any value in memory could be
instructions, data, or the middle of an instruction or piece of data. So how does the computer
know what to execute? The answer is the instruction pointer. The instruction pointer always has
the value of the next instruction. When the computer is ready to execute an instruction, it looks at
the instruction pointer to see where to go next. It then increments the instruction pointer to point
to the next instruction. After it finishes executing the current instruction, it looks at the instruction
pointer again. That's all well and good, but what about jumpsj(tipefamily of instructions)? At

the end of those instructions, the computer does _not_ look at the next instruction, it goes to an
instruction in a totally different place. How does this work? Because

jmp somewhere
is exactly the same as
movl $somewhere, %eip

Wheresomewhere is a symbol referring to a program section. Now, you can’t actually do this,
because you are not allowed to refer directlydeip, but if you could this would be how. Also

note that we put a dollar sign in front eémewhere . How do we know when to put a dollar sign

and when not to? The dollar sign says to use immediate mode addressing, which means to treat
somewhere as a value. If the dollar sign weren’t there, it would switch to direct addressing mode,

102

Chapter 9. Intermediate Memory Topics

moving the value in theomewhere 's address int@oeip , which is not what we want. In our
previous programs, we often will load registers like this:

movl $0, %ebx

The dollar sign in front of the zero indicates that this is an immediate-mode instruction, meaning
that we load the value zero itself. If we accidentally left out the dollar sign, instead of putting the
number zero ifoebx, we would be using direct addressing mode, putting whatever was at
address zero on our computer int@bx. To refresh your memory of addressing modes,teee
Section calledata Accessing Methods Chapter 2

The Memory Layout of a Linux Program

This section is based off of Konstantin Boldyshev’s document, "Startup state of a Linux/i386 ELF
binary", available at http://linuxassembly.org/startup.html

When you program is loaded into memory, eadttion is loaded into its own spot. The

actual code (theext section) is loaded at the address 0x08048000..ddta section is

loaded immediately after that, followed by thas (seethe Section calle®uffers andbss in
Chapter % section. Remember, thiess section has all of the memory locations that we reserve
that we don't put values in until run-time. In théata section, we put actual values into the
storage spaces we reserved (withtheg directive). This information is embedded in the
program file, and loaded when the program starts..bte section is not initialized until after

the program is run. Therefore, the data doesn’t have to be stored in the program file itself, it just
notes that it needs a certain number of storage spaces. Anyway, we’ll talk more about that later.

The last storage location that can be addressed is location Oxbfffffff.téXte , .data , and

.bss sections all start at 0x08048000 and grow larger. The next sections start at the end and grow
back downward.First, at the very end of memory, there are two words that just contain zeroes.
After that comes the name of the program. Each letter takes up one byte, and it is ended by the
NULL character (theo we talked about earlief)After the program name comes the program
environment values. These are not important to us now. Then come the program arguments.
These are the values that the user typed in on the command line to run this program. In the case
of the "maximum" program, there would only be one valireaximum . Other programs take

more arguments. When we ras, for example, we give it several argumentss; maximum.s ,

-0 , andmaximum.o . After these, we have the stack. This is where all of our data goes when we
do pushes, pops and calls. Since the stack is at the top of the memory, it growS/ekspn.

2. You may be thinking, "what if they grow toward each other and overlap?" Although this is possible, it is
extremely unlikely, because the amount of space in-between is huge.

3. The NULL character is actually the number 0, not to be confused witlshtheactero, whose numeric

value is not zero. Every possible letter, symbol, or number you can type with your keyboard has a number
associated with it. These numbers are called "ASCII codes". We’'ll deal more with these later.

103

Chapter 9. Intermediate Memory Topics

always holds the current address of where the next value will be put on the stack. It then gets
decreased whenever there is a push, and increased whenever there is a pop. So,

pushl %eax

is equivalent to

movl %eax, (%esp)
subl $4, %esp

subl does subtraction. Sin@eeax is four bytes big, we have to subtract 4 fréaesp. In the
same way

popl %eax
is the same as

movl (%esp), Yeax
addl $4, %esp

Now, notice on thenovl , we had%esp in parenthesis. That's because we wanted the value that
%esp pointed to, not the actual address. If we just did

movl %esp, %eax

%eax would just have the pointer to the end of the stack.

So, the stack grows downward, while tihhes section grows upward. This middle part is called

the break, and you are not allowed to access it until you tell the kernel that you want to. If you try,
you will get an error (the error message is usually "segmentation fault"). The same will happen if
you try to access data before the beginning of your program, 0x08048000. In general, it's best not
to access any location unless you have reserved storage for it in the stack, data, or bss sections.

Every Memory Address is a Lie

So, why does the computer not allow you to access memory in the break area? To answer this
guestion, we will have to delve into the depths of how your computer really handles memory. Be
warned, reading this section is like taking the blue’pill

You may have wondered, since every program gets loaded into the same place in memory, don’t
they step on each other, or overwrite each other? It would seem so. However, as a program writer,
you only accessirtual memory Physical memoryefers to the actual RAM chips inside your

4. as in the movieThe Matrix

104

Chapter 9. Intermediate Memory Topics

computer and what they contain. It's usually between 16 and 512 Megabytes. If we talk about a
physical memory addresae are talking about where exactly on these chips a piece of memory is
located. So, what'’s virtual memory? Virtual memory is the way your program thinks about
memory. Before loading your program, Linux finds empty physical memory, and then tells the
processor to pretend that this memory is actually at the address 0x0804800. Confused yet? Let
me explain further.

Each program gets its own sandbox to play in. Every program running on your computer thinks
that it was loaded at memory address 0x0804800, and that it's stack starts at Oxbffffff. When

Linux loads a program, it finds a section of memory, and then tells the processor to use that
section of memory as the address 0x0804800 for this program. The address that a program
believes it uses is called the virtual address, while the actual address on the chips that it refers to
is called the physical address. The process of assigning virtual addresses to physical addresses is
calledmapping Earlier we talked about the break in memory between the bss and the stack, but
we didn’t talk about why it was there. The reason is that this segment of virtual memory
addresses hasn’t been mapped onto physical memory addresses. The mapping process takes up
considerable time and space, so if every possible virtual address of every possible program were
mapped, you probably couldn’t even run one program. So, the break is the area that contains
unmapped memory.

Virtual memory can be mapped to more than just physical memory; it can be mapped to disk as
well. Swap files, swap partitions, and paging files all refer to the same basic idea - extending
memory mapping to disk. For example, let’s say you only have 16 Megabytes of physical
memory. Let’s also say that 8 Megabytes are being used by Linux and some basic applications,
and you want to run a program that requires 20 Megabytes of memory. Can you? The answer is
yes, if you have set up a swap file or partition. What happens is that after all of your remaining 8
Megabytes of physical memory have been mapped into virtual memory, Linux starts mapping
parts of your disk into memory. So, if you access a "'memory" location in your program, that
location may not actually be in memory at all, but on disk. When you access the memory, Linux
notices that the memory is on disk, and moves that portion of the disk back into physical memory,
and moves another part of physical memory back onto the disk. So, not only can Linux have a
virtual address map to a different physical address, it can also move those mappings around as
needed.

Memory is separated out into groups calfses When running Linux on x86 processors, a

page is four thousand ninety six bytes of memory. All of the memory mappings are done a page
at a time. What this means to you is that whenever you are programming, try to keep most
memory accesses within the same basic range of memory, so you will only need a page or two of
memory. Otherwise, Linux will have to keep moving pages on and off of disk to keep up with

you. Disk access is slow, so this can really slow down your program. Also, if you have a lot of
programs that are all moving around too fast into memory, your machine can get so bogged down
moving pages on and off of disk that the system becomes unusable. Programmers saththis

105

Chapter 9. Intermediate Memory Topics

death It's usually recoverable if you start terminating your programs, but it's a pain.

Getting More Memory

We know that Linux maps all of our virtual memory into real memory or swap. If you try to
access a piece of virtual memory that hasn’t been mapped yet, it triggers an error known as a
segmentation fault, which will terminate your program. The program break point, if you
remember, is the last valid address you can use. Now, this is all great if you know beforehand
how much storage you will need. You can just add all the memory you need to your data section,
and it will all be there. But let’s say you don’t know how much memory you will need. For
example, with a text editor, you don’t know how long the person’s file will be. You could try to
find a maximum file size, and just tell the user that they can’t go beyond that, but that's a waste if
the file is small. So, Linux has a facility to move the break point. If you need more memory, you
can just tell Linux where you want the new break point to be, and Linux will map all the memory
you need, and then move the break point. The way we tell Linux to move the break point is the
same way we told Linux to exit our program. We |gadax with the system call number, 45 in

this case, and loathebx with the new breakpoint. Then you calt $0x80 to signal Linux to

do its work. Linux will do its thing, and then return either O if there is no memory left or the new
break point ireeax. The new break point might actually be larger than what you asked for,
because Linux rounds up to the nearest page.

The problem with this method is keeping track of the memory. Let’s say | need to move the break
to have room to load a file, and then need to move a break again to load another file. Later, let's
say you get rid of the first file. You now have a giant gap in memory that’s mapped, but you aren’t
using. If you continue to move the break for each file you load, you can easily run out of memory.
So, what you need ismemory manageA memory manager consists of two basic functions -
allocate anddeallocate . A memory manager usually also has an initialization function.

Note that the function names might notdilecate = anddeallocate , but that the functionality

will be the same. Whenever you need a certain amount of memory, you can simply tell

allocate how much you need, and it will give you back an address to the memory. When you're
done with it, you telldeallocate that you are through with it. Thesdlocate ~ will be able to

reuse the memory. This minimizes the number of "holes" in your memory, making sure that you
are making the best use of it you can.

FIXME - what about talking about handles?

A Simple Memory Manager

Here | will show you a simple memory manager. It is extremely slow at allocating memory,

106

Chapter 9. Intermediate Memory Topics

especially after having been called several timeewever, it shows the principles quite well,

and as we learn more sophisticated programming techniques, we will improve upon it. As usual, |
will give you the program first for you to look through. Afterwards will follow an in-depth
explanation.

#PURPOSE: Program to manage memory usage - allocates
and deallocates memory as requested

#

#NOTES: The programs using these routines will ask
for a certain size of memory. We actually
use more than that size, but we put it

at the beginning, before the pointer

we hand back. We add a size field and

an AVAILABLE/UNAVAILABLE marker. So, the
memory looks like this

HHH R R R R R T T T R R T T T

#Available Marker#Size of memory#Actual memory locations#

ARtgEnE R SR AR R AR R AR R R R e e e AR e R
A--Returned pointer

points here

The pointer we return only points to the actual locations

requested to make it easier for the calling program. It

also allows us to change our structure without the calling

program having to change at all.

HHHFHHFHHHFHHHFHHHFHHR

.section .data

#HHHHHGLOBAL VARIABLESH#H###HHHH

#This points to the beginning of the memory we are managing
heap_begin:

dong 0O

#This points to one location past the memory we are managing

current_break:
Jdong 0O

HHHHHHAAHHCONSTANT SHHHHHIFHHH

.equ UNAVAILABLE, 0 #This is the number we will use to mark

5. luse the word "slow", but it will not be noticeably slow for any example used in this book.

107

Chapter 9. Intermediate Memory Topics

#space that has been given out

.equ AVAILABLE, 1 #This is the number we will use to mark
#space that has been returned, and is
#available for giving

.equ BRK, 45 #system call number for the break system call

.equ LINUX_SYSCALL, 0x80 #make system calls easier to read
#H##H##STRUCTURE INFORMATION####

.equ HEADER_SIZE, 8 #size of space for memory segment header

.equ HDR_AVAIL_OFFSET, 0 #Location of the "available" flag in the header

.equ HDR_SIZE OFFSET, 4 #Location of the size field in the header

.section .text

#HHHHHAHHHHEUNCT ION SHAHHHHHHHHH

##allocate_init##
#PURPOSE: call this function to initialize the

functions (specifically, this sets heap_begin and
current_break). This has no parameters and no return
value.

.globl allocate_init

type allocate_init,@function

allocate_init:

pushl %ebp #standard function stuff
movl %esp, %ebp

#If the brk system call is called with 0 in %ebx, it

#returns the last valid usable address

movl $BRK, %eax #find out where the break is
movl $0, %ebx

int $LINUX SYSCALL

incl %eax #%eax now has the last valid
#address, and we want the memory
#location after that

movl %eax, current break #store the current break

movl %eax, heap_begin #store the current break as our
#first address. This will cause

108

Chapter 9. Intermediate Memory Topics

#the allocate function to get
#more memory from Linux the first
#time it is run

movl %ebp, %esp #exit the function
popl %ebp
ret

#HAHHEND OF FUNCTION#######H

##allocate##

#PURPOSE: This function is used to grab a section of memory.
It checks to see if there are any free blocks, and,
if not, it asks Linux for a new one.

#

#PARAMETERS: This function has one parameter - the size

of the memory block we want to allocate

#

#RETURN VALUE:

This function returns the address of the allocated
memory in %eax. If there is no memory available,
it will return 0 in %eax

#

####H#PROCESSIN GHit##HH#HHHH#
#Variables used:

%ecx - hold the size of the requested memory (first/only parameter)
%eax - current memory segment being examined

%ebx - current break position

%edx - size of current memory segment

H HHH HH

#We scan through each memory segment starting with heap_begin.
#We look at the size of each one, and if it has been allocated.
#If it's big enough for the requested size, and its available,

#it grabs that one. If it does not find a segment large enough,
#it asks Linux for more memory. In that case, it moves
#current_break up

.globl allocate

.type allocate,@function

.equ ST_MEM_SIZE, 8 #stack position of the memory size
#to allocate

allocate:

pushl %ebp #standard function stuff

movl %esp, %ebp

109

Chapter 9. Intermediate Memory Topics

movl ST_MEM_SIZE(%ebp), %ecx #%ecx will hold the size we are
#looking for (which is the first
#and only parameter)

movl heap_begin, %eax #%eax will hold the current search
#location
movl current_break, %ebx #%ebx will hold the current break point

alloc_loop_begin: #here we iterate through each
#memory segment

cmpl %ebx, %eax #need more memory if these are equal
je move_break

movl HDR_SIZE OFFSET(%eax), %edx #grab the size of this memory
cmpl SUNAVAILABLE, HDR_AVAIL_OFFSET(%eax) #If the space is unavailable, go to the
je next_location #next one

cmpl %edx, %ecx #1f the space is available, compare
jle allocate_here #the size to the needed size. If its
#big enough, go to allocate_here

#may want to add code here to
#combine allocations

next_location:

addl $HEADER_SIZE, %eax #The total size of the memory segment

addl %edx, %eax #is the sum of the size requested
#(currently stored in %edx), plus another
#8 storage locations for the header
#(4 for the AVAILABLE/UNAVAILABLE flag,
#and 4 for the size of the segment). So,
#adding %edx and $8 to %eax will get
#the address of the next memory segment

jmp alloc_loop_begin #go look at the next location
allocate_here: #if we've made it here,
#that means that the segment header

#of the segment to allocate is in %eax

movl $UNAVAILABLE, HDR_AVAIL_OFFSET(%eax) #mark space as unavailable

110

addl $HEADER_SIZE, %eax

movl %ebp, %esp

popl %ebp
ret
move_break:

addl $HEADER_SIZE, %ebx
addl %ecx, %ebx

pushl %eax
pushl %ecx
pushl %ebx

movl $BRK, %eax

int $LINUX_SYSCALL

cmpl $0, %eax
je error

popl %ebx

Chapter 9. Intermediate Memory Topics

#move %eax past the header to
#the usable memory (since that's what
#we return)

#return from the function

#if we've made it here, that
#means that we have exhausted all
#memory that we can address,
#we need to ask for more. %ebx holds
#the current endpoint of the data,
#and %ecx holds its size

#now we need to increase %ebx to
#where we _want_ memory to end, so we
#add space for the headers structure
#add space to the break for

#the data requested

#now its time to ask Linux for more
#memory

#save needed registers

#reset the break (%ebx has the requested
#break point)

#under normal conditions, this should
#return the new break in %eax, which
#will be either 0 if it fails, or
#it will be equal to or larger than
#we asked for. We don't care
#in this program where it actually
#isets the break, so as long as %eax
#isn't 0, we don’t care what it is

#check for error conditions

#restore saved registers

111

Chapter 9. Intermediate Memory Topics

popl %ecx
popl %eax

movl $SUNAVAILABLE, HDR_AVAIL_OFFSET(%eax) #set this memory as
#unavailable, since we’re about to
#give it away

movl %ecx, HDR_SIZE_OFFSET(%eax) #set the size of the memory

addl $HEADER_SIZE, %eax #move %eax to the actual start of
#usable memory. %eax now holds the
#return value

movl %ebx, current_break #save the new break

movl %ebp, %esp #return the function

popl %ebp

ret

error:

movl $0, %eax #on error, we just return a zero
movl %ebp, %esp

popl %ebp

ret

#HHHHHAHEND OF FUNCTION###H#H#HHHE

##deallocate##
#PURPOSE: The purpose of this function is to give back

a segment of memory to the pool after we're done
using it.

#

#PARAMETERS: The only parameter is the address of the memory
we want to return to the memory pool.

#

#RETURN VALUE:

There is no return value

#

#PROCESSING:

If you remember, we actually hand the program the
start of the memory that they can use, which is

8 storage locations after the actual start of the
memory segment. All we have to do is go back
8 locations and mark that memory as available,

so that the allocate function knows it can use it.

HOH O HHFH

.globl deallocate

112

Chapter 9. Intermediate Memory Topics

.type deallocate,@function
.equ ST_MEMORY_SEG, 4 #stack position of the memory segment to free
deallocate:

#since the function is so simple, we

#don't need any of the fancy function

#stuff.

movl ST_MEMORY_SEG(%esp), %eax #get the address of the memory to free
#(normally this is 8(%ebp), but since
#we didn't push %ebp or move %esp to
#%ebp, we can just do 4(%esp)

subl $HEADER_SIZE, %eax #get the pointer to the real beginning
#of the memory

movl $AVAILABLE, HDR_AVAIL_OFFSET(%eax) #mark it as available

ret #Hreturn
#HH#HHHHEND OF FUNCTION###HH#HHHHHTH#HH

The first thing to notice is that there is netart symbol. The reason is that this is just a section
of a program. A memory manager by itself is not a full program - it doesn’t do anything. It has to
be linked with another program to work. Will will see that happen later. So, you can assemble it,
but you can'’t link it. So, type in the program akoc.s , and then assemble it with

as alloc.s -o alloc.o

Okay, now let’s look at the code.

