Tovero Version 0.2.0 Tutorial

Copyright (©) 2012-2014 Roan Trail, Inc.
(GNU Lesser General Public License version 2.1)

Introduction

Tovero is a 3D modeling system. It uses a technique called constructive solid geom-
etry (CSG) to represent models. Currently, Tovero is layered on top of BRL-CAD
using its libraries and tools. This tutorial is based on material from the the document
“BRL-CAD Tutorial Series: Volume II Introduction to MGED”. It assumes you have
some understanding of basic 3D modeling concepts, such as vectors, transformations,
and projections.

In this tutorial, you will create a model of a radio. Unlike other 3D modeling systems
you may have used, Tovero does not use a GUI to create and interact with models.
Rather, you construct a model with a Ruby script. You run the script to generate a
BRL-CAD “.g” database file. The database file can then be used to raytrace, view,
or analyze the model with tools from BRL-CAD, either by calling these tools from
the script (as in the tutorial) or externally. A final step in the scripts developed
during the tutorial is to convert the raytraced image to PNG format for viewing.

The tutorial uses Ruby to create Tovero models, although the current version of

Tovero also supports C++. The concepts for creating Tovero models in C++ are
essentially the same as for Ruby.

Radio 1: Creating a Simple Radio

The entire working code for this section is in a file called radiol.rb, located in the
same directory on your system where you installed this tutorial. You can use this file
as a reference if you encounter any problems while following the tutorial. A visual
differences tool (such as meld) run between the reference version and your version of
the script can help you in troubleshooting.

First Steps

Start a text editor, creating a new file called radiol.rb, for example:

emacs radiol.rb

Now add the following code to this file:

These load the extension libraries
require "libtovero_support_rb_1"
require "libtovero_math_rb_1"
require "libtovero_graphics_rb_1"

As the comment indicates, the three require statements load the Tovero libraries. If
you have correctly installed Tovero, a script you will use to run the model (tovero_ruby)
will set up the path to the libraries. Now add:

These are like "using namespace" in C++
include Libtovero_support_rb_1

include Libtovero_math_rb_1

include Libtovero_graphics_rb_1

The include statements effectively allow you to refer to Tovero class names without
prefixing them with the module name (e.g. Libtovero_support_rb_1::).

Now you will add some Ruby constants which will make the model code more read-

able:

#
Setup some constants
#

ZERO = Unitless.new(0.0)

CM = Distance::meter * 0.01

ZERO_CM = Distance::meter * 0.0

ORIGIN = Point.new(ZERO_CM,
ZERO_CM,
ZERO_CM)

Geometric objects (e.g. the point used for the origin) in Tovero use explicit units
to avoid errors. Tovero uses the Unitless class for quantities that do not have
associated units.

Next you will add a simple “box” shape which represents the body of the radio.

The model is created in a coordinate system where the XY plane is horizontal and
the Z axis is vertical. When the model is later rendered to create an image, this
modeling coordinate system will be projected to a plane using available options to
specify the angle from which the model is viewed. (See the azimuth and elevation
options to the rt tool shown later in this section.)

Figure 1: Modeling Coordinate System

The box will be positioned as shown in Figure 1. Add the box shape with:

#
Create the radio
#

#
radio body
#
body = AxisAlignedBox.new(ORIGIN,
Point.new(CM * 16.0,
CM x 32.0,
CM * 48.0),
"body.s")

The shape you create with this object is an axis-aligned rectangular prism. The sides
are parallel to the X, Y, and Z axes of its modeling coordinate system. Two points
(here the origin and the second point parameter) specify the extents of the box, i.e.
its minimum and maximum vertices. Note that the point object is created using
centimeter units with the constant you defined earlier.

The "body.s" parameter gives the shape a name in the BRL-CAD database, which
makes it more convenient to use the model with BRL-CAD’s tools. The “.s” at the
end of the name is a convention indicating that the object is a primitive shape.

Add the following lines to create a combination shape object:

#

combine parts to make the radio

#

radio = SolidCombination.new("radio.c")
radio << body

A combination shape, as you will see later, allows you to combine primitive shapes
(like the axis-aligned box) together using boolean operations. For now, you are just
adding the body as a single member of the combination. The name ends with “.c”,
again by convention, to indicate that it is a combination.