Variables and Constants

At the beginning of the program, we have two locations set up -

heap_begin:
dong 0O

current_break:
dong 0O

113

Chapter 9. Intermediate Memory Topics

The section of memory being managed is commonly referred to dsetige Now, when we

assemble the program, we have no idea where the beginning of the heap is, nor where the current
break point is. Therefore, we reserve space for them, but just fill them with a O for the time being.
You'll notice that the comments call theghobal variables A set of terms commonly used are
globalandlocal variables. A local variable is a variable that is allocated on the stack when a
procedure is run. A global variable is declared as above, and is allocated when the program
begins. So, global variables last for the length of the program, while local variables only last for
the run of the procedure. It is good programming practice to use as few global variables as
possible, but there are some cases where its unavoidable. We will look more at local variables
later.

Next we have a section callednstantsA constant is a symbol that we use to represent a
number. For example, here we have

.equ UNAVAILABLE, O
.equ AVAILABLE, 1

This means that anywhere we use the symbol UNAVAILABLE, to make it just like we're using

the number 0, and any time we use the symbol AVAILABLE, to make it just like we’re using the
number 1. This makes the program much more readable. We also have several others that make
the program more readable, like

.equ BRK, 45
.equ LINUX_SYSCALL, 0x80

Itis much easier to readt $LINUX_SYSCALL thanint $0x80 , even though their meanings
are the same. In general, you should replace any hardcoded value in your code that has a meaning
with .equ statements.

Next we have structure definitions. The memory that we will be handing out has a definite
structure - it has four bytes for the allocated flag, four bytes for the size, and the rest for the actual
memory. The eight bytes at the beginning are known as the header. They contain descriptive
information about the data, but aren’t actually a part of the data. Anyway, we have the following
definitions:

.equ HEADER_SIZE, 8
.equ HDR_AVAIL_OFFSET, 0
.equ HDR_SIZE_OFFSET, 4

So, this says that the header is 8 bytes, the available flag is offset O positions from the beginning
(it's the first thing), and the size field is offset 4 positions from the beginning (right after the
available flag). Since all of our structures are defined here, if we needed to rearrange for some
reason, all we have to do is change the numbers here. If we needed to add another field, we would

114

Chapter 9. Intermediate Memory Topics

just define it here, and change tHEADER_SIZE So, putting definitions like this at the top of the
program is useful, especially for long-term maintenance. Just remember that these are only valid
for the current file.

The allocate_init function

Okay, this is a simple function. All it does is set up tieap_begin andcurrent_break
variables we discussed earlier. So, if you remember the discussion earlier, the current break can
be found using the break system call. So, the function looks like this:

pushl %ebp
movl %esp, %ebp

movl $BRK, %eax
movl $0, %ebx
int SLINUX_SYSCALL

incl %eax

Anyway, afterint SLINUX_SYSCALL , %eax holds the last valid address. We actually want the
first invalid address, so we just increméstax. Then we move that value to theap_begin
andcurrent_break locations. Then we leave the function. Like this:

movl %eax, current_break
movl %eax, heap_ begin
movl %ebp, %esp

popl %ebp

So, why do we want to put an invalid address as the beginning of our heap? Because we don’t
control any memory yet. Ouwtlocate function will notice this, and reset the break so that we
actually have memory.

The allocate function

This is the doozy function. Let’s start by looking at an outline of the function:

1. Start at the beginning of the heap
2. Check to see if we're at the end of the heap

3. If we are at the end of the heap, grab the memory we need from the kernel, mark it as
"unavailable" and return it. If the kernel won't give us any more, return a 0.

115

Chapter 9. Intermediate Memory Topics

4. If the current memory segment is marked "unavailable”, go to the next one, and go back to
#2

5. If the current memory segment is large enough to hold the requested amount of space, mark
it as "unavailable" and return it.

6. Go back to #2

Now, look through the code with this in mind. Be sure to read the comments so you’ll know
which register holds which value.

Now that you've looked through the code, let’'s examine it one line at a time. We start off like this:

pushl %ebp

movl %esp, %ebp

movl ST_MEM_SIZE(%ebp), %ecx
movl heap_begin, %eax

movl current_break, %ebx

This section initializes all of our registers. The first two lines are standard function stuff. The next
move pulls the size of the memory to allocate off of the stack. This is our function parameter.
Notice that we use8T_MEM_SIZEinstead of the number 8. This is to make our code more
readable. | used the pref&@ because it is a stack offset. You don’t have to do this, | do this just

so | know which symbols refer to stack offsets. After that, | move the beginning heap address and
the end of the heap (current break) into registers. | am now ready to do processing.

The next section is markedloca_loop_begin . A'loopis a section of code repeated many

times in a row until certain conditions occur. In this case we are going to loop until we either find

an open memory segment or determine that we need more memory. Our first statements check for
needing more memory.

cmpl %ebx, %eax
je move_break

%eax holds the current memory segment being examined %sattk holds the location past the
current break. Therefore, if this condition occurs, we need more memory to allocate this space.
Notice, too, that this is the case for the first call attkscate_init . S0, let’s skip down to
move_break and see what happens there.

move_break:

addl $HEADER_SIZE, %ebx
addl %ecx, %ebx

pushl %eax

pushl %ecx

pushl %ebx

116

Chapter 9. Intermediate Memory Topics

movl $BRK, %eax
int SLINUX_SYSCALL

So, when we reach this point in the coéesbx holds where we want the next segment of
memory to be. The size should be the size requested plus the size of our headers. So, we add
those numbers téhebx, and that's where we want the program break to be. We then push all the
registers we want to save on the stack, and call the break system call. After that we check for
errors

cmpl $0, %eax
je error

Afterwards we pop the registers back off the stack, mark the memory as unavailable, record the
size of the memory, and make sWeax points to the start of usable memory (after the headers).

popl %ebx
popl %ecx
popl %eax

movl $UNAVAILABLE, HDR_AVAIL_OFFSET(%eax)
movl %ecx, HDR_SIZE_OFFSET(%eax)
addl $HEADER_SIZE, %eax

Then we store the new program break and return

movl %ebx, current _break
movl %ebp, %esp

popl %ebp

ret

Theerror code just returns 0 ifeax, SO we won't discuss it.

So let’s look at the rest of the loop. What happens if the current memory being looked at isn’t past
the end? Well, let’s look.

movl HDR_SIZE_OFFSET(%eax), %edx
cmpl SUNAVAILABLE, HDR_AVAIL_OFFSET(%eax)
je next_location

First, we grab the size of the memory segment and putliiedx. Then, we look at the available
flag to see if it is set ttNAVAILABLE If so, that means that memory is in use, so we’ll have to
skip over it. So, if the available flag is setWtAVAILABLE, you go to the code labeled
next_location . If the available flag is set taVAILABLE, then we keep on going. This is

known adfalling through because we didn't test for this condition and jump to another location -
this is the default. We didn’t have to jump here, it's just the next instruction.

117

Chapter 9. Intermediate Memory Topics

So, let’s say that the space was available, and so we fall through. Then we check to see if this
space is big enough to hold the requested amount of memory. The size of this segment is being
held in%edx, so we do

cmpl %edx, %ecx
jle allocate_here

So, if the requested size is less than or equal to the current segment size, we can use this block. It
doesn’t matter if the current segment is larger than requested, because the extra space will just be
unused. So, let’s jump down tdlocate_here and see what happens there -

movl $SUNAVAILABLE, HDR_AVAIL_OFFSET(%eax)
addl $HEADER_SIZE, %eax

movl %ebp, %esp

popl %ebp

ret

So, we mark the memory as being unavailable, meex past the header, and use it as the
return value for the function.

Okay, so let’s say the segment wasn'’t big enough. What then? Well, we fall through again, to the
code labeledhext_location . This section of code is used both for falling through and for
jumping to any time that we figure out that the current memory segment won't work for allocating
memory. All it does is advand@eax to the next possible memory segment, and go back to the
beginning of the loop. Remember tlRaedx is holding the size of the memory segment, and
HEADER_SIZEis the symbol for the size of the memory segment’s header. So we have

addl $HEADER_SIZE, %eax
addl %edx, %eax
jmp alloc_loop_begin

And the function runs another loop. Now, whenever you have a loop, you must make sure that it
will alwaysend. In our case, we have the following possibilities:

« We will reach the end of the heap
- We will find a memory segment that’s available and large enough
« We will go to the next location

The first two items are conditions that will cause the loop to end. The third one will keep it going.
This loop will always end. Even if we never find an open segment, we will eventually reach the
end of the heap. Whenever you write a loop, you must always make sure it ends, or else the

118

Chapter 9. Intermediate Memory Topics

computer will waste all of its time there, and you’ll have to terminate your program. This is
called aninfinite loop because it could go on forever without stopping.

The deallocate function

Thedeallocate function is much easier than the allocate one. That's because it doesn’t have to
do any searching at all. It can just mark the current memory segmemAksABLE, and
allocate will find it next time it is run. So we have

movl ST_MEMORY_SEG(%esp), %eax

subl $HEADER_SIZE, %eax

movl $AVAILABLE, HDR_AVAIL_OFFSET(%eax)
ret

In this function, we don’t have to sageebp or %esp since we’re not changing them, nor do we

have to restore them at the end. All we're doing is reading the address of the memory segment
from the stack, backing up to the beginning of the header, and marking the segment as available.
This function has no return value, so we don’t care what we lea%eeux.

Performance Issues and Other Problems

Okay, so we have our nice little memory manager. It's a very simplistic one. Most memory
managers are much more complex. Ours was simple so you could see the basics of what a
memory manager has to deal with. Now, our memory manager does work, it just doesn’t do so
optimally. Before you read the next paragraph, try to think about what the problems with it might
be.

Okay, the biggest problem here is speed. Now, if there are only a few allocations made, then
speed won'’t be a big issue. But think about what happens if you make a thousand allocations. On
allocation number 1000, you have to search through 999 memory segments to find that you have
to request more memory. As you can see, that’s getting pretty slow. In addition, remember that
Linux can keep pages of memory on disk instead of in memory. So, since you have to go through
every piece of memory, that means that Linux has to load every part of memory from disk to
check to see if its available. You can see how this could get really, really’Sltig method is

said to run ininear time, which means that every element you have to manage makes your
program take longer. A program that runsconstanttime takes the same amount of time no

matter how many elements you are managing. Takeléhkocate function, for instance. It

only runs 4 instructions, no matter how many elements we are managing, or where they are in

6. Thisis why adding more memory to your computer makes it run faster. The more memory your computer
has, the less it puts on disk, so it doesn’t have to always be interrupting your programs to retreive pages off
the disk.

119

Chapter 9. Intermediate Memory Topics

memory. In fact, although owtlocate function is one of the slowest of all memory managers,
thedeallocate function is one of the fastest. Later, we will see how to impraiacate
considerably, without slowing dowaeallocate ~ too much.

Another performance problem is the number of times we’re calling the break system call. System
calls take a long time. They aren’t like functions, because the processor has to switch modes.
Your program isn’t allowed to map itself memory, but the Linux kernel is. So, the processor has
to switch intokernel modethen it maps the memory, and then switches bacelsgr modeThis

is also called @ontext switchThis takes a long time because although your program looks at its
virtual memory, Linux looks at the physical memory. Therefore, the processor has to forget all of
its page mappings. All of this takes a lot of time. So, you should avoid calling the kernel unless
you really need to. The problem that we have is that we aren’t recording where Linux actually
sets the break. In our previous discussion, we mentioned that Linux might actually set the break
past where we requested it. If we wanted to save time, we should record that location in
move_break , and the next time we ask for memory, look to see if the break is already where we
need it. Along the same lines, it might be wise to always ask for a lot more memory than we
really need, in order to reduce the number of times we have to call the break system call. We just
have to remember that Linux has to map everything, even if we don’t use it, so we don’t want to
waste too many resources. You will find that most things in programming are about balances. Do
we want it to go faster or use less memory? Do we want an exact answer in a few hours, or an
approximate one in a few minutes? Do we natetate or deallocate to be faster? For

example, let’s say that our program has three times as many allocations as deallocations, and then
at the end it deallocates everything it hasn’'t used. In that case, waatheede to be as fast as
possible, because it's used three times as often. Decisions like this characterize programming.

Another problem we have is that if we are looking for a 5-byte segment of memory, and the first
open one we come to is 1000 bytes, we will simply mark the whole thing as allocated and return
it. This leaves 995 bytes of unused, but allocated, memory. It would be nice in such situations to
break it apart so the other 995 bytes can be used later. It would also be nice to combine
consecutive free spaces when looking for large allocations.

A potentially bigger problem that we have is that we assume that we are the only program that
can set the break. In many programs, there is more than one memory manager. Also, there are
other reasons to map memory that we will see in a later chapter. Both of these things will break
using this memory manager, because it assumes that it has all of free memory. Trace through the
program and see what kind of problems you might run into if another function moved the break
betweernllocate s and used the memorg®ocate would have no idea, and just write over it.
That would suck.

Finally, we have a problem that we have unrestricted access to global variables, namely
heap_begin andcurrent_break . Now, heap_begin isn’'t a problem because it is set once
and then only read. Howeverrent_break changes quite often. Later, we will see cases

120

Chapter 9. Intermediate Memory Topics

where you might be imllocate when you need to cadlllocate again because of an external
event. If the twaallocate s are both trying to modifgurrent_break , it could be disasterous.

If you are totally confused by this, that’s okay. I'm just warning you about later chapters. Just be
aware that you should avoid using global variables as much as possible. In this book, we will use
them a decent amount because the generally give shorter, simpler programs - which is good for a
book, but not so good for real life.

Review

Know the Concepts

+ Describe the Linux stack.

« What are the initial contents of the Linux stack?

« What happens when you access unmapped memory?

« How does the operating system prevent processes from writing over each other's memory?
« What happens if a piece of memory you are using is currently residing on disk?

« What is thecurrent break?

« Why do you need an allocator?

Use the Concepts

Going Further

121

Chapter 9. Intermediate Memory Topics

122

Chapter 10. Counting Like a Computer

* | need to make sure | include explanation of stuff like open flags here, and that | reference this chapter in the
sections that use open flags

Counting

Counting Like a Human

In many ways, computers count just like humans. So, before we start learning how computers
count, let's take a deeper look at how we count.

How many fingers do you have? No, it's not a trick question. Humans (normally) have ten

fingers. Why is that significant? Look at our numbering system. At what point does a one-digit
number become a two-digit number? That'’s right, at ten. Humans count and do math using a base
ten numbering system. Base ten means that we group everything in tens. Let’'s say we’re counting
sheep. 1, 2, 3,4,5, 6, 7, 8,9, 10. Why did we all of a sudden now have two digits, and re-use the
1? That's because we're grouping our numbers by ten, and we have 1 group of ten sheep. Okay,
let’s go to the next number 11. That means we have 1 group of ten sheep, and 1 sheep left
ungrouped. So we continue - 12, 13, 14, 15, 16, 17, 18, 19, 20. Now we have 2 groups of ten. 21 -
2 groups of ten, and 1 sheep ungrouped. 22 - 2 groups of ten, and 2 sheep ungrouped. So, let's say
we keep counting, and get to 97, 98, 99, and 100. Look, it happened again! What happens at 100?
We now have ten groups of ten. At 101 we have ten groups of ten, and 1 ungrouped sheep. So we
can look at any number like this. If we counted 60879 sheep, that would mean that we had 6
groups of ten groups of ten groups of ten groups of ten, 0 groups of ten groups of ten groups of
ten, 8 groups of ten groups of ten, 7 groups of ten, and 9 sheep left ungrouped.

So, is there anything significant about grouping things by ten? No! It's just that grouping by ten is
how we've always done it, because we have ten fingers. We could have grouped at nine or at
eleven, in which case we would have had to make up a new symbol. The only difference between
the different groupings of numbers, is that we have to re-learn our multiplication, addition,
subtraction, and division tables. The rules haven’t changed, just the way we represent them. Also,
some of our tricks that we learned don’t always apply, either. For example, let’'s say we grouped
by nine instead of ten. Moving the decimal point one digit to the right no longer multiplies by ten,

it now multiplies by nine. In base nine, 500 is only nine times as large as 50.

Counting Like a Computer

The question is, how many fingers does the computer have to count with? The computer only has
two fingers. So that means all of the groups are groups of two. So, let's count in binary - O (zero),

123

Chapter 10. Counting Like a Computer

1 (one), 10 (two - one group of two), 11 (three - one group of two and one left over), 100 (four -
two groups of two), 101 (five - two groups of two and one left over), 110 (six - two groups of two
and one group of two), and so on. In base two, moving the decimal one digit to the right

multiplies by two, and moving it to the left divides by two. Base two is also referred to as binary.

The nice thing about base two is that the basic math tables are very short. In base ten, the
multiplication tables are ten columns wide, and ten columns tall. In base two, it is very simple:

Table of binary addition

+] 0 | 1
[S R
0] 0 | O
[S Fomeem
1] 1 |10

1 0 | 1
[S Fomeee
0] 0 | O
R S R
1] 0 | 1

So, let's add the numbers 10010101 with 1100101:

10010101
+ 1100101

11111010

Now, let's multiply them:

10010101
* 1100101
10010101
00000000
10010101
00000000
00000000

124

Chapter 10. Counting Like a Computer

10010101
10010101

11101011001001

Conversions Between Binary and Decimal

Let’s learn how to convert numbers from binary (base two) to decimal (base ten). This is actually
a rather simple process. If you remember, each digit stands for some grouping of two. So, we just
need to add up what each digit represents, and we will have a decimal number. Take the binary
number 10010101. To find out what it is in decimal, we take it apart like this:

1 0 0 1 0 1 0 1

I | | I

| | | Individual units (2°0)
| | 0 groups of 2 (271)

| 1 group of 4 (2"2)

0 groups of 8 (273)

| 1 group of 16 (2"4)

0 groups of 32 (275)

0 groups of 64 (2"6)

1 group of 128 (2"7)

and then we add all of the pieces together, like this:

1*128 + 0*64 + 0*32 + 1*16 + 0*8 + 1*4 + 0*2 + 1*1 =
128 + 16 + 4 + 1 =
149

S0 10010101 in binary is 149 in decimal. Let’s look at 1100101. It can be written as

1*64 + 1*32 + 0 * 16 + 0*8 + 1*4 + 0*2 + 1*1 =
64 + 32 + 4 + 1 =
101

So we see that 1100101 in binary is 101 in decimal. Let’s look at one more number,
11101011001001. You can convert it to decimal by doing

1*8192 + 1*4096 + 1*2048 + 0*1024 + 1*512 + 0*256 + 1*128 + 1*64 + 0*32 +
0*16 + 1*8 + 0*4 + 0*2 + 1*1 =

8192 + 4096 + 2048 + 512 + 128 + 64 + 8 + 1 =

15049

125

Chapter 10. Counting Like a Computer

Now, if you've been paying attention, you have noticed that the numbers we just converted are
the same ones we used to multiply with earlier. So, let's check our results: 101 * 149 = 15049. It
worked!

Now let’s look at going from decimal back to binary. In order to do the conversion, you have to
dividethe number into groups of two. So, let's say you had the number 17. If you divide it by
two, you get 8 with 1 left over. So that means there are 8 groups of two, and 1 ungrouped. That
means that the rightmost digit will be 1. Now, we have the rigtmost digit figured out, and 8
groups of 2 left over. Now, let's see how many groups of two groups of two we have, by dividing
8 by 2. We get 4, with nothing left over. That means that all groups two can be further divided
into more groups of two. So, we have 0 groups of only two. So the next digit to the left is 0. So,
we divide 4 by 2 and get two, with O left over, so the next digit is 0. Then, we divide 2 by 2 and
get 1, with O left over. So the next digit is 0. Finally, we divide 1 by 2 and get O with 1 left over,
so the next digit to the left is 1. Now, there’s nothing left, so we're done. So, the number we
wound up with is 10001.

Previously, we converted to binary 11101011001001 to decimal 15049. Let’s do the reverse to
make sure that we did it right:

15049 |/ 2 = 7524 Remaining 1
7524 [2 = 3762 Remaining 0
3762 / 2 = 1881 Remaining 0
1881 / 2 = 940 Remaining 1
940 / 2 = 470 Remaining 0
470 [/ 2 = 235 Remaining 0
235/ 2 = 117 Remaining 1
117 / 2 = 58 Remaining 1
58 /2 =29 Remaining 0
29/ 2 =14 Remaining 1
14 /2 =7 Remaining 0
712 =3 Remaining 1
3/2=1 Remaining 1
1/2=0 Remaining 1

Then, we put the remaining numbers back together, and we have the original number! Remember
the first division remainder goes to the far right, so from the bottom up you have
11101011001001.

Each digit in a binary number is calleb#, which stands fobinary digit Computers divide up

their memory into storage locations called bytes. Each storage location on an IA32 computer (and
most others) is 8 bits long. Earlier we said that a byte can hold any number between 0 and 255.
The reason for this is that the largest number you can fit into 8 bits is 255. You can see this for
yourself if you convert binary 11111111 into decimal:

126

Chapter 10. Counting Like a Computer

11111111 =
(L*2°7) + (L *2/6) + (L% 2/5) + (1 * 27) + (1L * 283) + (L * 2°2) + (1 * 2°1) + (1 * 270) =
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =

255

The largest number that you can hold in 16 bits is 65535. The largest number you can hold in 32
bits is 4294967295 (4 billion). The largest number you can hold in 64 bits is
18,446,744,073,709,551,615. The largest number you can hold in 128 bits is
340,282,366,920,938,463,463,374,607,431,768,211,456. Anyway, you see the picture. For 1A32,
most of the time you will deal with 4-byte numbers (32 bits), because that’s the size of the
registers.

Truth, Falsehood, and Binary Numbers

Now we've seen that the computer stores everything as sequences of 1's and 0’s. Let’s look at
some other uses of this. What if, instead of looking at a sequence of bits as a humber, we instead
looked at it as a set of switches. For example, let's say there are four switches that control lighting
in the house. We have a switch for outside lights, a switch for the hallway lights, a switch for the
living room lights, and a switch for the bedroom lights. We could make a little table showing
which of these were on and off, like so:

Outside Hallway Living Room Bedroom
On Off On On

It's obvious from looking at this that all of the lights are on except the hallway ones. Now, instead
of using the words "On" and "Off", let’s use the numbers 1 and 0. 1 will represent on, and O will
represent off. So, we could represent the same information as

Outside Hallway Living Room Bedroom
1 0 1 1

Now, instead of having labels on the light switches, let’s say we just memorized which position
went with which switch. Then, the same information could be represented as

1 0 1 1

or as

1011

127

Chapter 10. Counting Like a Computer

This is just one of many ways you can use the computers storage locations to represent more than
just numbers. The computers memory just sees numbers, but programmers can use these numbers
to represent anything their imaginations can come up with.

Not only can you do regular arithmetic with binary numbers, they also have a few operations of
their own. The standard binary operations are

- AND
- OR

« NOT
+ XOR

Before we look at examples, I'll describe them for you. AND takes two bits and returns one bit.
AND will return a 1 only if both bits are 1, and a O otherwise. For example, 1 AND 1is 1, but 1
AND Ois0,0AND 1is 0, and 0 AND 0 is 0. OR takes two bits and returns one bit. It will return

1 if either of the original bits is 1. For example, 1 OR 1is1,1 OR0isone,00OR 1is 1, but0 OR
0is 0. NOT only takes one bit, and returns it's opposite NOT 1 is 0 and NOT 0 is 1. Finally, XOR

is like OR, except it returns 0O if both bits are 1. Computers can do these operations on whole
registers at a time. For example, if a register has 10100010101010010101101100101010 and
another one has 10001000010101010101010101111010, you can run any of these operations on
the whole registers. For example, if we were to AND them, the computer will run from the first

bit to the 32nd and run the AND operation on that bit in both registers. In this case:

10100010101010010101101100101010 AND
10001000010101010101010101111010

10000000000000010101000100101010

You'll see that the resulting set of bits only has a one wibetnumbers had a one, and in every
other position it has a zero. Let’s look at what an OR looks like:

10100010101010010101101100101010 OR
10001000010101010101010101111010

10101010111111010101111101111010

In this case, the resulting number has a 1 where either number has a 1 in the given position. Let's
look at the NOT operation:

NOT 10100010101010010101101100101010

01011101010101101010010011010101

128

Chapter 10. Counting Like a Computer

This just reverses each digit. Finally, we have XOR, which is like an OR, excbpthidigits are
1, it returns O.

10100010101010010101101100101010 XOR
10001000010101010101010101111010

00101010111111000000111001010000

This is the same two numbers used in the OR operation, so you can compare how they work.
Also, if you XOR a number with itself, you get 0, like this:

10100010101010010101101100101010 XOR
10100010101010010101101100101010

00000000000000000000000000000000

These operations are useful for two reasons:

« The computer can do them extremely fast
+ You can use them to compare many truth values at the same time

You may not have known that different instructions execute at different speeds. It's true, they do.
And these operations are pretty much the fastest. For example, you saw that XORing a number
with itself produces 0. Well, the XOR operation is faster than the loading operation, so many
programmers use it to load a register with zero. For example, the code

movl $0, %eax

is often replaced by

xorl %eax, %eax

We'll discuss speed more in the optimization chapter, but | want you to see how programmers
often do tricky things, especially with these binary operators, to make things fast. Now let’s look
at how we can use these operators to manipulate true/false values. Earlier we discussed how
binary numbers can be used to represent any number of things. Let’'s use binary numbers to
represent what things my Dad and | like. First, let’s look at the things | like:

Food: yes

Heavy Metal Music: yes
Wearing Dressy Clothes: no
Football: yes

129

Chapter 10. Counting Like a Computer

Now, let’s look at what my Dad likes:

Food: yes

Heavy Metal Music: no
Wearing Dressy Clothes: yes
Football: yes

Now, let’s use a 1 to say yes we like something, and a 0 to say no we don’t. Now we have:

Me

Food: 1

Heavy Metal Music: 1
Wearing Dressy Clothes: 0
Football: 1

Dad

Food: 1

Heavy Metal Music: 0
Wearing Dressy Clothes: 1
Football: 1

Now, if we just memorize which position each of these are in, we have

Me
1101

Dad
1011

Now, let’'s see we want to get a list of things both my Dad and | like. You would use the AND
operation. So

1101 AND
1011

Which translates to

Things we both like

Food: yes

Heavy Metal Music: no
Wearing Dressy Clothes: no
Football: yes

130

Chapter 10. Counting Like a Computer

Remember, the computer has no idea what the ones and zeroes represent. That’s your job.
Obviously, later down the road you would examine each bit and tell the user what it’s for. If you
asked a computer what two people agreed on and it answered 1001, it wouldn’t be very useful.
Anyway, let's say we want to know the things that we disagree on. For that we would use XOR,
because it will return 1 only if one or the other is 1, but not both. So

1101 XOR
1011

And I'll let you translate that back out. So you see how these work.

The previous operations: AND, OR, NOT, and XOR are calfledlean operatobecause they

were first studied by a guy with the last name of Boole. So, if someone mentiones boolean
operators or boolean algebra, you now know what they are talking about. Anyway, there are also
two binary operators that aren’t boolean, shift and rotate. Shifts and rotates each do what their
name implies, and can do so to the right or the left. A left shift moves each digit of a binary
number one space to the left, puts a zero in the ones spot, and chops off the furthest digit to the
left. A left rotate does the same thing, but takes the furthest digit to the left and puts it in the ones
spot. For example,

Shift left 10010111 = 00101110
Rotate left 10010111 = 00101111

Notice that if you rotate a number for every digit it has, you wind up with the same number.
However, if you shift a number for every digit you have, you wind up with 0. So, what are these
shifts useful for? Well, if you have binary numbers representing things, you use shifts to peek at
each individual value. Let’s say, for instance, that we had my Dad’s likes stored in a register (32
bits). It would look like this:

00000000000000000000000000001011

Now, as we said previously, this doesn’t work as program output. So, in order to do output, we
would need to do shifting anghasking Masking is the process of eliminating everything you

don’t want. In this case, for every value we are looking for, we will shift the number so that value
is in the ones place, and then mask that digit so that it is all we see. For example, let's say we
wanted to print out whether my Dad likes dressy clothes or not. That data is the second value
from the right. So, we have to shift the number right 1 digit so it looks like this:

00000000000000000000000000000101

131

Chapter 10. Counting Like a Computer

and then, we just want to look at that digit, so we mask it by ANDing it with
00000000000000000000000000000001.

00000000000000000000000000000101 AND
00000000000000000000000000000001

00000000000000000000000000000001

This will make the value of the register 1 if my Dad likes dressy clothes, and O if he doesn’t. Then
we can do a comparison to 1 and print the results. The code would look like this:

NOTE - assume that the register %ebx holds my Dad's preferences

movl %ebx, %eax ;;This copies the information into %eax so
;we don't lose the original data

sall $1, %eax ;;This is the shift operator. It stands for
;:Shift Arithmatic Left Long. This first
;;number is the number of positions to shift,
;;and the second is the register to shift

andl $0b00000000000000000000000000000001, %eax ;;This does the masking

cmpl $0b00000000000000000000000000000001, %eax ;;Check to see if the re-
sult is 1 or O

je yes_he_likes_dressy clothes
jmp no_he_doesnt_like_dressy_clothes

And then we would have two labels which printed something about whether or not he likes dressy
clothes and then exits. Tlo® notation means that what follows is a binary number. In this case it
wasn't needed, because 1 is the same in any numbering system. We also didn’t need the 31
zeroes, but | put them in to make a point that the number you are using is 32 bits.

When a number represents a set of options for a function or system call, the individual true/false
elements are calleithgs Many system calls have numerous options that are all set in the same
register using a mechanism like we've described. den system call, for example, has as its
second parameter a list of flags to tell the operating system how to open the file. Some of the flags
include:

132

Chapter 10. Counting Like a Computer
O_WRONLY

This flag isOb00000000000000000000000000000001 in binary, or01 in octal (or any
number system for that matter). This says to open the file in write-only mode.

O_RDWR

This flag isOb00000000000000000000000000000010 in binary, or02 in octal. This
says to open the file for both reading and writing.

O_CREAT

This flag isOb00000000000000000000000001000000 in binary, or0100 in octal. It
means to create the file if it doesn’t already exist.

O_TRUNC

This flag isOb00000000000000000000001000000000 in binary, or01000 in octal. It
means to erase the contents of the file if the file already exists.

O_APPEND

This flag isOb00000000000000000000010000000000 in binary, or02000 in octal. It
means to start writing at the end of the file rather than at the beginning.

To use these flags, you simply OR them together in the combination that you want. For example,
to open a file in write-only mode, and have it create the file if it doesn't exist, | would use
O_WRONL{01) andO_CREAT0100). Or'd together, | would have 0101.

Note that if you don’t set eithed_ WRONL®r O_RDWRhen the file is automatically opened in
read-only mode@ RDONLYexcept that it isn't really a flag since it's zero). There are many other
flags, but these are the important ones.

The Program Status Register

We've seen how bits on a register can be used to give the answers of yes/no and true/false
statements. On your computer, there is a register calleprtdgram status registefT his register

holds a lot of information about what happens in a computation. For example, have you ever
wondered what would happen if you added two numbers and the result was larger than would fit
in a register? The program status register has a flag called the overflow flag. You can test it to see
if the last computation overflowed the register. There are flags for a number of different statuses.
In fact, when you do a comparenpl) instruction, the result is stored in this register. The jump
instructions jge , jne , etc) use these results to tell whether or not they should jimp.the
unconditional jump, doesn’t care what is in the status register, since it is unconditional.

133

Chapter 10. Counting Like a Computer

Let's say you needed to store a number larger than 32 bits. So, let's say the number is 2 registers
wide, or 64 bits. How could you handle this? If you wanted to add two 64 bit numbers, you would
add the least significant registers first. Then, if you detected an overflow, you could add 1 to the
most significant register before adding them. In fact, this is probably the way you learned to do
decimal addition. If the result in one column is more than 9, you simply carried the number to the
next most significant column. If you added 65 and 37, first you add 7 and 4 to get 12. You keep
the 2 in the right column, and carry the one to the next column. There you add 6, 3, and the 1 you
carried. This results in 10. So, you keep the zero in that column and carry the one to the next most
significant column, which is empty, so you just put the one there. As you can see, most computer
operations are exactly like their human counterparts, except you have to describe them in
excruciating detail.

The program status register has many more useful flags, but they aren’t important for what we're
doing here.

Other Numbering Systems

What we have studied so far only applies to positive integers. However, real-world numbers are
not always positive integers. Negative numbers and numbers with decimals are also used. The
explanations are not in-depth, because the concept is more important than the implementation. If
you wish to know implementation details, you can read further information on the subject.

Floating-point Numbers

So far, the only numbers we've dealt with are integers - numbers with no decimal point.
Computers have a general problem with numbers with decimal points, because computers can
only store fixed-size, finite values. Decimal numbers can be any length, including infinite length
(think of a repeating decimal, like the result of 1 / 3). The way a computer handles this is by
storing decimals at a fixed precision. A computer stores decimal numbers in two parts - the
exponent and the mantissa. The mantissa is the actually numbers that will be used, and the
exponent is what magnitude the number is. For example, 12345.2 is stored as 1.23452 * 10™4.
The mantissa is 1.23452 and the exponent is 4. All numbers are stored as X. XXXXX *
10"XXXX. The number 1 is stored as 1.00000 * 10"0. Now, the mantissa and the exponent are
only so long, which leads to some interesting problems. For example, when a computer stores an
integer, if you add 1 to it, the resulting number is one larger. This does not necessarily happen
with floating point numbers. If the number is sufficiently big, like 5.234 * 10"5000, adding 1 to it
might not even register in the mantissa (remember, both parts are only so long). This affects
several things, especially order of operations. Let’s say that | add 1 to 5.234 * 10"5000 a few
billion or trillion times. Guess what, the number won't change at all. However, if | add one to
itself a few trillion or billion times, and then add it to the original number, it might make a dent.

134

Chapter 10. Counting Like a Computer

Note that | haven’t actually computed this, nor do | know the details of the representation. I'm
just trying to let you in on how this works in the computer so it doesn’t surprise you later on. You
should note that it takes most computers a lot longer to do floating-point arithmetic than it does
integer arithmetic. So, for programs that really need speed, integers are mostly used.

Negative Numbers

There has been much thought as to how to represent negative numbers in a computer. One
thought might be to use the first digit of a number as the sign, so
00000000000000000000000000000001 would represent the number 1, and
10000000000000000000000000000001 would represent -1. This has a problem with the

number 0, however. In this system, you could have both a negative and a positive 0. This leads to
a lot of questions, like "should negative zero be equal to positive zero?", "What should the sign of
zero be in various circumstances?". In addition to questions that arose out of using a single sign
bit, there was also a problem of implementation. Adding a negative and a positive number would
require totally different circuitry than adding two positive numbers. Anyway, these problems were
overcome by using a representation catl@d’s complememntepresentation. To get the negative
representation of a number in two’s complement form, you must perform the following steps:

1. Perform a NOT operation on the number
2. Add one to the resulting number

So, to get the negative 60000000000000000000000000000001 , you would first do a NOT
operation, which give$1111111111111111111111111111110 , and then add one, giving
1111111112111111111211111111111111 . To get negative two, first take
00000000000000000000000000000010 . The NOT of that number is
1111111112112121121121211111111101 . Adding one gives
11111111121121111211212111121111110 . With this representation, you can add numbers just
as if they were positive, and come out with the right answers. For example, if you add one plus
negative one in binary, you will notice that all of the numbers flip to zero. The only thing you
have to remember is to ignore any number carried to far to the left (past the 32nd digit), and your
answers should be fine. This method still makes it easy to tell which numbers are negative and
positive, because negative numbers will always havénethe leftmost position.

Octal and Hexadecimal Numbers

The numbering systems discussed so far have been decimal and binary. However, two others are
used common in computing - octal and hexadecimal. In fact, they are probably written more often

135

Chapter 10. Counting Like a Computer

than binary. Octal is a representation that only uses the numbers 0-7. So, 10 is actually the
number 8 in octal (one group of eight). 121 is 81 (one group of 64 (8"2), two groups of 8, and
one left over). What makes octal nice is that every 3 binary digits make one octal digit (there is no
such grouping of binary digits into decimal). So 0 is 000, 1 is 001, 2is 010, 3is 011, 4is 100, 5is
101, 6is 110, and 7 is 111. Permissions in Linux are done using octal. This is because Linux
permissions are based on the ability to read, write and execute. The first digit is the read
permission, the second bit is the write permission, and the third bit is the execute permission. So,
0 (000) gives no permissions, 6 (110) gives read and write permission, and 5 (101) gives read,
write, and execute permissions. These numbers are then used for the four different types of
permissions. The number 0644 means no permissions for the first type, read and write for the
second type, and read-only for the third and fourth type. The first type is for "elevated"
permissions, which we won'’t discuss here. The second permission type is for the owner of the
file. The third permission set is for the group owner of the file. The last permission set is for
everyone else. S0751 means that the owner of the file can read, write, and execute the file, the
group members can read and execute the file, and everyone else can only execute the file. There
are no elevated permissions on the file.

Anyway, as you can see, octal is used to group bits (binary digits) into threes. The way you write
octal numbers in assembly is by prefixing them with a zero. For example 010 means 10 in octal,
which is 8 in decimal, while if you just write 10 that means 10 in decimal. So, be careful not to
put any leading zeroes in front of decimal numbers, or they will be interepreted as octal numbers!