4

To actually create the BRL-CAD database object, add the following lines to the
Ruby script:

#
Create a BRL-CAD ".g" database
#

database = BCDatabase.new

After the database is created, add the body to its list of shapes with:

#
Add the radio to the database
i

solid_list = database.top_solids;
solid_list << radio

Then, to write the database to a file named radiol.g:

#
Write the database to a file
#

database_file = "radiol.g"
error = ErrorParam.new
success = database.write(database_file, true, error)
if (not success)
puts("Could not write #{database_file}:")
puts (error.base.to_s)
abort ()
end

After the “.g” database exists as a file, you can raytrace it using:

#
Render the database with BRL-CAD’s tools
#

image_height = 512
image_width = 512
azimuth = -35
elevation = 25

display raytraced model
options to "rt":
-C [background color (R/G/B)]
—-a azimuth
-e elevation
-o [output .pix filel
-w [width in pixels of rendering]
-n [height in pixels (number of lines) of rendering]
<first positional arg> [database]
<second positional arg> [entity in database to trace]
command = "rm -f #{database_file}.pix #{database_file}.png ; \
rt -C255/255/255 -a #{azimuth} -e #{elevation} \
-o #{database_file}.pix \
-w#{image_width} -n#{image_height} #{database_file} radio.c"
%x [#{command}]

convert image and cleanup
command = "pix-png -w#{image_width} -n#{image_height} \
-o #{database_file}.png \
#{database_file}.pix ; \
rm -f #{database_file}.pix"
%x [#{command}]

The code first uses BRL-CAD’s command line tool rt to raytrace the database,
outputting to a 2D graphics format called “.pix”. It then uses a command line tool
caled pix-png to convert the .pix file to a PNG file which you can view with an image
viewer.

Save the radiol.rb script. Run the script with:

tovero_ruby ./radiol.rb

You can either run this in a terminal window or in your editor. For example, emacs
has a compile function, for which you can supply the above command. In emacs,
make sure you are in the script’s buffer when you execute the compile function so
tovero_ruby can find your Ruby script. If you use a terminal to run the command,
make sure the current directory is where you have saved the Ruby script.

After the Ruby script runs, you can view the resulting image file, radiol.g.png,
with any image viewer that supports the PNG format. It should look like Figure 2.

Figure 2: First Steps Radio

For a better understanding of how azimuth and elevation affect the view of the
model, change their values in the script (from 0 to 360). Save the script and run
tovero_ruby on it. Open the resulting image file to see how the view has changed.

Adding the Remaining Shapes to the Radio
Talk Button

You will now add the remaining shapes for the simple radio model. To start you will
create a talk button. It consists of two parts, an elliptical cylinder and an ellipsoid.
Insert the following code (and subsequent shapes) directly after the axis-aligned box
you created previously:

#
talk button
#
button = EllipticalCylinder.new(Point.new(CM * 8.0,
CM * 33.0,
CM * 36.0),
Vector.new(CM * 4.0,
ZERO_CM,
ZERO_CM),
Vector.new(ZERO_CM,
ZERO_CM,
CM * 2.0),
CM * 3.0,
"btn.s")

In Tovero, an elliptical cylinder is a right cylinder which can have an elliptical cross
section. It is created by specifying the center point of the base, two vectors which
determine the shape and orientation of the cross section, and a height distance (which
can be negative to construct the cylinder’s axis in the opposite direction). The
cylinder forms the inner part of the talk button.

Create the ellipsoid with:

button2 = Ellipsoid.new(Point.new(CM * 8.0,
CM * 33.0,
CM * 36.0),

Vector.new(CM * 4.0,

ZERO_CM,
ZERO_CM),
CM * 2.0,
"btn2.s")

An ellipsoid can be created several ways in Tovero. Here we use a “radius of revo-
lution”. The first point is the center, the vector is one axis of the ellipsoid, and the
third distance parameter is the radius of revolution. The ellipsoid shape forms the
outer part of the talk button.