Hexadecimal numbers (also called just "hex") use the numbers 1-15 for each digit. however, since
10-15 don’t have their own numbers, hexadecimal uses the lattersughf to represent them.

For example, the letter represents 10, the letterepresents 11, and so on. 10 in hexadecimal is

16 in decimal. In octal, each digit represented three bits. In hexadecimal, each digit represents
four bits. Every two digits is a full byte, and eight digits is a 32-bit register. So you see, it is
considerably easier to write a hexadecimal number than it is to write a binary number. The most
important number to remember in hexadecimdl,igzhich means that all bits are set. So, if |

want to set all of the bits of a register to 1, | can just do

movl $OxFFFFFFFF, %eax

Which is considerably easier and less error-prone than writing

movl $0b11111111111111111111111111111111, %eax

Note also that hexadecimal numbers are prefixed &ithSo, when we do

int $0x80

We are calling interrupt number 128 (8 groups of 16), or interrupt number
0b00000000000000000000000010000000.

136

Chapter 10. Counting Like a Computer

Hexadecimal and octal numbers take some getting used to, but they are heavily used in computer
programming. It might be worthwhile to make up some numbers in hex and try to convert them
back and forth to binary, decimal, and octal.

Order of Bytes in a Word

One thing that confuses many people when dealing with bits and bytes on a low level is that,
when bytes are written from registers to memory, their bytes are written out
least-significant-portion-first. What most people expect is that if they have a word in a register,
say0x5d23efee , and they write it to memory, it is actually written @geeef235d . The bytes

are written in reverse order as they would appear conceptually. Not all processors do this. The
x86 processor is kttle-endianprocessor, which means that it stores the "little end" of its words
first. Other processors abég endianprocessors, which means that they store the "big end"” of
their words first, which is a bit more natural to read. This difference is not normally a problem
(although it has sparked many technical controversies throughout the years), because the bytes
are reversed (or not, depending on the processor) again when being read back into a register.
However, this can be problematic in several instances:

« If you try to read in several bytes at a time usingvl but deal with them on a byte-by-byte
basis using the least significant byte (i.@oal), this will be in a different order than they
appear in memory.

- If you read or write files written for different architectures, you may have to account for
whatever order they write their bytes in.

- If you read or write to network sockets, you may have to account for a different byte order in
the protocol.

As long as you are aware of the issue, it usually isn’t a big deal. For more in-depth look at byte
order issues, you should read DAV’s Endian FAQ at
http://www.rdrop.com/~cary/html/endian_faq.html, especially the article "On Holy Wars and a
Plea for Peace" by Daniel Cohen.

Converting Numbers for Display

So far, we have been unable to display any number stored to the user, except by the extremely
limitted means of passing it through exit codes. In this section, we will discuss converting
positive into strings for display.

The function will be callednteger2string , and it will take two parameters - an integer to
convert and a string buffer filled with null characters (zeroes). The buffer will be assumed to be

137

Chapter 10. Counting Like a Computer

big enough to store the entire number as a string.(at least 11 characters long, to include a trailing
null character).

Remember that the way that we see numbers is in base 10. Therefore, to access the individual
decimal digits of a number, we need to be dividing by 10 and displaying the remainder for each
digit. Therefore, the process will look like this:

« Divide the number by ten

- The remainder is the current digit. Convert it to a character and store it.

« We are finished if we are at zero yet.

« Otherwise, take the new number and the next location in the buffer and repeat the process.

The only problem is that since this process deals with the one’s place first, it will leave the
number backwards. Therefore, we will have to finish by reversing the characters. We will do this
by storing the characters on the stack as we compute them. This way, as we pop them back off to
fill in the buffer, it will be in the reverse order that we pushed them on.

The code for the function should be put in a file caliedger-to-number.s and should be
entered as follows:

#PURPOSE: Convert an integer number to a decimal string for display

#

#INPUT: A buffer large enough to hold the largest possible number
An integer to convert

#

#OUTPUT: The buffer will be overwritten with the decimal string
#

#Variables:

#

%ecx will hold the count of characters processed

%eax will hold the current value

%edi will hold the base (10)

#

.equ ST_VALUE, 8
.equ ST_BUFFER, 12

.globl integer2number

.type integerZ2number, @function
integer2number:

#Normal function beginning
pushl %ebp

movl %esp, %ebp

138

Chapter 10. Counting Like a Computer

#Allocate space for temporary buffer
subl $11, %esp

#Current character count
movl $0, %ecx

#Move the value into position
movl ST_VALUE(%ebp), %eax

#When we divide by 10, the 10
#must be in a register or memory location
movl $10, %edi

conversion_loop:

#Division is actually performed on the
#combined %edx:%eax register, so first
#clear out %edx

movl $0, %edx

#Divide %edx:%eax (which are implied) by 10.
#Store the quotient in %eax and the remainder
#in %edx (both of which are also implied).

divl %edi

#Quotient is in the right place. %edx has

#the remainder, which now needs to be converted
#into a number. So, %edx has a number that is
#0 through 9. You could also interpret this as
#an index on the ASCII table starting from the
#character '0’. The ascii code for '0’ plus zero
#is still the ascii code for '0’. The ascii code
#for 'O’ plus 1 is the ascii code for the character
#1'. Therefore, the following instruction will give
#us the character for the number stored in %edx
addl $0’, %edx

#Now we will take this value and push it on the stack.
#This way, when we are done, we can just pop off the
#characters one-by-one and they will be in the right
#order. Note that we are pushing the whole register,
#but we only need the byte in %dl (the last byte of the
#%edx register) for the character.

pushl %edx

139

Chapter 10. Counting Like a Computer

#Increment the digit count
incl %ecx

#Check to see if %eax is zero yet, go to next step
#f so.

cmpl $0, %eax

je end_conversion_loop

#%eax already has its new value.
jmp conversion_loop

end_conversion_loop:

#The string is now on the stack, if we pop it
#off a character at a time we can copy it into
#the buffer and be done.

#Get the pointer to the buffer in %edx
movl ST _BUFFER(%ebp), %edx

copy_reversing_loop:

#We pushed a whole register, but we only need the
#last byte. So we are going to pop off to the
#entire %eax register, but then only move the small
#part (%al) into the character string.

popl %eax

movb %al, (%edx)

#Decreasing %ecx so we know when we are finished

decl %ecx

#lncreasing %edx so that it will be pointing to the next byte
incl %edx

#Check to see if we are finished

cmpl $0, %ecx

#If so, jump to the end of the function
je end_copy_reversing_loop
#Otherwise, repeat the loop

jmp copy_reversing_loop

end_copy_reversing_loop:

#Done copying. Now just return
movl %ebp, %esp

popl %ebp

140

Chapter 10. Counting Like a Computer

ret

To show this used in a full program, use the following code, along witledhet chars and
write_newline functions written about in previous chapters. The code should be in a file called
conversion-program.s

.include "linux.s"
.section .data

#This is where it will be stored
tmp_buffer:
.ascii "\0\0\0\0\0\0\0\0\0\0\0"

.section .text

.globl _start
_start:
movl %esp, %ebp

#Storage for the result
pushl $tmp_buffer
#Number to convert
pushl $824

call integer2number
addl $8, %esp

#Get the character count for our system call
pushl $tmp_buffer

call count_chars

addl $8, %esp

#The count goes in %edx for SYS_WRITE
movl %eax, %edx

#Make the system call
movl $SYS_WRITE, %eax
movl $STDOUT, %ebx
movl $tmp_buffer, %ecx

int $LINUX_SYSCALL

141

Chapter 10. Counting Like a Computer

#Write a carriage return
pushl $STDOUT
call write_newline

#EXit

movl $SYS_EXIT, %eax
movl $0, %ebx

int $LINUX_SYSCALL

To build the program, issue the following commands:

as integer-to-number.s -0 integer-to-number.o

as count-chars.s -o count-chars.o

as write-newline.s -0 write-newline.o

as conversion-program.s -0 conversion-program.o

Id integer-to-number.o count-chars.o write-newline.o conversion-program.o -
0 conversion-program

To run just type/conversion-program and the output should s@p4.

Review

Know the Concepts

« Convert the decimal number 5,294 to binary.

« Add the binary numbers 10111001 and 101011.

« Multiply the binary numbers 1100 1010110.

+ Convert the results of the previous two problems into decimal.
+ Describe howand, or , not , andxor work.

« What is masking for?

« What number would you use for the flags of tpen system call if you wanted to open the
file for writing, and create the file if it doesn't exist?

« How would you represent -55 in a thirty-two bit register?

- Describe the difference between little-endian and big-endian storage of words in memory.

142

Chapter 10. Counting Like a Computer

Use the Concepts

« Go back to previous programs that returned numeric results through the exit status code, and
rewrite them to print out the results instead.

« Modify theinteger2number code to return results in octal rather than decimal.

- Modify theinteger2number code so that the conversion base is a parameter rather than
hardcoded.

« Write a function calleds_negative that takes a single integer as a parameter and returns 1 if
the parameter is negative, and O if the parameter is positive.

Going Further

- Modify theinteger2number code so that the conversion base can be greater than 10 (this
requires you to use letters for numbers past 9).

- Create a function that does the reversintafger2number callednumber2integer ~ which
takes a character string and converts it to a register-sized integer. Test it by running that integer
back through thénteger2number function and displaying the results.

143

Chapter 10. Counting Like a Computer

144

Chapter 11. High-Level Languages

In this chapter we will begin to look at our first "real-world" programming language. Assembly
language is the language used at the machine’s level, but most people (including me) find coding
in assembly language too cumbersome for normal use. Many computer languages have been
invented to make the programming task easier. Knowing a wide variety of languages is useful for
many reasons, including

- Different languages are based on different concepts, which will help you to learn different and
better programming methods and ideas.

- Different languages are good for different types of projects.

- Different companies have different standard languages, so knowing more languages makes
your skills more marketable.

- The more languages you know, the easier it is to pick up new ones.

As a programmer, you will often have to pick up new languages. Professional programmers can
usually pick up a new language with about a weeks worth of study and practice. Languages are
simply tools, and learning to use a new tool should not be something a programmer flinches at. In
fact, if you do computer consulting you will often have to learn new languages on the spot in
order to keep yourself employed. It will often be your customer, not you, who decides what
language is used. This chapter will introduce you to a few of the languages available to you. |
encourage you to explore as many languages as you are interested in.

Compiled and Interpreted Languages

Many languages areompiledlanguages. When you write assembly language, each instruction
you write is translated into exactly one machine instruction for processing. With compilers, a
statement can translate into one or hundreds of machine instructions. In fact, depending on how
advanced your compiler is, it might even restructure parts of your code to make it faster. In
assembly language, what you write is what you get.

There are also languages that srterpretedlanguages. These languages require that the user run
a program called aimterpreterthat in turn runs the given program. These are usually slower than
compiled programs, since the translator has to read and interpret the code as it goes along.
However, in well-made translators, this time can be fairly negligible. There is also a class of
hybrid languages which partially compile a program before execution into byte-codes, which are
only machine readable. This is done because the translator can read the byte-codes much faster
than it can read the regular language.

145

Chapter 11. High-Level Languages

There are many reasons to choose one or the other. Compiled programs are nice, because you
don’t have to already have a translator installed in the user’s machine. You have to have a
compiler for the language, but the users of your program don't. In a translated language, you have
to be sure that the user has a translator for your program, and that the computer knows which
translator runs your program. Also, translated languages tend to be more flexible, while compiled
languages are more rigid.

Language choice is usually driven by available tools and support for programming methods
rather than by whether a language is compiled or interpretted. In fact many languages have
options for either one.

So why does one choose one language over another? For example, many choose Perl because it
has a vast library of functions for handling just about every protocol or type of data on the planet.
Python, however, has a cleaner syntax and often lends itself to more straightforward solutions.

It's cross-platform GUI tools are also excellent. PHP makes writing web applications simple.
Common LISP has more power and features than any other environment for those willing to learn
it. Scheme is the model of simplicity and power combined together.

Each language is different, and the more languages you know the better programmer you will be.
Knowing the concepts of different languages will help you in all programming, because you can
match the programming language to the problem better, and you have a larger set of tools to work
with. Even if certain features aren’t directly supported in the language you are using, often they
can be simulated. However, if you don’t have a broad experience with languages, you won't know
of all the possibilities you have to choose from.

Your First C Program

Here is your first C program, which prints "Hello world" to the screen and exits. Type it in, and
give it the name Hello-World.c

#include <stdio.h>

/* PURPOSE: This program is mean to show a basic C program. */
[* All it does is print "Hello World!" to the */
* screen and exit. */

/* Main Program */

int main(int argc, char **argv)

{

puts("Hello World\n"); /* Print our string to standard output */

return O; /* Exit with status 0 */

}

146

Chapter 11. High-Level Languages

As you can see, it's a pretty simple program. To compile it, run the command

gcc -0 HelloWorld Hello-World.c
To run the program, do

./HelloWorld

Let’s look at how this program was put together.

Comments in C are started with and ended with/ . Comments can span multiple lines, but
many people prefer to start and end comments on the same line so they don’t get confused.

#include <stdio.h> is the first part of the program. This igpaeprocessor directiveC

compiling is split into two stages - the preprocessor and the main compiler. This directive tells the
preprocessor to look for the fikdio.h and paste it into your program. The preprocessor is
responsible for putting together the text of the program. This includes sticking different files
together, running macros on your program text, etc. After the text is put together, the
preprocessor is done and the main compiler goes to work. Now, everythstdidrh ~ is now in

your program just as if you typed it there yourself. The angle brackets around the filename tell the
compiler to look in it's standard paths for the filagr/include and/ust/local/include ,
usually). If it was in quotes, likéinclude "stdio.h" it would look in the current directory

for the file. Anyway,stdio.h contains the declarations for the standard input and output
functions and variables. These declarations tell the compiler what functions are available for
input and output. The next few lines are simply comments about the program.

Then there is the linmt main(int argc, char **argv) . This is the start of a function. C
Functions are declared with their name, arguments and return type. This declaration says that the
function’s name isnain , it returns arint (integer - 4 bytes long on the x86 platform), and has

two arguments - aimt calledargc and achar ** calledargv . You don’t have to worry about

where the arguments are positioned on the stack - the C compiler takes care of that for you. You
also don’t have to worry about loading values into and out of registers because the compiler takes
care of that, too. Thenain function is a special function in the C language - it is the start of all C
programs (much likestart in our assembly-language programs). It always takes two
parameters. The first parameter is the number of arguments given to this command, and the
second parameter is a list of the arguments that were given.

The next line is a function call. In assembly language, you had to push the arguments of a
function onto the stack, and then call the function. C takes care of this complexity for you. You
simply have to call the function with the parameters in parenthesis. In this case, we call the
functionputs , with a single parameter. This parameter is the character string we want to print.

We just have to type in the string in quotations, and the compiler takes care of defining storage,
and moving the pointers to that storage onto the stack before calling the function. As you can see,

147

Chapter 11. High-Level Languages
it's a lot less work.

Finally our function returns the number In assembly language, we stored our return value in
%eax, but in C we just use theeturn command and it takes care of that for us. The return value
of themain function is what is used as the exit code for the program.

As you can see, using compilers and interpreters makes life much easier. It also allows our
programs to run on multiple platforms more easily. In assembly language, your program is tied to
both the operating system and the hardware platform, while in compiled and interpreted
languages the same code can usually run on multiple operating systems and hardware platforms.
For example, this program can be built and executed on x86 hardware running Linux, Windows,
UNIX, or most other operating systems. In addition, it can also run on Macintosh hardware
running a number of operating systems. For more information about C, you should also see
Appendix E

Perl

Perl is an interpreted language, existing mostly on Linux and UNIX-based platforms. It actually
runs on almost all platforms, but you find it most often on Linux and UNIX-based ones. Anyway,
here is the Perl version of the program, which should be typed into a file named

Hello-World.pl

#!/usr/bin/perl

print("Hello world\n");

Since Perl is interpreted, you don't need to compile or link it. Just run in with the following
command:

perl Hello-World.pl

As you can see, the Perl version is even shorter than the C version. With Perl you don’t have to
declare any functions or program entry points. You can just start typing commands and the
interpreter will run them as it comes to them. In fact this program only has two lines of code, one
of which is optional.

The first, optional line is used for UNIX machines to tell which interpreter to use to run the
program. Thet! tells the computer that this is an interpreted program, an¢uthéin/perl

tells the computer to use the programar/bin/perl to interpret the program. However, since
we ran the program by typing perl Hello-World.pl , we had already specified that we were
using the perl interpreter.

148

Chapter 11. High-Level Languages

The next line calls a Perl builtin function, print. This has one parameter, the string to print. The
program doesn’t have an explicit return statement - it knows to return simply because it runs off
the end of the file. It also knows to return O because there were no errors while it ran. You can see
that interpreted languages are often focused on letting you get working code as quickly as
possible, without having to do a lot of program setup.

One thing about Perl that isn't so evident from this example is that Perl treats strings as a single
value. In assembly language, we had to program according to the computer’s memory
architecture, which meant that strings had to be treated as a sequence of multiple values, with a
pointer to the first letter. Perl pretends that strings can be stored directly as values, and thus hides
the complication of manipulating them for you. In fact, one of Perl’'s main strengths is it's ability
and speed at manipulating text. However, that is outside the scope of this book.

Python

The python version of the program looks almost exactly like the Perl one. However, Python is
really a very different language than Perl, even if it doesn’t seem so from this trivial example.
Type the program into a file nametdllo-World.py . The program follows:

#!/usr/bin/python

print "Hello World";

You should be able to tell what the different lines of the program do.

Review

Know the Concepts

+ What is the difference between an intepretted language and a compiled language?

« What reasons might cause you to need to learn a new programming language?

Use the Concepts

« Learn the basic syntax of a new programming language. Recode one of the programs in this
book in that language.

149

Chapter 11. High-Level Languages

- In the program you wrote in the question above, what specific things were automated in the
programming language you chose?

« Modify your program so that it runs 10,000 times in a row, both in assembly language and in
your new language. Then run thiime command to see which is faster. Which does come out
ahead? Why do you think that is?

« How does the programming language’s input/output methods differ from that of the Linux
system calls?

Going Further

« Having seen languages which have such brevity as Perl, why do you think this book started
you with a language as verbose as assembly language?

« How do you think high level languages have affected the process of programming?
« Why do you think so many languages exist?

+ Learn two new high level languages. How do they differ from each other? How are they
similar? What approach to problem-solving does each take?

150

Chapter 12. Optimization

Optimization is the process of making your application run more effectively. You can optimize
for many things - speed, memory space usage, disk space usage, etc. This chapter, however,
focuses on speed optimization.

When to Optimize

It is better to not optimize at all than to optimize too soon. When you optimize, your code
generally becomes less clear, because it becomes more complex. Readers of your code will have
more trouble discovering why you did what you did which will increase the cost of maintenance

of your project. Even when you know how and why your program runs the way it does, optimized
code is harder to debug and extend. It slows the development process down considerably, both
because of the time it takes to optimize the code, and the time it takes to modify your optimized
code.

Compounding this problem is that you don’t even know beforehand where the speed issues in
your program will be. Even experienced programmers have trouble predicting which parts of the
program will be the bottlenecks which need optimization, so you will probably end up wasting
your time optimizing the wrong partthe Section calledlVhere to Optimizevill discuss how to

find the parts of your program that need optimization.

While you develop your program, you need to have the following priorities:

+ Everything is documented
« Everything works as documented
« The code is written in an modular, easily modifiable form

Documentation is essential, especially when working in groups. The proper functioning of the
program is essential. You'll notice application speed was not anywhere on that list. Optimization
is not necessary during early development for the following reasons:

« Minor speed problems can be usually solved through hardware, which is often much cheaper
than a programmer’s time.

« Your application will change dramatically as you revise it, therefore wasting most of your
efforts to optimize it.

« Speed problems are usually localized in a few places in your code - finding these is difficult
before you have most of the program finished.

1. Many new projects often have a first code base which is completely rewritten as developers learn more
about the problem they are trying to solve. Any optimization done on the first codebase is completely wasted.

151

Chapter 12. Optimization

Therefore, the time to optimize is toward the end of development, when you have determined that
your correct code actually has performance problems.

In a web-based e-commerce project | was involved in, | focused entirely on correctness. This was
much to the dismay of my colleagues, who were worried about the fact that each page took
twelve seconds to process before it ever started loading (most web pages process in under a
second). However, | was determined to make it the right way first, and put optimization as a last
priority. When the code was finally correct after 3 months of work, it took only three days to find
and eliminate the bottlenecks, bringing the average processing time under a quarter of a second.
By focusing on the correct order, | was able to finish a project that was both correct and efficient.

Where to Optimize

Once you have determined that you have a performance issue you need to determine where in the
code the problems occur. You can do this by runnimpgddiler. A profiler is a program that will

let you run your program, and it will tell you how much time is spent in each function, and how
many times they are rugprof is the standard GNU/Linux profiling tool, but a discussion of

using profilers is outside the scope of this text. After running a profiler, you can determine which
functions are called the most or have the most time spent in them. These are the ones you should
focus your optimization efforts on.

If a program only spends 1% of its time in a given function, then no matter how much you speed
it up you will only achieve anaximunof a 1% overall speed improvement. However, if a

program spends 20% of its time in a given function, then even minor improvements to that
functions speed will be noticeable. Therefore, profiling gives you the information you need to
make good choices about where to spend your programming time.

In order to optimize functions, you need to understand in what ways they are being called and
used. The more you know about how and when a function is called, the better position you will
be in to optimize it appropriately.

There are two main categories of optimization - local optimizations and global optimizations.
Local optimizations consist of optimizations that are either hardware specific - such as the fastest
way to perform a given computation - or program-specific - such as making a specific piece of
code perform the best for the most often-occuring case. Global optimization consist of
optimizations which are structural. For example, if you were trying to find the best way for three
people in different cities to meet in St. Louis, a local optimization would be finding a better road

to get there, while a global optimization would be to decide to teleconference instead of meeting
in person. Global optimization often involves restructuring code to avoid performance problems,
rather than trying to find the best way through them.

152

Chapter 12. Optimization
Local Optimizations

The following are some well-known methods of optimizing pieces of code. When using high
level languages, some of these may be done automatically by your compiler’s optimizer.

Precomputing Calculations

Sometimes a function has a limitted number of possible inputs and outputs. In fact, it may
be so few that you can actually precompute all of the possible answers beforehand, and
simply look up the answer when the function is called. This takes up some space since you
have to store all of the answers, but for small sets of data this works out really well,
especially if the computation normally takes a long time.

Remembering Calculation Results

This is similar to the previous method, but instead of computing results beforehand, the
result of each calculation requested is stored. This way when the function starts, if the result
has been computed before it will simply return the previous answer, otherwise it will do the
full computation and store the result for later lookup. This has the advantage of requiring
less storage space because you aren’t precomputing all results. This is sometimes termed
cachingor memoizing

Locality of Reference

Locality of referencés a term for where in memory the data items you are accessing are.
With virtual memory, you may access pages of memory which are stored on disk. In such a
case, the operating system has to load that memory page from disk, and unload others to
disk. Let’s say, for instance, that the operating system will allow you to have 20k of memory
in physical memory and forces the rest of it to be on disk, and your application uses 60k of
memory. Let’s say your program has to do 5 operations on each piece of data. If it does one
operation on every piece of data, and then goes through and does the next operation on each
piece of data, eventually every page of data will be loaded and unloaded from the disk 5
times. Instead, if you did all 5 operations on a given data item, you only have to load each
page from disk once. When you bundle as many operations on data that is physically close
to each other in memory, then you are taking advantage of locality of reference. In addition,
processors usually store some data on-chip in a cache. If you keep all of your operations
within a small area of physical memory, you can bypass even main memory and only use the
chips ultra-fast cache memory. This is all done for you - all you have to do is to try to operate
on small sections of memory at a time, rather than bouncing all over the place in memory.

Register Usage

Registers are the fastest memory locations on the computer. When you access memory, the

153

Chapter 12. Optimization

processor has to wait while it is loaded from the memory bus. However, registers are located
on the processor itself, so access is extremely fast. Therefore making wise usage of registers
is extremely important. If you have few enough data items you are working with, try to store
them all in registers. In high level languages, you do not always have this option - the
compiler decides what goes in registers and what doesn't.

Inline Functions

Opti

Add

154

Functions are great from the point of view of program management - they make it easy to
break up your program into independent, understandable, and reuseable parts. However,
function calls do involve the overhead of pushing arguments onto the stack and doing the
jumps (remember locality of reference - your code may be swapped out on disk instead of in
memory). For high level languages, it's often impossible for compilers to do optimizations
across function-call boundaries. However, some languages support inline functions or
function macros. These functions look, smell, taste, and act like real functions, except the
compiler has the option to simply plug the code in exactly where it was called. This makes
the program faster, but it also increases the size of the code. There are also many functions,
like recursive functions, which cannot be inlined because they call themselves either directly
or indirectly.

mized Instructions

Often times there are multiple assembly language instructions which accomplish the same
purpose. A skilled assembly language programmer knows which instructions are the fastest.
However, this can change from processor to processor. For more information on this topic,
you need to see the user’s manual that is provided for the specific chip you are using. As an
example, let’s look at the process of loading the number 0 into a register. On most
processors, doingmovl $0, %eaxis not the quickest way. The quickest way is to

exclusive-or the register with itsebfprl %eax, %eax. This is because it only has to access

the register, and doesn’t have to transfer any data. For users of high-level languages, the
compiler handles this kind of optimizations for you. For assembly-language programmers,
you need to know your processor well.

ressing Modes

Different addressing modes work at different speeds. The fastest are the immediate and
register addressing modes. Direct is the next fastest, indirect is next, and base-pointer and
indexed indirect are the slowest. Try to use the faster addressing modes, when possible. One
interesting consequence of this is that when you have a structured piece of memory that you
are accessing using base-pointer addressing, the first element can be accessed the quickest.
Since it’s offset is 0, you can access it using indirect addressing instead of base-pointer
addressing, which makes it faster.

Chapter 12. Optimization
Data Alignment

Some processors can access data on word-aligned memory boundaries (i.e. - addresses
divisible by the word size) faster than non-aligned data. So, when setting up structures in
memory, it is best to keep it word-aligned. Some non-x86 processors, in fact, cannot access
non-aligned data in some modes.

These are just a smattering of examples of the kinds of local optimizations possible. However,
remember that the maintainability and readability of code is much more important except under
extreme circumstances.

Global Optimization

Global optimization has two goals. The first one is to put your code in a form where it is easy to
do local optimiztions. For example, if you have a large procedure that performs several slow,
complex calculations, you might see if you can break parts of that procedure into their own
functions where the values can be precomputed or memoized.

Stateless functions (functions that only operate on the parameters that were passed to them - i.e.
no globals or system calls) are the easiest type of functions to optimize in a computer. The more
stateless parts of your program you have, the more opportunities you have to optimize. In the
e-commerce situation | wrote about above, the computer had to find all of the associated parts for
specific inventory items. This required about 12 database calls, and in the worst case took about
20 seconds. However, the goal of this program was to be interactive, and a long wait would
destroy that goal. However, | knew that these inventory configurations do not change. Therefore, |
converted the database calls into their own functions, which were stateless. | was then able to
memoize the functions. At the beginning of each day, the function results were cleared in case
anyone had changed them, and several inventory items were automatically preloaded. From then
on during the day, the first time someone accessed an inventory item, it would take the 20 seconds
it did beforehand, but afterwards it would take less than a second, because the database results
had been memoized.

Global optimization usually often involves achieving the following properties in your functions:

Parallelization

Parallelization means that your algorithm can effectively be split among multiple processes.
For example, pregnancy is not very parallelizable because no matter how many women you
have, it still takes nine months. However, building a car is parallelizable because you can
have one worker working on the engine while another one is working on the interior.
Usually, applications have a limit to how parallelizable they are. The more parallelizable

155

Chapter 12. Optimization
your application is, the better it can take advantage of multiprocessor and clustered
computer configurations.

Statelessness

As we've discussed, stateless functions and programs are those that rely entirely on the data
explicitly passed to them for functioning. Most processes are not entirely stateless, but they
can be within limits. In my e-commerce example, the function wasn't entirely stateless, but

it was within the confines of a single day. Therefore, | optimized it as if it were a stateless
function, but made allowances for changes at night. Two great benefits resulting from
statelessness is that most stateless functions are parallelizable and often benefit from
memoization.

Global optimization takes quite a bit of practice to know what works and what doesn’t. Deciding
how to tackle optimization problems in code involves looking at all the issues, and knowing that
fixing some issues may cause others.

Review

Know the Concepts

« At what level of importance is optimization compared to the other priorities in programming?
« What is the difference between local and global optimizations?

- Name some types of local optimizations.

+ How do you determine what parts of your program need optimization?

« At what level of importance is optimization compared to the other priorities in programming?
Why do you think | repeated that question?

Use the Concepts

« Go back through each program in this book and try to make optimizations according to the
procedures outlined in this chapter

156

Chapter 12. Optimization

« Pick a program from the previous exercise and try to calculate the performance impact on your
code under specific inputs.

Going Further

« Find an open-source program that you find particularly fast. Contact one of the developers and
ask about what kinds of optimizations they performed to improve the speed.

- Find an open-source program that you find particularly slow, and try to imagine the reasons for
the slowness. Then, download the code and try to profile it ugingf or similar tool. Find
where the code is spending the majority of the time and try to optimize it. Was the reason for
the slowness different than you imagined?

+ Has the compiler eliminated the need for local optimizations? Why or why not?

« What kind of problems might a compiler run in to if it tried to optimize code across function
call boundaries?

2. Since these programs are usually short enough not to have noticeable performance problems, looping
through the program thousands of times will exaggerate the time it takes to run enough to make calculations.

157

Chapter 12. Optimization

158

Chapter 13. Moving On from Here

Congratulations on getting this far. You should now have a basis for understanding the issues
involved in many areas of programming. Even if you never use assembly language again, you
have gained a valuable perspective and mental framework for understanding the rest of computer
science.

There are essentially three methods to learn to program:

« From the Bottom Up - This is how this book teaches. It starts with low-level programming, and
works toward more generalized teaching.

« From the Top Down - This is the opposite direction. This focuses on what you want to do with
the computer, and teaches you how to break it down more and more until you get to the low
levels.

« From the Middle - This is characterized by books which teach a specific programming
language or API. These are not as concerned with concepts as they are with specifics.

Different people like different approaches, but a good programmer takes all of them into account.
The bottom-up approaches help you understand the machine aspects, the top-down approaches
help you understand the problem-area aspects, and the middle approaches help you with practical
guestions and answers. To leave any of these aspects out would be a mistake.

Computer Programming is a vast subject. As a programmer, you will need to be prepared to be
constantly learning and pushing your limits. These books will help you do that. They not only
teach their subjects, but also teach various ways and methddimking As Alan Perlis said, "A
language that doesn't affect the way you think about programming is not worth knowing"
(http://www.cs.yale.edu/homes/perlis-alan/quotes.html). If you are constantly looking for new
and better ways of doing and thinking, you will make a successful programmer. If you do not
seek to enhance yourself, "A little sleep, a little slumber, a little folding of the hands to rest - and
poverty will come on you like a bandit and scarcity like an armed man." (Proverbs 24:33-34
NIV). Perhaps not quite that severe, but still, it's best to always be learning.

These books were selected because of their content and the amount of respect they have in the
computer science world. Each of them brings something unique. There are many books here. The
best way to start would be to look through online reviews of several of the books, and find a
starting point that interests you.

From the Bottom Up

This list is in the best reading order | could find. It's not necessarily easiest to hardest, but based
on subject matter.

159

Chapter 13. Moving On from Here
« Programming from the Ground Upy Jonathan Bartlett
« Introduction to Algorithm$y Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest

« The Art of Computer Programmirtlgy Donald Knuth (3 volume set - volume 1 is the most
important)

« Programming Languagdsy Samuel N. Kamin
« Modern Operating Systenby Andrew Tanenbaum
 Linkers and Loaderby John Levine

« Computer Organization and Design: The Hardware/Software Interfgc®avid Patterson and
John Hennessy

From the Top Down

These books are arranged from the simplest to the hardest. However, they can be read in any
order you feel comfortable with.

- How to Design Programby Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shiram Krishnamurthi, available online at http://www.htdp.org/

« Simply Scheme: An Introduction to Computer ScidncBrian Harvey and Matthew Wright

« How to Think Like a Computer Scientist: Learning with PytlhgnAllen Downey, Jeff Elkner,
and Chris Meyers, available online at http://www.greenteapress.com/thinkpython/

« Structure and Interpretation of Computer ProgralmsHarold Abelson and Gerald Jay
Sussman with Julie Sussman, available online at http://mitpress.mit.edu/sicp/

« Design Patterndy Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
« What not How: The Rules Approach to Application Developrbgr@hris Date

+ The Algorithm Design Manuddy Steve Skiena

« Programming Language Pragmatiby Michael Scott

- Essentials of Programming Languad®sDaniel P. Friedman, Mitchell Wand, and Christopher
T. Haynes

From the Middle Out

Each of these is the best book on its subject. If you need to know these languages, these will tell
you all you need to know.

160

Chapter 13. Moving On from Here
« Programming Perby Larry Wall, Tom Christiansen, and Jon Orwant
« Common LISP: The Languatyy Guy R. Steele
« ANSI Common LISBy Paul Graham
« The C Programming Languad®/ Brian W. Kernighan and Dennis M. Ritchie
« The Waite Group’s C Primer Plusy Stephen Prata
« The C++ Programming Languagdey Bjarne Stroustrup
+ Thinking in Javaby Bruce Eckel, available online at http://www.mindview.net/Books/TIJ/
« The Scheme Programming LangudxyeKent Dybvig

« Linux Assembly Language ProgrammimgBob Neveln

Specialized Topics

These books are the best books that cover their topic. They are thorough and authoritative. To get
a broad base of knowledge, you should read several outside of the areas you normally program in.

« Practical ProgrammingPRrogramming Pearl&andMore Programming Pearlby Jon Louis
Bentley

- DatabasesUnderstanding Relational Databaskyg Fabian Pascal
« Project ManagementFhe Mythical Man-Montlby Fred P. Brooks

« UNIX Programming -The Art of UNIX Programmingy Eric S. Raymond, available online at
http://lwww.catb.org/~esr/writings/taoup/

« UNIX Programming -Advanced Programming in the UNIX EnvironmégtW. Richard
Stevens

+ Network Programming UNIX Network Programming? volumes) by W. Richard Stevens
« Generic ProgrammingModern C++ Designby Andrei Alexandrescu

« Compilers -The Art of Compiler Design: Theory and Practiog Thomas Pittman and James
Peters

« Compilers -Advanced Compiler Design and ImplementatiynSteven Muchnick

« Development ProcesRefactoring: Improving the Design of Existing CdaeMartin Fowler,
Kent Beck, John Brant, William Opdyke, and Don Roberts

« Typesetting Computers and Typesettii§ volumes) by Donald Knuth
« Cryptography Applied Cryptographypy Bruce Schneier

161

Chapter 13. Moving On from Here

« Linux - Professional Linux Programminigy Neil Matthew, Richard Stones, and 14 other
people
« Linux Kernel -Linux Device Driverdy Alessandro Rubini and Jonathan Corbet

« Open Source Programmind he Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutiondoy Eric S. Raymond

« Computer Architecture Computer Architecture: A Quantitative Approalsi David Patterson
and John Hennessy

162

Appendix A. GUI Programming

Introduction to GUI Programming

The purpose of this appendix is not to teach you how to do Graphical User Interfaces. It is simply
meant to show how writing graphical applications is the same as writing other applications, just
using an additional library to handle the graphical parts. As a programmer you need to get used to
learning new libraries. Most of your time will be spent passing data from one library to another.

The GNOME Libraries

The GNOME projects is one of several projects to provide a complete desktop to Linux users.

The GNOME project includes a panel to hold application launchers and mini-applications called
applets, several standard applications to do things such as file management, session management,
and configuration, and an API for creating applications which fit in with the way the rest of the
system works.

One thing to notice about the GNOME libraries is that they constantly create and give you
pointers to large data structures, but you never need to know how they are laid out in memory. All
manipulation of the GUI data structures are done entirely through function calls. This is a
characteristic of good library design. Libraries change from version to version, and so does the
data that each data structure holds. If you had to access and manipulate that data yourself, then
when the library is updated you would have to modify your programs to work with the new
library, or at least recompile them. When you access the data through functions, the functions
take care of knowing where in the structure each piece of data is. The pointers you receive from
the library areopaque- you don’t need to know specifically what the structure they are pointing

to looks like, you only need to know the functions that will properly manipulate it. When
designing libraries, even for use within only one program, this is a good practice to keep in mind.

This chapter will not go into details about how GNOME works. If you would like to know more,
visit the GNOME developer web site at http://developer.gnome.org/. This site contains tutorials,
mailing lists, APl documentation, and everything else you need to start programming in the
GNOME environment.

A Simple GNOME Program in Several Languages

This program will simply show a Window that has a button to quit the application. When that
button is clicked it will ask you if you are sure, and if you click yes it will close the application.