Speaker

A torus represents the speaker of the radio. Add the following code after the ellipsoid:

#
speaker
#
speaker = Torus.new(Point.new(CM * 16.0,
CM * 16.0,
CM * 16.0),
UnitVector.new(Unitless.new(1.0),
ZERO,
ZEROD) ,
CM x 12.0,
CM *x 1.0,
"spkr.s")

The first parameter is the center point of the torus. The second parameter is the
direction the torus is facing. Notice that this parameter is a unit vector, since it is
a direction. The next two distances are the major and minor radii respectively. The
major radius is the outer radius of the torus, and the minor radius is smaller radius
of the circular cross-section.

Antenna and Tuning Knob

Two right circular cylinders form the antenna and tuning knob. Add these after the
speaker torus:

#
antenna
#
antenna = Cylinder.new(Point.new(CM * 2.0,
CM x 2.0,
CM * 46.0),
Vector.new(ZERO_CM,
ZERO_CM,
CM * 48.0),
CM * 1.0,
"ant.s")
#
volume knob
#
knob = Cylinder.new(Point.new(CM * 4.0,
CM *x 4.0,
CM % 40.0),
Vector.new(CM * 8.0,
ZERO_CM,
ZERO_CM) ,
CM * 5.0,
"knob.s")

The parameters for both of these cylinders are the center point of the circular base,
a height vector, and the radius of the cylinder. You now have all the parts of the
radio. Add them after the code where you added the body to the radio combination:

radio << button
radio << button2
radio << speaker
radio << antenna
radio << knob

10

Now save and run the model code as before with tovero_ruby (either in emacs or in
a terminal). Open radiol.g.png in your image viewer. It should look like Figure 3.

Figure 3: Complete Simple Radio

11

Radio 2: A More Sophisticated Radio

The entire working code for this section is in a file called radio2.rb, located in the
same directory on your system where you installed this tutorial.

The first radio you created demonstrated several Tovero geometric primitives unioned
together with a combination object. You’ll now build a more sophisticated, realistic
model. Copy your first radio in the file radiol.rb to a new file called radio2.rb.
Open this new file in a text editor.

One improvement we can make is to “hollow out” the body to create a case which
is more like a real radio. As a first step, after creating the AxisAlignedBox object
you assigned to the body variable, add following code:

cavity_offset = Vector.new(CM * 1.0,
CM * 1.0,
CM * 1.0)
cavity = AxisAlignedBox.new(body.minimum + cavity_offset,
body.maximum - cavity_offset,
"cavity.s")

This will create a box inset 1 centimeter from the body box.

The antenna can be improved as well. Locate the section of code where you assigned
a cylinder to the variable antenna. Change the name antenna to antenna_cylinder.
Add the following code after the creation of the cylinder:

antenna_ellipsoid = Ellipsoid.new(Point.new(CM * 2.0,
CM *x 2.0,
CM *x 94.0),
Vector.new (ZERO_CM,
ZERO_CM,
CM * 1.0),
CM * 3.0,
"ant2.s")

12

This will add a “cap” to the antenna, in the shape of an ellipsoid, a shape you have
already seen.

At this point, you will begin to define “regions” for each part of the radio. In
Tovero, regions represent unique volumes of physical space. A region is made up
of combinations of geometric shapes. As in real physical space, different regions
should not overlap. Since they represent physical objects, regions can have graphical
attributes such as color.

When you raytrace a model with BRL-CAD, it will output a warning if it detects

()]

two overlapping regions. By convention, region names end in “.r

Locate the section of code where you assigned an elliptical cylinder to the button
variable. Change the name button to button_cylinder. Then locate the section
of code where you assigned an ellipsoid to the button2 variable. Change the name
button2 to button_ellipsoid. To create the first region in the model, add the
following code after the creation of the button ellipsoid:

button_color = Color.new(128, 128, 128, 0) # grey
button_attributes = CombinationAttributes.new
button_attributes.color = button_color
button_attributes.is_part = true

button = Combination.new(button_attributes, "button.r")
button << button_cylinder
button << button_ellipsoid

The code creates a color object and an attributes object (with default values) for
the region, and it assigns the color to the attributes. It then creates a combination
with these attributes. Setting the is_part flag for the attributes tells Tovero that
this combination is a region.