163

Appendix A. GUI Programming

To run this program, type in the following gaome-example.s

#PURPOSE: This program is meant to be an example

of what GUI programs look like written
with the GNOME libraries

#

#INPUT: The user can only click on the "Quit"
button or close the window

#

#OUTPUT: The application will close

#

#PROCESS: |If the user clicks on the "Quit" button,
the program will display a dialog asking
if they are sure. If they click Yes, it
will close the application. Otherwise

it will continue running

H oH H HH

.section .data

#HHAGNOME definitions - These were found in the GNOME

header files for the C language
and converted into their assembly
equivalents

#GNOME Button Names
GNOME_STOCK_BUTTON_YES:
.ascii "Button_Yes\0"
GNOME_STOCK_BUTTON_NO:
.ascii "Button_No\0"

#Gnome MessageBox Types
GNOME_MESSAGE_BOX_QUESTION:
.ascii "question\0"

#Standard definition of NULL
.equ NULL, O

#GNOME signal definitions
signal_destroy:

.ascii "destroy\0"
signal_delete_event:

.ascii "delete_event\0"
signal_clicked:

164

Appendix A. GUI Programming

.ascii "clicked\0"
###Application-specific definitions

#Application information

app_id:

.ascii "gnome-example\0”
app_version:

.ascii "1.000\0"

app_title:

.ascii "Gnome Example Program\0"

#Text for Buttons and windows

button_quit_text:

.ascii "l Want to Quit the GNOME Example Program\0"
quit_question:

.ascii "Are you sure you want to quit?\0"

.section .bss

#Variables to save the created widgets in
.equ WORD_SIZE, 4

dcomm appPtr, WORD_SIZE

dcomm btnQuit, WORD_SIZE

.section .text

.globl main

type main,@function
main:

pushl %ebp

movl %esp, %ebp

#lnitialize GNOME libraries

pushl 12(%ebp) #argv
pushl 8(%ebp) #argc
pushl $app_version

pushl $app_id

call gnome_init
addl $16, %esp #recover the stack

#Create new application window
pushl $app_title #Window title

165

Appendix A. GUI Programming

pushl $app_id #Application 1D
call gnome_app_new
addl $8, %esp #irecover the stack

movl %eax, appPtr #save the window pointer

#Create new button

pushl $button_quit_text #button text

call gtk _button_new_with_label

addl $4, %esp #recover the stack
movl %eax, btnQuit #isave the button pointer

#Make the button show up inside the application window
pushl btnQuit

pushl appPtr

call gnome_app_set_contents

addl $8, %esp

#Makes the button show up (only after it's window
#shows up, though)

pushl btnQuit

call gtk widget_show

addl $4, %esp

#Makes the application window show up
pushl appPtr

call gtk widget _show

addl $4, %esp

#Have GNOME call our delete_handler function

#whenever a "delete" event occurs

pushl $NULL #extra data to pass to our
#function (we don’t use any)

pushl $delete_handler #function address to call

pushl $signal_delete_event #name of the signal

pushl appPtr #widget to listen for events on
call gtk signal_connect
addl $16, %esp #recover stack

#Have GNOME call our destroy handler function

#whenever a "destroy" event occurs

pushl $NULL #extra data to pass to our
#function (we don’t use any)

pushl $destroy_handler #function address to call

pushl $signal_destroy #name of the signal

166

pushl appPtr #widget to listen for events on
call gtk signal _connect
addl $16, %esp #recover stack

#Have GNOME call our click_handler function
#whenever a "click" event occurs. Note that
#the previous signals were listening on the
#application window, while this one is only
#listening on the button

pushl $NULL

pushl $click_handler

pushl $signal_clicked

pushl btnQuit

call gtk signal_connect

addl $16, %esp

#Transfer control to GNOME. Everything that
#happens from here out is in reaction to user
#events, which call signal handlers. This main
#function just sets up the main window and connects
#signal handlers, and the signal handlers take

#care of the rest

call gtk main

#After the program is finished, leave
movl $0, %eax

leave

ret

#A "destroy" event happens when the widget is being
#removed. In this case, when the application window
#is being removed, we simply want the event loop to
#quit

destroy_handler:

pushl %ebp

movl %esp, %ebp

#This causes gtk to exit it's event loop
#as soon as it can.
call gtk_main_quit

movl $0, %eax
leave
ret

Appendix A. GUI Programming

167

Appendix A. GUI Programming

#A "delete" event happens when the application window
#gets clicked in the "x" that you normally use to
#close a window

delete_handler:

movl $1, %eax

ret

#A "click" event happens when the widget gets clicked
click_handler:

pushl %ebp

movl %esp, %ebp

#Create the "Are you sure" dialog

pushl $NULL #End of buttons
pushl $GNOME_STOCK_BUTTON_NO #Button 1
pushl $GNOME_STOCK_BUTTON_YES #Button 0
pushl $GNOME_MESSAGE_BOX_QUESTION #Dialog type
pushl $quit_question #Dialog mesasge
call gnome_message _box_new

addl $16, %esp #recover stack

#%eax now holds the pointer to the dialog window

#Setting Modal to 1 prevents any other user
#interaction while the dialog is being shown
pushl $1

pushl %eax

call gtk window_set_modal

popl %eax

addl $4, %esp

#Now we show the dialog

pushl %eax
call gtk widget show
popl %eax

#This sets up all the necessary signal handlers

#in order to just show the dialog, close it when

#one of the buttons is clicked, and return the

#number of the button that the user clicked on.

#The button number is based on the order the buttons
#were pushed on in the gnome_message box_new function
pushl %eax

168

Appendix A. GUI Programming
call gnome_dialog_run_and_close
addl $4, %esp

#Button 0 is the Yes button. If this is the
#button they clicked on, tell GNOME to quit
#it's event loop. Otherwise, do nothing
cmpl 30, %eax

jne click_handler_end

call gtk main_quit

click_handler_end:
leave
ret

To build this application, execute the following commands:

as gnome-example.s -0 gnome-example.o
gcc gnome-example.o ‘gnome-config --libs gnomeui’ -0 gnome-example
Then type in/gnome-exampldo run it.

This program, like most GUI programs, makes heavy use of passing pointers to functions as
parameters. In this program you create widgets with the GNOME functions and then you set up
functions to be called when certain events happen. These functions areczdilbedkfunctions.

All of the event processing is handled by the functgpk main , so you don’t have to worry

about how the events are being processed. All you have to do is have callbacks set up to wait for
them.

Here is a short description of all of the GNOME functions that were used in this program:

gnome_init
Takes the command-line arguments, argument count, application id, and application version
and initializes the GNOME libraries.

gnome_app_new
Creates a new application window, and returns a pointer to it. Takes the application id and
the window title as arguments.

gtk _button_new_with_label

Creates a new button and returns a pointer to it. Takes one argument - the text that is in the
button.

169

Appendix A. GUI Programming
gnome_app_set_contents
This takes a pointer to the gnome application window and whatever widget you want (a
button in this case) and makes the widget be the contents of the application window
gtk_widget_show

This must be called on every widget created (application window, buttons, text entry boxes,
etc) in order for them to be visible. However, in order for a given widget to be visible, all of
it's parents must be visible as well.

gtk_signal_connect

This is the function that connects widgets and their signal handling callback functions. This
function takes the widget pointer, the name of the signal, the callback function, and an extra
data pointer. After this function is called, any time the given event is triggered, the callback
will be called with the widget that produced the signal and the extra data pointer. In this
application, we don’t use the extra data pointer, so we just set it to NULL, which is 0.

gtk_main
This function causes GNOME to enter into it's main loop. To make application
programming easier, GNOME handles the main loop of the program for us. GNOME will
check for events and call the appropriate callback functions when they occur. This function
will continue to process events ungtk_main_quit is called by a signal handler.
gtk_main_quit

This function causes GNOME to exit it's main loop at the earliest opportunity.

gnome_message_box_new

This function creates a dialog window containing a question and response buttons. It takes
as parameters the message to display, the type of message it is (warning, question, etc), and
a list of buttons to display. The final parameter should be NULL to indicate that there are no
more buttons to display.

gtk_window_set_modal

This function makes the given window a modal window. In GUI programming, a modal
window is one that prevents event processing in other windows until that window is closed.
This is often used with Dialog windows.

gnome_dialog_run_and_close

This function takes a dialog pointer (the pointer returneddxyme_message_box_new

170

Appendix A. GUI Programming

can be used here) and will set up all of the appropriate signal handlers so that it will run until
a button is pressed. At that time it will close the dialog and return to you which button was
pressed. The button number refers to the order in which the buttons were set up in
gnome_message_box_new .

The following is the same program written in the C language. Type it in as
gnome-example-c.c

/* PURPOSE: This program is meant to be an example
of what GUI programs look like written
with the GNOME libraries

*/

#include <gnome.h>

/* Program definitions */

#define MY_APP_TITLE "Gnome Example Program®

#define MY_APP_ID "gnome-example"

#define MY_APP_VERSION "1.000"

#define MY_BUTTON_TEXT "I Want to Quit the GNOME Example Program"
#define MY_QUIT_QUESTION "Are you sure you want to quit?"

/* Must declare functions before they are used */

int destroy_handler(gpointer window, GdkEventAny *e, gpointer data);
int delete_handler(gpointer window, GdkEventAny *e, gpointer data);
int click_handler(gpointer window, GdkEventAny *e, gpointer data);

int main(int argc, char **argv)

{

gpointer appPtr; /* application window */
gpointer btnQuit; /* quit button */

/* Initialize GNOME libraries */
gnome_init(MY_APP_ID, MY_APP_VERSION, argc, argv);

/* Create new application window */
appPtr = gnome_app_new(MY_APP_ID, MY_APP_TITLE);

/* Create new button */
btnQuit = gtk_button_new_with_label(MY_BUTTON_TEXT);

/* Make the button show up inside the application window */
gnome_app_set_contents(appPtr, btnQuit);

171

Appendix A. GUI Programming

/* Makes the button show up */
gtk_widget_show(btnQuit);

/* Makes the application window show up */
gtk_widget_show(appPtr);

/* Connect the signal handlers */

gtk_signal_connect(appPtr, "delete_event", GTK_SIGNAL_FUNC(delete handler), NULL);
gtk_signal_connect(appPtr, "destroy”, GTK_SIGNAL_FUNC(destroy_handler), NULL);
gtk_signal_connect(btnQuit, “"clicked”, GTK_SIGNAL_FUNC(click_handler), NULL);

/* Transfer control to GNOME */
gtk_main();

return O;

}

/* Function to receive the "destroy" signal */

int destroy_handler(gpointer window, GdkEventAny *e, gpointer data)
{

/* Leave GNOME event loop */

gtk_main_quit();

return O;

}

/* Function to receive the "delete_event" signal */
int delete_handler(gpointer window, GdkEventAny *e, gpointer data)

{

return O;

}

/* Function to receive the "clicked" signal */

int click_handler(gpointer window, GdkEventAny *e, gpointer data)
{

gpointer msgbox;

int buttonClicked;

[* Create the "Are you sure" dialog */
msghox = gnome_message_box_new(
MY_QUIT_QUESTION,
GNOME_MESSAGE_BOX_QUESTION,
GNOME_STOCK_BUTTON_YES,

172

Appendix A. GUI Programming

GNOME_STOCK_BUTTON_NO,
NULL);
gtk_window_set_modal(msgbox, 1);
gtk_widget_show(msgbox);

/* Run dialog box */
buttonClicked = gnome_dialog_run_and_close(msgbox);

/* Button 0 is the Yes button. If this is the
button they clicked on, tell GNOME to quit
it's event loop. Otherwise, do nothing */
if(buttonClicked == 0)

{
gtk_main_quit();

}

return O;

}

To compile it, type

gcc gnome-example-c.c ‘gnome-config --cflags --libs gnomeui’ -0 gnome-example-
c

Run it by typing./gnome-example-c

Finally, we have a version in Python. Type it in as gnome-example.py:

#PURPOSE: This program is meant to be an example

of what GUI programs look like written
with the GNOME libraries
#

#lmport GNOME libraries
import gtk
import gnome.uli

####DEFINE CALLBACK FUNCTIONS FIRST####

#In Python, functions have to be defined before they are used,
#so we have to define our callback functions first.

def destroy_handler(event):

173

Appendix A. GUI Programming

gtk.mainquit()
return O

def delete_handler(window, event):
return O

def click_handler(event):

#Create the "Are you sure" dialog
msghbox = gnome.ui.GnomeMessageBox(
"Are you sure you want to quit?",
gnome.ui.MESSAGE_BOX_QUESTION,
gnome.ui.STOCK_BUTTON_YES,
gnome.ui.STOCK_BUTTON_NO)
msgbox.set_modal(1)

msgbox.show()

result = msgbox.run_and_close()

#Button 0 is the Yes button. If this is the
#button they clicked on, tell GNOME to quit
#it's event loop. Otherwise, do nothing

if (result == 0):

gtk.mainquit()

return 0
#HAHMAIN PROGRAM{#H#H

#Create new application window
myapp = gnome.ui.GnomeApp('gnome-example”, "Gnome Example Program")

#Create new button
mybutton = gtk.GtkButton("l Want to Quit the GNOME Example program®)
myapp.set_contents(mybutton)

#Makes the button show up
mybutton.show()

#Makes the application window show up
myapp.show()

#Connect signal handlers

myapp.connect("delete_event", delete_handler)
myapp.connect("destroy”, destroy_handler)

174

Appendix A. GUI Programming

mybutton.connect("clicked"”, click_handler)

#Transfer control to GNOME
gtk.mainloop()

To run it typepython gnome-example.py

GUI Builders

In the previous example, you have created the user-interface for the application by calling the
create functions for each widget and placing it where you wanted it. However, this can be quite
burdensome for more complex applications. Many programming environments, including
GNOME, have programs called GUI builders that can be used to automatically create your GUI
for you. You just have to write the code for the signal handlers and for initializing your program.
The main GUI builder for GNOME applications is called GLADE. GLADE ships with most
Linux distributions.

There are GUI builders for most programming environments. Borland has a range of tools that
will build GUIs quickly and easily on Linux and Win32 systems. The KDE environment has a
tool called QT Designer which helps you automatically develop the GUI for their system.

There is a broad range of choices for developing graphical applications, but hopefully this
appendix gave you a taste of what GUI programming is like.

175

Appendix A. GUI Programming

176

Appendix B. Common x86 Instructions

Reading the Tables

The tables of instructions presented in this appendix include:

+ The instruction code

« The operands used

« The flags used

+ A brief description of what the instruction does

In the operands section, it will list the type of operands it takes. If it takes more than one operand,
each operand will be separated by a comma. Each operand will have a list of codes which tell
whether the operand can be an immediate-mode value (1), a register (R), or a memory address
(M). For example, thenovl instruction is listed aBR/M, R/M . This means that the first

operand can be any kind of value, while the second operand must be a register or memory
location. In addition, x86 assembly languageverallows more than one operand to be a

memory location.

In the flags section, it lists the flags affected by the instruction. The following flags are mentioned:

O
Overflow flag. This is set to true if the destination operand was not large enough to hold the
result of the instruction.

S
Sign flag. This is used for signed arithmetic operations. These operations will set the sign
flag to the sign of the last result.

Z
Zero flag. This flag is set to true if the result of the instructionn is zero.

A

Auxillary carry flag. This flag is set for carries and borrows between the third and fourth bit.
It is not often used.

177

Appendix B. Common x86 Instructions
P

Parity flag. This flag is set to true if the low byte of the last result had an even number of 1

bits.

Carry flag. Used in addition to say whether or not the result would have carried over to an

additional byte.

Other flags exist, but they are much less important.

Data Transfer Instructions

These instructions perform little, if any computation. Instead they are mostly used for moving

data from one place to another.

Table B-1. Data Transfer Instructions

Instruction Operands

Affected Flags

movl I/R/M, I/RIM

OISIZIAIC

This copies a word of data from one location to anothex! %
of %eax to %ebx

eax, %ebx copies the contents

movb I/R/M, I/RIM O/S/ZIAIC
Same asnovl , but operates on individual bytes.
leal M, I/R/M O/S/ZIAIC

This takes a memory location given in the standard format,

Y%eax loads the address computed®Hy %ebp + 1*%ecx and

and, instead of loading the co

of the memory location, loads the computed address. For exaregdles(%ebp,%ecx,1),

stores that ifeax

ntents

popl R/IM

O/S/ZIAIC

instructions: movl (%esp), R/M addl $4, %esp popf
of the stack into théceflags register.

Pops the top of the stack into the given location. This is equivalent to performing the
is a variant which pops the tap

contents of théceflags register onto the top of the stack.

pushl I/R/IM O/S/ZIAIC
Pushes the given value onto the stack. This is the equivalent to performing the instructions:
subl $4, %esp movl I/R/IM, (Y%esp) pushfl is a variant which pushes the current

xchgl R/M, RIM

O/S/ZIAIC

Exchange the given registers or register w/ memory location.

178

Integer Instructions

These are basic calculating in

Appendix B. Common x86 Instructions

structions that operate on signed or unsigned integers.

Table B-2. Integer Instructions

Instruction

Operands Affected Flags

adcl

I/R/IM, RIM O/S/ZIAIPIC

Add with carry. Adds the first
flags to true.

argument to the second, and, if there is an overflow, sets all

add| I/RIM, RIM O/SIZIAIPIC
Signed integer addition.
cdq O/SIZIAIP/C

Converts theseax into the double-word consisting @&fedx %eax with sign extension.

cmpl

I/RIM, RIM O/SIZIAIPIC

Compares two integers. It does this by subtracting the first operand from the second. It di
the results, but sets the flags accordingly.

decl

R/IM OISIZIAIP

Decrements the register or m

emory location. dseb to decrement a byte instead.

divl R/M O/SIZIAIP
Performs unsigned division.

idivl R/M O/SIZIAIP
Performs signed division.

imull R, M/| O/S/ZIAIPIC

Performs signed multiplicatio

n.

incl

R/IM O/SIZIAIP

Increments the given register

or memory location.

mull R/M O/SIZIAIPIC
Perform unsigned multiplication.
negl R/M O/S/ZIAIPIC

Negate the given register or memory location.

sbbl

I/RIM, RIM O/SIZIAIPIC

Performs subtraction with borrowing.

subl

I/RIM, RIM O/SIZIAIPIC

Perform subtraction.

179

listed

scards

Appendix B. Common x86 Instructions
Logic Instructions

These instructions operate on memory as bits instead of words.

Table B-3. Logic Instructions

Instruction Operands Affected Flags
and| I/RIM, RIM O/S/Z/PIC

And’s the contents of the two operands together, and stores the result in the second oper
Sets the overflow and carry flags to false.

notl R/M
Performs a logical not on each bit in the operand. Also known as a one’s complement.
orl I/R/IM, RIM O/S/ZIAIPIC

Performs a logical or between the two operands, and stores the result in the second oper
Sets the overflow and carry flags to zero.
rcll I/%cl, R/IM O/C

Rotates the given location’s bits to the left the number of times in the first operand, which

either an immediate-mode value or the register. The carry flag is included in the rotation,
making it use 33 bits instead of 32. Also sets the overflow flag.

and.

and.

is

rcrl I/%cl, R/IM O/C
Same as above, but rotates right.
roll I/%cl, R/IM O/C

Rotate bits to the left. It sets the overflow and carry flags, but does not count the carry flag
part of the rotation.

) as

rorl I/%cl, RIM O/C
Same as above, but rotates right.
sall I/%cl, RIM C

least significant bit. Other bits are simply shifted to the left. This is the same as the regula
left.

Arithmetic shift left. The sign bit is shifted out to the carry flag, and a zero bit is placed in the

[shift

sarl 1/%cl, RIM C

Arithmetic shift right. The least significant bit is shifted out to the carry flag. The sign bit is
shifted in, and kept as the sign bit. Other bits are simply shifted to the right.

shll I/%cl, RIM C
Logical shift left.
shrl I/%cl, RIM C

Logical shift right.

180

Appendix B. Common x86 Instructions

Instruction Operands Affected Flags

testl I/R/M, RIM O/S/ZIAIPIC

Does a logical and of both operands and discards the results, but sets the flags accordingly.
xorl I/R/M, RIM O/S/ZIAIPIC

Does an exclusive or on the two operands, and stores the result in the second operand. $ets the
overflow and carry flags to false.

Flow Control Instructions

These instructions may alter the flow of the program.

Table B-4. Flow Control Instructions

Instruction Operands Affected Flags
call destination address O/SIZIAIC
This pushes what would be the next value%eip onto the stack, and jumps to the destinatipn
address. Used for function calls.

int I O/S/ZIAIC
Causes an interrupt of the given number. This is usually used for system calls and other kernel
interfaces.

Jcc destination address O/S/ZIAIC

181

Appendix B. Common x86 Instructions

Instruction \Operands ercted Flags
Conditional branchcc is thecondition codeJumps to the given address if the condition code
is true (set from the previous instruction, probably a comparison). Otherwise, goes to the next
instruction. The condition codes ake[njale] - above (unsigned greater than). Arcan be
added for "not" and aa can be added for "or equal to"
« [n]b[e] - below (unsigned less than)

[nle -equalto

« [n]z -zero

« [nlgle] - greater than (signed comparison)
« [n]i[e] - less than (signed comparison)

+ [n]lc - carry flag set

+ [n]o - overflow flag set

« [plp - parity flag set

+ [n]s - sign flag set

. ecxz - %ecxIis zero

jmp destination address O/SIZIAIC
An unconditional jump. This simply se%eip to the destination address.
ret O/S/ZIAIC

Pops a value off of the stack and then 9gtgp to that value. Used to return from function calls.

Assembler Directives

These are instructions to the assembler and linker, instead of instructions to the processor. These
are used to help the assembler put your code together properly, and make it easiegtoualise.
and.type are both used by the linker to help it know which symbols need to be used by other
programs, and what they do.

182

Appendix B. Common x86 Instructions

Table B-5. Assembler Directives

Directive

Operands

.ascii

QUOTED STRING

Takes the given quoted string and converts it into byte data.

.byte

VALUES

Takes a comma-separated list of values and inserts them ri

ght there in the program as data.

.equ

LABEL, VALUE

will be substituted for the give

Sets the given label equivalent to the given value. The value can be a number, a characte
constant expression that evaluates to a a number or character. From that point on, use of

n value.

r, or an
the label

.globl

LABEL

Sets the given label as global, meaning that it can be used from separately-compiled object files.

.include

FILE

Includes the given file just as

if it were typed in right there.

Jong

VALUES

Takes a sequence of numbers separated by commas, and
right where they are in the program.

inserts those numbers as 4-byte words

.section

SECTION NAME

Switches the section that is being worked on. Common sections ingéxtle (for code),
.data (for data embedded in the program itself), absb (for uninitialized global data).

Differences in Other Syntaxes and Terminology

The syntax for assembly language used in this book is known &TBE syntax. It is the one
supported by the GNU tool chain that comes standard with every Linux distribution. However, the
official syntax for x86 assembly language (known as the Intel syntax) is different. It is the same
assembly language for the same platform, but it looks different. Some of the differences include:

In Intel syntax, the operands of instructions are reversed.

In Intel syntax, registers are not prefixed with the percent $n (

In Intel syntax, a dollar-sigrs{) is not required to do immediate-mode addressing. Instead,

non-immediate addressing is accomplished by surrounding the address with brgckets (

In Intel syntax, the instruction name does not include the size of data being moved. If that is

ambiguous, it is explicitly stated &Y TE WORPor DWORDnmediately after the instruction

183

Appendix B. Common x86 Instructions
name.
- The way that memory addresses are represented in Intel assembly language is much different.

« Because the x86 processor line originally started out as a 16-bit processor, most literature
about x86 processors refer to words as 16-bit values, and call 32-bit values double words.
However, we use the term "word" to refer to 32-bit values since that is the standard register
size on modern x86 processors. This is true of the syntax as WallORBtands for "double
word" and is used for standard-sized registers.

- Intel assembly language has the ability to address memory as a segment/offset pair. We do not
mention this because Linux does not support segmented memory, and is therefore irrelevant to
Linux programming.

Other differences exist, but they are small in comparison. To show many of the differences,
consider the following instruction:

movl %eax, 8(%ebx,%edi,4)
In Intel syntax, this would be written as:
mov [8 + %ebx + 1 * edi], eax

This makes a little more sense, as it spells out exactly how the address will be computed, but the
order of operands is confusing.

184

Appendix C. Important System Calls

These are some of the more important system calls to use when dealing with Linux. For most
cases, however, it is best to use library functions rather than direct system calls, because the
system calls were designed to be minimalistic while the library functions were designed to be
easy to program with. For information about the Linux C library, see the manual at
http://www.gnu.org/software/libc/manual/

Remember thateax holds the system call numbers, and that the return values and error codes
are also stored ifeax.

Table C-1. Important Linux System Calls

Y%beax Name %ebx %%6ecx %%edx Notes
1 exit return Exits the program
value (int)
3 read file buffer start puffer size [Reads into the given buffer
descriptor (int)
4 write file buffer start buffer size Writes the buffer to the file
descriptor (int) descriptor
5 open null- option list [permissionOpens the given file. Returns the
terminated mode file descriptor or an error number.
file name
6 close file Closes the give file descriptor
descriptor
12 chdir null- Changes the current directory of
terminated your program.
directory
name
19 Iseek file offset mode Repositions where you are in the
descriptor given file. The mode (called the
"whence") should be 0 for absolute
positioning, and 1 for relative
positioning.
20 getpid Returns the process ID of the
current process.

185

Appendix C. Important System Calls

nd

Y%eax Name %ebx %%ecx %edx Notes

39 mkdir null- permission Creates the given directory.
terminated mode Assumes all directories leading up
directory to it already exist.
name

40 rmdir null- Removes the given directory.
terminated
directory
name

41 dup file Returns a new file descriptor that

descriptor works just like the existing file
descriptor.

42 pipe pipe array Creates two file descriptors, wher
writing on one produces data to
read on the other and vice-versa.
%ebx is a pointer to two words of
storage to hold the file descriptors

45 brk new Sets the system break (i.e. - the €

system of the data section). If the system
break break is 0O, it simply returns the
current system break.

54 ioctl file request farguments|This is used to set parameters on

descriptor device files. It's actual usage vari¢
based on the type of file or device
your descriptor references.

2S

A more complete listing of system calls, along with additional information is available at
http://www.Ixhp.in-berlin.de/lhpsyscal.html You can also get more information about a system
call by typing inman 2 SYSCALLNAM®&hich will return you the information about the system

call from section 2 of the UNIX manual. However, this refers to the usage of the system call from

the C programming language, and may or may not be directly helpful.

186

Appendix D. Table of ASCII Codes

To use this table, simply find the character or escape that you want the code for, and add the

number on the left and the top.

Table D-1. Table of ASCII codes in decimal

+0 +1 +2 +3 +4 +5 +6 +7
0 NUL SOH STX ETX EOT ENQ ACK BEL
8 BS HT LF VT FF CR SO SI
16 DLE DC1 DC2 DC3 DC4 NAK SYN ETB
24 CAN EM SuUB ESC FS GS RS us
32 !) # $ % & ’
40 () * + , - . /
48 0 1 2 3 4 5 6 7
56 8 9 :) < = > ?
64 @ A B C D E F G
72 H I J K L M N @)
80 P Q R S T U V W
88 X Y Z [\] A _
96 ‘ a b C d e f g
104 h i] k I m n 0
112 p q r S t u \ W
120 X y z { | } ~ DEL

ASCIl is actually being phased out in favor of an international standard known as Unicode, which
allows you to display any character from any known writing system in the world. As you may
have noticed, ASCII only has support for English characters. Unicode is much more complicated,
however, because it requires more than one byte to encode a single character. There are several
different methods for encoding Unicode characters. The most common is UTF-8 and UTF-32.
UTF-8 is somewhat backwards-compatible with ASCII (it is stored the same for English
characters, but expands into multiple byte for international characters). UTF-32 simply requires
four bytes for each character rather than one. Windows uses UTF-16, which is a variable-length
encoding which requires at least 2 bytes per character, so it is not backwards-compatible with
ASCII.

A good tutorial on internationalization issues, fonts, and Unicode is available in a great Article by
Joe Spolsky, called "The Absolute Minimum Every Software Developer Absolutely, Positively
Must Know About Unicode and Character Sets (No Excuses!)", available online at

187

Appendix D. Table of ASCII Codes

http://lwww.joelonsoftware.com/articles/Unicode.html

188

Appendix E. C Idioms in Assembly Language

This appendix is for C programmers learning assembly language. It is meant to give a general
idea about how C constructs can be implemented in assembly language.

If Statement

In C, an if statement consists of three parts - the condition, the true branch, and the false branch.
However, since assembly language is not a block structured language, you have to work a little to
implement the block-like nature of C. For example, look at the following C code:

ifa == b)

{

/* True Branch Code Here */
}

else

{

/* False Branch Code Here */
}

/* At This Point, Reconverge */

In assembly language, this can be rendered as:

;Move a and b into registers for comparison
movl a, %eax
movl b, %ebx

;Compare
cmpl %eax, %ebx

;If True, go to true branch
je true_branch

false_branch: ;This label is unnecessary,
;only here for documentation

:False Branch Code Here

;Jump to recovergence point

jmp reconverge

true_branch:
:True Branch Code Here

189

Appendix E. C Idioms in Assembly Language

reconverge:
;Both branches recoverge to this point

As you can see, since assembly language is linear, the blocks have to jump around each other.
Recovergence is handled by the programmer, not the system.

A case statement is written just like a sequence of if statements.

Function Call

A function call in assembly language simply requires pushing the arguments to the function onto
the stack imeverseorder, and issuing @all instruction. After calling, the arguments are then
popped back off of the stack. For example, consider the C code:

printf("The number is %d", 88);

In assembly language, this would be rendered as:

.section .data
text_string:
.ascii "The number is %d\0"

.section .text

pushl $88

pushl $text_string

call printf

popl %eax

popl %eax ;%eax is just a dummy variable,
;nothing is actually being done
;with the value. You can also
;directly re-adjust %esp to the
;proper location.

Variables and Assignment

Global and static variables are declared usttaga or.bss entries. Local variables are
declared by reserving space on the stack at the beginning of the function. This space is given back
at the end of the function.

190

Appendix E. C Idioms in Assembly Language

Interestingly, global variables are accessed differently than local variables in assembly language.
Global variables are accessed using direct addressing, while local variables are accessed using
base-pointer addressing. For example, consider the following C code:

int my_global_var;

int foo()
{

int my_local_var;

my_local_var = 1;
my_global_var = 2;

return O;

}
This would be rendered in assembly language as:

.section .data
dcomm my_ global var, 4

type foo, @function

foo:

pushl %ebp ;Save old base pointer

movl %esp, $ebp ;make stack pointer base pointer
subl $4, %esp ;Make room for my_local_var

.equ my_local_var, -4 ;Can now use my local var to
.find the local variable

movl $1, my_local_var(%ebp)
movl $2, my_global_var

movl %ebp, %esp ;Clean up function and return
popl %ebp
ret

What may not be obvious is that accessing the global variable takes fewer machine cycles than
accessing the global variable. However, that may not matter because the stack is more likely to be
in physical RAM (instead of swap) than the global variable is.

Also note that after loading a value into a register, that value will likely stay in that register until
that register is needed for something else. It may also move registers. For example, if you have a
variablefoo , it may start on the stack, but the compiler will eventually move it into registers for

191

Appendix E. C Idioms in Assembly Language

processing. If there aren’t many variables in use, the value may simply stay in the register until it
is needed again. Otherwise, when that register is needed for something else, the value, if it's
changed, is copied back to its corresponding memory location. In C, you can use the keyword
volatile ~ to make sure all modifications and references to the variable are done to the memory
location itself, rather than a register copy of it, in case other processes, threads, or hardware may
be modifying the value while your function is running.

Loops

Loops work a lot like if statements in assembly language - the blocks are formed by jumping
around. In C, a while loop consists of a loop body, and a test to determine whether or not it is
time to exit the loop. A for loop is exactly the same, with optional initialization and
counter-increment sections. These can simply be moved around to make a while loop.

In C, a while loop looks like this:

while(a < b)

{
/* Do stuff here */

}
/* Finished Looping */
This can be rendered in assembly language like this:

loop_begin:

movl a, %eax
movl b, %ebx
cmpl %eax, %ebx
joge loop_end

loop_body:
;Do stuff here

jmp loop_begin

loop_end:
;Finished looping

The x86 assembly language has some direct support for looping as wetheregegister can

be used as a counter thertdswith zero. Thdoop instruction will decremenbecx and jump to

a specified address unle%gcx is zero. For example, if you wanted to execute a statement 100
times, you would do this in C:

192

Appendix E. C Idioms in Assembly Language

for(i=0; i < 100; i++)
{

/* Do process here */

}
In assembly language it would be written like this:

loop_initialize:
movl $100, %ecx
loop_begin:

:Do Process Here

;Decrement %ecx and loops if not zero
loop loop_begin

rest_of program:
:Continues on to here

One thing to notice is that tHeop instructionrequires you to be counting backwards to zdfo
you need to count forwards or use another ending number, you should use the loop form which
does not include thieop instruction.

For really tight loops of character string operations, there is alseethenstruction, but we will
leave learning about that as an exercise to the reader.

Structs

Structs are simply descriptions of memory blocks. For example, in C you can say:

struct person {
char firsthame[40];
char lastname[40];
int age;

I3

This doesn’t do anything by itself, except give you ways of intelligently using 84 bytes of data.
You can do basically the same thing usiagu directives in assembly language. Like this:

.equ PERSON_SIZE, 84

.equ PERSON_FIRSTNAME_OFFSET, 0
.equ PERSON_LASTNAME_OFFSET, 40
.equ PERSON_AGE_OFFSET, 80

193

Appendix E. C Idioms in Assembly Language

When you declare a variable of this type, all you are doing is reserving 84 bytes of space. So, if
you have this in C:

void foo()

{

struct person p;

/* Do stuff here */
}

In assembly language you would have:

foo:

;Standard header beginning
pushl %ebp

movl %esp, %ebp

:Reserve our local variable

subl $PERSON_SIZE, %esp

;This is the variable’s offset from %ebp
.equ P_VAR, 0 - PERSON_SIZE

:Do Stuff Here

;Standard function ending
movl %ebp, %esp

popl %ebp

ret

To access structure members, you just have to use base pointer addressing with the offsets defined
above. For example, in C you could set the person’s age like this:

p.age = 30;
In assembly language it would look like this:

movl $30, P_VAR + PERSON_AGE_OFFSET(%ebp)

Pointers

Pointers are very easy. Remember, pointers are simply the address that a value resides at. Let's
start by taking a look at global variables. For example:

int global_data = 30;

194

Appendix E. C Idioms in Assembly Language

In assembly language, this would be:

.section .data
global_data:
dong 30

Taking the address of this data in C:
a = &global data;

Taking the address of this data in assembly language:
movl $global_data, %eax

You see, with assembly language, you are almost always accessing memory through pointers.
That’s what direct addressing is. To get the pointer itself, you just have to go with immediate
mode addressing.

Local variables are a little more difficult, but not much. Here is how you take the address of a
local variable in C:

void foo()

{
int a;
int *b;

a = 30;

b &a;

*h = 44;
}

The same code in assembly language:

foo:

;Standard opening
pushl %ebp

movl %esp, %ebp

;Reserve two words of memory
subl $8, $esp
.equ A VAR, -4
.equ B VAR, 4

195

Appendix E. C Idioms in Assembly Language

a = 30
movl $30, A_VAR(%ebp)

b = &a
movl $A_VAR, B_VAR(%ebp)
addl %ebp, B_VAR(%ebp)

*b = 30
movl B_VAR(%ebp), %eax
movl $30, (%eax)

;Standard closing
movl %ebp, %esp
popl %ebp

ret

As you can see, to take the address of a local variable, the address has to be computed the same
way the computer computes the addresses in base pointer addressing. There is an easier way - the
processor provides the instructi@a , which stands for "load effective address”. This lets the
computer compute the address, and then load it wherever you want. So, we could just say:

b = &a
leal A_VAR(%ebp), %eax
movl %eax, B_VAR(%ebp)

It's the same number of lines, but a little cleaner. Then, to use this value, you simply have to
move it to a general-purpose register and use indirect addressing, as shown in the example above.

Getting GCC to Help

One of the nice things about GCC is it’s ability to spit out assembly language code. To convert a
C language file to assembly, you can simply do:

gcec -S file.c

The output will be irfile.s . It's not the most readable output - most of the variable names have
been removed and replaced either with numeric stack locations or references to
automatically-generated labels. To start with, you probably want to turn off optimizations with
-00 so that the assembly language output will follow your source code better.

196

Appendix E. C Idioms in Assembly Language

Something else you might notice is that GCC reserves more stack space for local variables than
we do, and then AND’$esp* This is to increase memory and cache efficiency by double-word
aligning variables.

Finally, at the end of functions, we usually do the following instructions to clean up the stack
before issuing @et instruction:

movl %ebp, %esp
popl %ebp

However, GCC output will usually just include the instructieave . This instruction is simply
the combination of the above two instructions. We do notleses in this text because we want
to be clear about exactly what is happening at the processor level.

| encourage you to take a C program you have written and compile it to assembly language and
trace the logic. Then, add in optimizations and try again. See how the compiler chose to rearrange
your program to be more optimized, and try to figure out why it chose the arrangement and
instructions it did.