Notice that here you are creating a Combination object (for the button), whereas
before you had created a SolidCombination object (for the whole radio). The
Combination object is a specialized type of SolidCombination, allowing you to
assign attributes. The SolidCombination cannnot be used for regions, only for
simple combinations of primitives. After the combination is created, the code unions
the cylinder and ellipsoid into the button region.

13

Now create a region for the antenna by adding the following code after the creation
of the antenna ellipsoid:

antenna_shader = PhongShader: :mirror

antenna_color = Color.new(128, 128, 128, 0) # grey
antenna_attributes = CombinationAttributes.new
antenna_attributes.shader = antenna_shader
antenna_attributes.color = antenna_color
antenna_attributes.is_part = true

antenna = Combination.new(antenna_attributes, "antenna.r")
antenna << antenna_cylinder
antenna << antenna_ellipsoid

This is similar to the code for the button region, with the exception of adding a
“shader”. A shader is an object that allows you to specify the material properties
which determine the appearance of the object other than the color. For the antenna,
you are specifying a mirror shader, which derives from a more general plastic or
Phong shader. Using the mirror shader for the antenna approximates the appearance
of chrome.

Locate the section of code where you assigned a cylinder to the knob variable. Change
the name knob to knob_cylinder. Then add the following code after the point where
you create the knob_cylinder:

knob_shader = PhongShader: :plastic
knob_shader.shine = 4

knob_color = Color.new(198, 198, 0, 0) # yellow
knob_attributes = CombinationAttributes.new
knob_attributes.shader = knob_shader
knob_attributes.color = knob_color
knob_attributes.is_part = true

knob = Combination.new(knob_attributes, "knob.r")
knob << knob_cylinder

You are now ready to finish up the radio case by adding the following code after the
code for the knob:

14

#

radio case

#

case_color = Color.new(0, 0, 255, 0) # blue
case_attributes = CombinationAttributes.new
case_attributes.color = case_color
case_attributes.is_part = true

radio_case = Combination.new(case_attributes, "radio_case.r")
radio_case << body
radio_case << SolidMember.new(SolidOperand.new(cavity),
SolidOperator: :Difference_op)
radio_case << SolidMember.new(SolidOperand.new(antenna_cylinder),
SolidOperator: :Difference_op)
radio_case << SolidMember.new(SolidOperand.new(knob_cylinder),
SolidOperator: :Difference_op)
radio_case << SolidMember.new(SolidOperand.new(button_cylinder),
SolidOperator: :Difference_op)
radio_case << SolidMember.new(SolidOperand.new(speaker),
SolidOperator: :Union_op)

The attributes are similar to previous code. However, creating the radio case region
involves some new concepts. Previously, you had only unioned geometry. The radio
case region uses union and difference operators. The difference operators for the case
subtract out space from it so it will not overlap regions (such as the antenna) later
when you create the model for the entire radio.

Unioning in an object (or “member”) for a combination was simple. You just used
the << operator between the combination and the object. To create a difference
operation, you first have to create a SolidMember object. The SolidMember object
is created with an operand (the shape) and an operator (the difference operation)
which is then appended to the region (combination) with <<. A third operator which
performs the intersection of two solids is also available.

When a combination is evaluated as an expression during rendering, the union oper-
ator has the least precedence. The union operator effectively groups difference and
intersection operators (which have equal precedence) for a single combination. Note
that since Tovero does not currently support parentheses, some expressions may need
additional combinations to correctly group operators.

15

The last region you will create for this model is the circuit board. After the code
above for the radio case add:

#
circuit board
#
board_box = AxisAlignedBox.new(Point.new(CM * 3.0,
CM *x 1.0,
CM * 1.0),
Point.new(CM * 4.0,
CM * 31.0,
CM * 47.0),
"board.s")

board_color = Color.new(0, 255, 0, 0) # green
board_attributes = CombinationAttributes.new
board_attributes.color = board_color
board_attributes.is_part = true

board = Combination.new(board_attributes, "board.r")
board << board_box

This code is very similar to code you have seen before. It creates an axis-aligned box
shape, followed by attributes for the circuit board and a region made from the box.

Replace the following code from your first radio model:

radio = SolidCombination.new("radio.c")
radio << body

radio << button

radio << button2

radio << speaker

radio << antenna

radio << knob

with:

16

radio = Combination.new("radio.a")
radio << radio_case

radio << button

radio << knob

radio << antenna

radio << board

This will create a combination with the regions unioned together into a part assembly,
with a name ending in “.a” by convention.

Locate the section of code where you set the variable database_file. Change the
assigned value to "radio2.g", to modify the name of the BRL-CAD database and
to change the name of the image file to radio2.g.png .

Make sure you change radio.c to radio.a in the first rendering command to specify
the correct object to raytrace. The code should now be:

command = "rm -f #{database_file}.pix #{database_file}.png ; \
rt -C255/255/255 -a #{azimuth} -e #{elevation} \
-o #{database_file}.pix \
-w#{image_width} -n#{image_height} #{database_file} radio.a"

Save and run the model with tovero_ruby (either in emacs or in a terminal). View
radio2.g.png in your image viewer. It should look like Figure 4.

17

Figure 4: A More Sophisticated Radio

Radio 3: Alternate Views of the Radio using Spe-
cialized Models

In the second section you developed an improved radio model, including an internal
printed circuit board. You have likely realized, however, that you were unable to view
inside the radio with this version of the model. In this section, in addition to the
original model, you will create two specialized versions which provide a translucent
view and a cutaway view. This will allow you to see inside the radio. One script
will create all three models stored as separate combinations in a single BRL-CAD
database. When you run the script, it will create image files for all three views:
normal, translucent, and cutaway.

The entire working code for this section is in a file called radio3.rb, located in the
same directory on your system where you installed this tutorial.

18

Creating a Translucent View of the Radio

Make a copy of your second radio in the file radio2.rb to a new file called radio3.rb.
Open the new file in a text editor.

Add this code in the constant setup section after the ORIGIN constant:

Z_AXIS = UnitVector.new(ZERO,
ZERO,
Unitless.new(1.0))

You will use the Z_AXIS constant later in the tutorial.

The first specialized model modifies the case to be translucent in order to show the
parts inside. All the other parts are identical and are unioned together with the new
case as a combination.

Locate the section in the code where you created the radio combination and added
the parts. After all of the parts have been combined with the << operator, add the
following code:

i
Make a translucent view
#

#

make a copy of the attributes

#

radio_case_translucent_shader = PhongShader.new
radio_case_translucent_shader.transmitted = Unitless.new(0.6)
radio_case_translucent_attributes = CombinationAttributes.new(case_attributes)
radio_case_translucent_attributes.shader = radio_case_translucent_shader

The code copies the original attributes of the case (case_attributes, including the
shader) to a new attributes object using the “copy constructor” of CombinationAttributes.
Changing the transmitted value of the shader to 0.6, causes it to transmit a fraction

of light through the case, making it translucent.

19

After copying the attributes, add:

#

make a copy of the case

#

radio_case_translucent = Combination.new(radio_case)
radio_case_translucent.name = "case_translucent.r"

radio_case_translucent.attributes = radio_case_translucent_attributes

This copies the radio_case object to the translucent version. To complete the
translucent radio, add:

#

make the translucent radio

#

radio_translucent = Combination.new("radio_translucent.a")
radio_translucent << radio_case_translucent
radio_translucent << button

radio_translucent << knob

radio_translucent << antenna

radio_translucent << board

Again, all the other parts are the same. However they are unioned together into a
new combination (assembly) with the translucent case.

The new translucent view needs to be added to the BRL-CAD database. So far, one
shape is added to the database with the line:
solid_list << radio

Immediately after this line, add the line:

solid_list << radio_translucent

20

Locate the place where you set the variable database file and change its assigned
value to "radio3.g" to modify the name of the database.