1. Note that different versions of GCC do this differently.

197

Appendix E. C Idioms in Assembly Language

198

Appendix F. Using the GDB Debugger

By the time you read this appendix, you will likely have written at least one program with an
error in it. In assembly language, even minor errors usually have results such as the whole
program crashing with a segmentation fault error. In most programming languages, you can
simply print out the values in your variables as you go along, and use that output to find out
where you went wrong. In assembly language, calling output functions is not so easy. Therefore,
to aid in determining the source of errors, you must usewace debugger

A debugger is a program that helps you find bugs by stepping through the program one step at a
time, letting you examine memory and register contents along the weguce debugges a
debugger that allows you to tie the debugging operation directly to the source code of a program.
This means that the debugger lets you look at the source code as you typed it in.

The debugger we will be looking at is GDB - the GNU Debugger. This application is present on
almost all GNU/Linux distributions. It can debug programs in multiple languages, including
assembly language.

An Example Debugging Session

The best way to explain how a debugger works is by using it. The program we will be using the
debugger on is thmaximum program used i€hapter 3Let’s say that you entered the program
perfectly, except that you left out the line:

incl %edi

When you run the program, it just goes in an infinite loop - it never exits. To determine the cause,
you need to run the program under GDB. However, to do this, you need to have the assembler
include debugging information in the executable. All you need to do to enable this is to add the
--gstabs option to theas command. So, you would assemble it like this:

as --gstabs maximum.s -0 maximum.o

Linking would be the same as normal. "stabs" is the debugging format used by GDB. Now, to run
the program under the debugger, you would typgdi ./maximum . Be sure that the source
files are in the current directory. The output should look like this:

GNU gdb Red Hat Linux (5.2.1-4)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

199

Appendix F. Using the GDB Debugger

This GDB was configured as "i386-redhat-linux"...
(gdb)

Depending on which version of GDB you are running, this output may vary slightly. At this
point, the program is loaded, but is not running yet. The debugger is waiting your command. To
run your program, just type irun . This will not return, because the program is running in an
infinite loop. To stop the program, hit control-c. The screen will then say this:

Starting program: /home/johnnyb/BartlettPublishing/Books/PGU/Move/maximum-
err

Program received signal SIGINT, Interrupt.
start_loop () at maximum-err.s:34

34 movl data_items(,%edi,4), %eax
Current language: auto; currently asm
(gdb)

This tells you that the program was interrupted by the SIGINT signal (from your control-c), and
was within the section labelledart_loop , and was executing on line 34 when it stopped. It
gives you the code that it is about to execute. Depending on exactly when you hit control-c, it
may have stopped on a different line or a different instruction.

One of the best ways to find bugs in a program is to follow the flow of the program to see where it
is branching incorrectly. To follow the flow of this program, keep on entesiagi (for "step
instruction"), which will cause the computer to execute one instruction at a time. If you do this
several times, your output will look something like this:

(gdb) stepi

35 cmpl %ebx, %eax # compare values

(gdb) stepi

36 jle start_loop # jump to loop beginning if the new
(gdb) stepi

32 cmpl $0, %eax # check to see if we've hit the end
(gdb) stepi

33 je loop_exit

(gdb) stepi

34 movl data_items(,%edi,4), %eax

(gdb) stepi

35 cmpl %ebx, %eax # compare values

(gdb) stepi

36 jle start_loop # jump to loop beginning if the new
(gdb) step

32 cmpl $0, %eax # check to see if we've hit the end

200

Appendix F. Using the GDB Debugger

As you can tell, it has looped. In general, this is good, since we wrote it to loop. However, the
problem is that it i;yever stoppingTherefore, to find out what the problem is, let’s look at the
point in our code where we should be exitting the loop:

cmpl 30, %eax
je loop_exit

Basically, it is checking to see #heax hits zero. If so, it should exit the loop. There are several
things to check here. First of all, you should make sureltivat exit actually is outside the

loop. Second, you may have left this piece out altogether as it is not uncommon for a programmer
to forget to include a way to exit a loop.

However, neither of those are the case with this program. So, the next option is that peehaps

has the wrong value. There are two ways to check the contents of register in GDB. The first one is
the commandhfo register . This will display the contents of all registers in hexadecimal.
However, we are only interesteddteax at this point. To just displageeax we can do

print/$eax to print it in hexadecimal, or dprint/d $eax to printitin decimal. Notice that

in GDB, registers are prefixed with dollar signs rather than percent signs. Your screen should
have this on it:

(gdb) print/d $eax
$1 =3
(gdb)

This means that the result of your first inquiry is 3. Every inquiry you make will be assigned a
number prefixed with a dollar sign. Now, if you look back into the code, you will find that 3 is the
first number in the list of numbers to search through. If you step through the loop a few more
times, you will find that every timeéoeax has the number 3.

Okay, now we know thaeax is being loaded with the same value over and over again. So, let’s
search to see whepgeax is being loaded from. The line of code is this:

movl data_items(,%edi,4), %eax

So, step until this line of code is ready to execute. Now, this code depends on two values -
data_items and%edi. data_items is a symbol, and therefore constant. It's a good idea to
check your source code to make sure the label is in front of the right data, but in our case it is.
Therefore, we need to look &dedi. So, we need to print it out. It will look like this:

(gdb) print/d $edi
$2 =0
(gdb)

201

Appendix F. Using the GDB Debugger

This indicates thaoedi is set to zero, which is why it keeps on loading the first element of the
array. This should cause you to ask yourself two questions - what is the purpasdiofand

how should its value be changed? To answer the first question, we just need to look in the
comments%edi is holding the current index afata_items . Since our search is a linear search
through the list of numbers igata_items , it would make sense thatedi should be
incremented with every loop iteration.

Scanning the code, there is no code which aliesdi at all. Therefore, we should add a line to
incrementoedi at the beginning of every loop iteration. This happens to be exactly the line we
tossed out at the beginning.

Hopefully this exercise provided some insight into using GDB to help you find errors in your
programs.

Breakpoints and Other GDB Features

The program we entered in the last section had an infinite loop, and could be easily stopped using
control-c. Other programs may simply abort or finish with errors. In these cases, control-c doesn’t
help, because by the time you press control-c, the program is already finished. To fix this, you
need to sebreakpoints A breakpoint is a place in the source code that you have marked to

indicate to the debugger that it should stop the program when it hits that point.

To set breakpoints you have to set them up before you run the program. Before issuing the
command, you can set up breakpoints usingotleak command. For example, to break on line

27, issue the commarmleak 27 . Then, when the program crosses line 27, it will stop running,
and print out the current line and instruction. You can then step through the program from that
point and examine registers and memory. To look at the lines and line numbers of your program,
you can simply use the commahdThis will print out your program with line numbers a screen

at atime.

When dealing with functions, you can also break on the function names. For example, in the
factorial program irChapter 4we could set a breakpoint for the factorial function by typing in
break factorial . This will cause the debugger to break immediately after the function call
and the function setup (it skips the pushing/adbp and the copying ofoesp).

When stepping through code, you often don’t want to have to step through every instruction of
every function. Well-tested functions are usually a waste of time to step through except on rare
occasion. Therefore, if you use thexti command instead of theepi command, GDB will

wait until completion of the function before going on. Otherwise, witpi , GDB would step

you through every instruction within every called function.

One problem that GDB has is with handling interrupts. Often times GDB will miss the
instruction that immediately follows an interrupt. The instruction is actually executed, but GDB

202

doesn't step through it.

GDB Quick-Reference

Appendix F. Using the GDB Debugger

This quick-reference table is copyright 2002 Robert M. Dondero, Jr., and is used by permission in
this book. Parameters listed in brackets are optional.

Table F-1. Common GDB Debugging Commands

Miscellaneous

quit

Exit GDB

help [cmd]

Print description of debugger commagrdd.
Without cmd, prints a list of topics.

directory [dirl] [dir2] ...

Add directorieddirl , dir2 , etc. to the list of
directories searched for source files.

Running the Program

run [argl] [arg2] ...

Run the program with command line arguments

argl , arg2 , etc.

set args argl [arg2] ...

Set the program’s command-line arguments
argl , arg2 , etc.

to

show args

Print the program’s command-line arguments

*2)

Using Breakpoints

info breakpoints

Print a list of all breakpoints and their numbe
(breakpoint numbers are used for other
breakpoint commands).

=

S

breaklinenum

Set a breakpoint at line numbkmenum

break *addr

Set a breakpoint at memory addresklr.

breakfn

Set a breakpoint at the beginning of function

conditionbpnum expr

Break at breakpoirthpnumonly if expression
expris non-zero.

command ppnunj cmdl[cmd] ...

Execute commandsndl cmd2 etc. whenever
breakpointopnum(or the current breakpoint) i
hit.

[92)

continue Continue executing the program.
Kill Stop executing the program.
delete ppnum][bpnum?... Delete breakpointspnuml bpnum2 etc., or all

breakpoints if none specified.

203

Appendix F. Using the GDB Debugger

Using Breakpoints

clear *faddr Clear the breakpoint at memory addresiir.

clear fn] Clear the breakpoint at functidn, or the
current breakpoint.

clearlinenum Clear the breakpoint at line numbl@renum

disable ppnum] [bpnum?... Disable breakpointspnuml bpnuma2 etc., or
all breakpoints if none specified.

enable ppnum][bpnum2?... Enable breakpointspnuml bpnum2etc., or

all breakpoints if none specified.

Stepping through the Program

nexti

"Step over" the next instruction (doesn’t follow

function calls).

stepi "Step into" the next instruction (follows
function calls).
finish "Step out” of the current function.

Examining Registers and Memory

info registers

Print the contents of all registers.

print/f $reg

Print the contents of registezg using formatff .

The format can be x (hexadecimal), u (unsigned

decimal), o (octal), a(address), c (character)
f (floating point).

x/rsf addr

Print the contents of memory addresidr
using repeat coumt sizes, and formaf .
Repeat count defaults to 1 if not specified. S
can be b (byte), h (halfword), w (word), or g
(double word). Size defaults to word if not
specified. Format is the same as for print, wit
the additions of s (string) and i (instruction).

info display

Shows a numbered list of expressions set up
display automatically at each break.

displayf $reg

At each break, print the contents of registey
using formatf .

or

displays addr

At each break, print the contents of memory
addressddr using sizes (same options as for
the x command).

displayks addr

At each break, print the string of siz¢hat

begins in memory addressidr.

204

Appendix F. Using the GDB Debugger

Examining Registers and Memory

undisplaydisplaynum

Removedisplaynunfrom the display list.

Examining the Call Stack

where Print the call stack.

backtrace Print the call stack.

frame Print the top of the call stack.

up Move the context toward the bottom of the call
stack.

down Move the context toward the top of the call

stack.

205

Appendix F. Using the GDB Debugger

206

Appendix G. Document History

« 12/17/2002 - Version 0.5 - Initial posting of book under GNU FDL

« 07/18/2003 - Version 0.6 - Added ASCII appendix, finished the discussion of the CPU in the
Memory chapter, reworked exercises into a new format, corrected several errors. Thanks to
Harald Korneliussen for the many suggestions and the ASCII table.

« 01/11/2004 - Version 0.7 - Added C translation appendix, added the beginnings of an appendix
of x86 instructions, added the beginnings of a GDB appendix, finished out the files chapter,
finished out the counting chapter, added a records chapter, created a source file of common
linux definitions, corrected several errors, and lots of other fixes

« 01/22/2004 - Version 0.8 - Finished GDB appendix, mostly finished w/ appendix of x86
instructions, added section on planning programs, added lots of review questions, and got
everything to a completed, initial draft state.

207

Appendix G. Document History

208

Appendix H. GNU Free Documentation License

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free” in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

209

Appendix H. GNU Free Documentation License

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup has
been designed to thwart or discourage subsequent modification by readers is not Transparent. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition. Copying with changes limited to

the covers, as long as they preserve the title of the Document and satisfy these conditions, can be

210

Appendix H. GNU Free Documentation License
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using
public has access to download anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

* A. Use inthe Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

» B. Liston the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five).

» C. State on the Title Page the name of the publisher of the Modified Version, as the publisher.
» D. Preserve all the copyright notices of the Document.

» E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

* F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

211

Appendix H. GNU Free Documentation License

* G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

* H. Include an unaltered copy of this License.

* |. Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

» J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

» K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

* L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

* M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

* N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only

one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on

212

Appendix H. GNU Free Documentation License

behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version .

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that section if known, or else

a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and dispbibute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document , on account of their being thus
compiled, if they are not themselves derivative works of the Document. If the Cover Text
requirement of section 3 is applicable to these copies of the Document, then if the Document is
less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on

213

Appendix H. GNU Free Documentation License

covers that surround only the Document within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may

include a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version of
this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have

the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation.

Addendum

To use this License in a document you have written, include a copy of the License in the

document and put the following copyright and license notices just after the title page:
Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

214

Appendix H. GNU Free Documentation License

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

215

Appendix H. GNU Free Documentation License

216

Index

%eax,17, 27, 61, 79, 86, ??, 185
%ebp,17, 202
%ecx,17, 62, ??, ??, 192
%edi, 17
%edx,17, 62, ??, ??
%eflags26, ?7?
%eip, 17
%esp,17, 197, 202
A, 15
.ascii,23
.byte,23
.globl, 16, 24
.int, 23
long, 23
.section,16
.text, 16
0x80,18
_start,16, 24
addressy
addressing modes,
Base Pointer Addressing6
Indirect Addressing36
Arithmetic and logic unitg
as,14
ASCII, 7
assemblel4
assembler] 6
assembler directive4 6
Assembly Languagel, 14
Base Pointer Registe37
base-pointer addressing modé,
branch predictiony
byte,7
cache hierarchieg,
Calling Conventions35
cmpl, 26
comments15
computer architecturé,

conditional jump20
coprocessors,

CPU,5,6

Data busg

data section]6, 22

direct addressindl,7

direct addressing mod#&0
echo,15

echo $?19

exit, 17

exit status 18, 24

exit status codel5

flow control, 20, 26

GCC,3

General-purpose registe;,17
GNU/Linux, 2
hexadecimall8

High-Level Language4
immediate mode9
immediate mode addressiny
incl, 27

index, 24

index register10, 25
indexed addressing modg), 25
indirect addressing mod&0
infinite loop,21

Instruction Decode§
instruction pointer8, 37

int, 18

interrupt,18

kernel,3

Knoppix, 3

Larry-Boy, 18

Id, 14

link, 14

linker, 14

Linux, 3,18

Local Variables37

loop, 25

loops,21

217

Machine Language!
memory,5
microcode translatiory,
movl, 17, 25
multiplier, 10, 25
object file,14
offset,10
out-of-order execution/
parameters] 8, 34, 46
pipelining,7
pointers,8, 9
profiler, 152
Program Countef
programming,l
pseudo-operationi6
register,;6
registers??, 18, 24
%ebp,37
%eip, 37
%esp,36
Return addres85
Return value35
source codel4d
source file 14
special-purpose registed,
special-purpose registe®,17
Stack Registe36
status codel9
status registe£6
superscalar processors,
symbol,16, 34
system call,l7, 27
system calls17
text section,16
unconditional jump20
variables24
Global variables34
Local variables34
Static variables34
Von Neumann architecturs, 6

218

word, 8

	Programming from the Ground Up
	Table of Contents
	Chapter 1. Introduction
	Welcome to Programming
	Your Tools

	Chapter 2. Computer Architecture
	Structure of Computer Memory
	The CPU
	Some Terms
	Interpreting Memory
	Data Accessing Methods
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 3. Your First Programs
	Entering in the Program
	Outline of an Assembly Language Program
	Planning the Program
	Finding a Maximum Value
	Addressing Modes
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 4. All About Functions
	Dealing with Complexity
	How Functions Work
	AssemblyLanguage Functions using the C Calling Convention
	A Function Example
	Recursive Functions
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 5. Dealing with Files
	The UNIX File Concept
	Buffers and .bss
	Standard and Special Files
	Using Files in a Program
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 6. Reading and Writing Simple Records
	Writing Records
	Reading Records
	Modifying the Records
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 7. Developing Robust Programs
	Where Does the Time Go?
	Some Tips for Developing Robust Programs
	User Testing
	Data Testing
	Module Testing

	Handling Errors Effectively
	Have an Error Code for Everything
	Recovery Points

	Making Our Program More Robust
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 8. Sharing Functions with Code Libraries
	Using a Shared Library
	How Shared Libraries Work
	Finding Information about Libraries
	Building a Shared Library
	Advanced Dynamic Linking Techniques
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 9. Intermediate Memory Topics
	How a Computer Views Memory
	The Instruction Pointer
	The Memory Layout of a Linux Program
	Every Memory Address is a Lie
	Getting More Memory
	A Simple Memory Manager
	Variables and Constants
	The allocateinit function
	The allocate function
	The deallocate function
	Performance Issues and Other Problems

	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 10. Counting Like a Computer
	Counting
	Counting Like a Human
	Counting Like a Computer
	Conversions Between Binary and Decimal

	Truth, Falsehood, and Binary Numbers
	The Program Status Register
	Other Numbering Systems
	Floatingpoint Numbers
	Negative Numbers

	Octal and Hexadecimal Numbers
	Order of Bytes in a Word
	Converting Numbers for Display
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 11. HighLevel Languages
	Compiled and Interpreted Languages
	Your First C Program
	Perl
	Python
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 12. Optimization
	When to Optimize
	Where to Optimize
	Local Optimizations
	Global Optimization
	Review
	Know the Concepts
	Use the Concepts
	Going Further

	Chapter 13. Moving On from Here
	From the Bottom Up
	From the Top Down
	From the Middle Out
	Specialized Topics

	Appendix A. GUI Programming
	Introduction to GUI Programming
	The GNOME Libraries
	A Simple GNOME Program in Several Languages
	GUI Builders

	Appendix B. Common x86 Instructions
	Reading the Tables
	Data Transfer Instructions
	Integer Instructions
	Logic Instructions
	Flow Control Instructions
	Assembler Directives
	Differences in Other Syntaxes and Terminology

	Appendix C. Important System Calls
	Appendix D. Table of ASCII Codes
	Appendix E. C Idioms in Assembly Language
	If Statement
	Function Call
	Variables and Assignment
	Loops
	Structs
	Pointers
	Getting GCC to Help

	Appendix F. Using the GDB Debugger
	An Example Debugging Session
	Breakpoints and Other GDB Features
	GDB QuickReference

	Appendix G. Document History
	Appendix H. GNU Free Documentation License
	Index