To render the translucent view, go to the end of the code where the raytracing is
performed. Replace the following code starting with the lines:

i
Render the database with BRL-CAD’s tools
i

to the end of the file with:

#
Render the database with BRL-CAD’s tools
#

image_height = 512
image_width = 512
azimuth = 35
elevation = 25

display raytraced model
options to "rt":
-C [background color (R/G/B)]
-a azimuth
-e elevation
-o [output .pix filel
-w [width in pixels of rendering]
-n [height in pixels (number of lines) of rendering]
<first positional arg> [database]
<second positional arg> [entity in database to trace]
views = ["translucent"]
views.each do |view]|

#
#
#
#
#
#
#
#
#
#

if view == ""
image_file_name = '"radio3.g"
view_assembly = "radio.a"
else

21

image_file_name = "radio3_#{view}.g"

view_assembly = "radio_#{view}.a"
end
command = "rm -f #{image_file_name}.pix #{image_file_namel}.png ; \

rt -C255/255/255 -a #{azimuth} -e #{elevation} \
-0 #{image_file_name}.pix \
-w#{image_width} -n#{image_height} \
#{database_file} #{view_assemblyl}"
%x [#{command}]

convert image and cleanup
command = "pix-png -w#{image_width} -n#{image_height} \
-o #{image_file_namel}.png \
#{image_file_name}.pix ; \
rm -f #{image_file_name}.pix"
%x [#{command}]
end

The views array will eventually hold the names of models you want to be raytraced.
For now, you only need the translucent model to be rendered.

Run the model code in radio3.rb with tovero_ruby and view the resulting image

file (radio3_translucent.g.png). It should look like Figure 5. As you can see, the
the radio has a translucent case in order to see inside it.

Creating a Cutaway View of the Radio

The cutaway version of the model takes a different approach than the translucent
version. It uses all the original parts, including the opaque radio case. To view
inside the radio, it cuts a portion of the radio off using a box and a CSG difference
operation (sometimes called subtraction).

Return to the point in the code after the line where you finished the translucent
radio:

radio_translucent << board

22

Figure 5: Translucent View Radio

Add the code:

#
Make a cutaway view
#

cutaway_box = AxisAlignedBox.new(Point.new(CM
CM

CM

Point.new(CM

CM

CM

"cutaway_box.

The axis-aligned box is the shape you will use later to “remove” material from the
radio using the difference operator. However before you do this, you have to position
the box with a Transformation object. Create the transformation by adding the

lines:

23

-16.0,
-16.0,
-1.0),
16.0,
16.0,
49.0),

cutaway_transform = Transformation.new
cutaway_transform.set_translation(CM * -8.0,

CM * 36.0,

ZERO_CM)
cutaway_transform.rotate(Z_AXIS, Angle::degree * -45.0)

The code applies a translation and rotation (around the Z axis, using the constant
you created earlier) to correctly orient the box for the subtraction. To apply the
transformation, add:

cutaway = SolidCombination.new("cutaway.c")
cutaway << SolidMember.new(SolidOperand.new(cutaway_box, cutaway_transform))

You previously created SolidOperand objects (without a transformation) when you
needed to apply a SolidOperator in a combination. SolidOperand objects also
allow you to associate a transformation to members of the a combination. The
previous two lines create a new SolidCombination to hold the (only) member of a
combination whose operand has a transformation applied to it.

To finish the cutaway view, add:

radio_cutaway = Combination.new("radio_cutaway.a")
radio_cutaway << radio
radio_cutaway << SolidMember.new(cutaway, SolidOperator::Difference_op)

This creates a combination consisting of the second radio with the cutaway box
subtracted out. Add this new view to the BRL-CAD database with the line (after
the similar lines which add radio and radio_translucent to the database):

solid_list << radio_cutaway

Change the line near the raytracing code:

views = ["translucent"]

24

to

views = ["cutaway"]

Run the model again with tovero_ruby and view the radio3_cutaway.g.png image
file. It should look like Figure 6. It has a portion of the radio removed in order to
see inside it.

Figure 6: Cutaway View Radio

To finish the script, change the line:

views = ["cutaway"]

to:

views = ["", "translucent", "cutaway"]

which will create image files for each of the three views every time you run the script.

25

