The TSP Design & Programming Guide

.
Frd Srd BeE Byl Bl B0l S Q! P BeD B

for TSP v0.8.1

Document Revision 1.1

provided by
The TSP Team Worldwide

Copyright (c) Eric NOULARD / eric.noulard @ gmail.com
Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2
published by the Free Software Foundation,
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled
"GNU Free Documentation License".

mailto:eric.noulard@gmail.com

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

Table of Content

1 Introduction S
1.1 Purpose of this guide S
1.2 Reader's guide S
1.3 Glossary 6

2 TSP Design 8
2.1 TSP History 8
2.2 TSP Objectives 8
2.3 Provider/Consumer Principle 8
2.3.1 Cyclical nature of a provider 9

2.3.2 Consumer/Provider collaboration mean 12

2.4 TSP Command Channel — Asynchronous TSP 13
2.4.1 TSP URL and Request Handler 14

2.4.2 Request Open/Close 14

2.4.3 Request [Filterered] Informations 15

2.4.4 Request Extended Informations 18

2.4.5 Request Sample/Samplelnit/SampleDestroy 19

2.4.6 Request Asynchronous Read/Write 21

2.5 TSP Data Channel — Synchronous TSP 23

3 Understanding TSP modules 24
3.1 The TSP modules 24
3.2 Accessing the TSP sources 24

4 TSP in C 25
4.1 Setting up your TSP 25
4.1.1 TSP Binary distribution 25

4.1.2 TSP Source distribution 26

4.2 Provider side programming 29
4.2.1 Writing a GLU type provider 29

4.2.2 Using a Blackboard provider 32

4.3 Developing a new consumer 33
4.4 Source code documentation (API doc) 37
4.4.1 General Doxygen usage 37

page 2 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

4.4.2 TSP Doxygen structure and usage example 39
4.4.2.1 TSP Doxygen main structure 40

4.4.2.2 Grouping 40

4.4.2.3 Structure, Enumeration, Macros, Typedef 43

4.4.2.4 Functions 46

4.4.2.5 Main and Programs 46

S TSP in Java 49
5.1 Using the JTSP API 49
5.1.1 Ant and Eclipse usage S

5.1.2 Source code documentation: javadoc 52

5.2 Jstdout example 52
5.3 JCDFWriter 54
5.4 Jsynoptic TSP plugin 54

6 TSP in Perl 56
7 TSP in Python 7
8 TSP in Ruby 58
9 TSP in Tcl 59
10 TSP documentation modules 60
10.1 TSP Specifications 60
10.2 TSP White paper 60
10.3 TSP Design and programming guide 60
10.4 Blackboard Design and Programmers guide 60

11 TSP Applications 62
11.1 TSP Providers 62
11.1.1 Generic Reader 63
11.1.2 Blackboard provider 64
11.1.3 Stubbed Server 67
11.1.4 Res Reader 68

11.2 TSP Consumers 70
11.2.1 Generic Consumer 70
11.2.1.1 tsp_request_information /1

11.2.1.2 tsp_request_filtered_information 72

11.2.1.3 tsp_request_async_sample_read 73

11.2.1.4 tsp_request_async_sample_write 74

page 3/94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

11.2.2 Res Writer 75
11.2.3 ASCII Writer 75
11.2.4 GDisp 77
11.2.5 Targa 81

12 Developer Handbook 86
12.1 Common Problems (FAQ) 86
12.2 Savannah Access 86
13 Support 88
13.1 Open Source Model Support 88
13.2 Professional Support 88

14 GNU Free Documentation License 89

page 4 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

1 Introduction

1.1 Purpose of this guide

This guide is a TSP design primer which explain the fundamentals of TSP design, not the details of

the specifications. It may be used by TSP developers and users in order to understand
v What is TSP design and purpose,

v How use and integrate the TSP in a development environment using different programming
languages (C, Java, Perl, Python, ...),

v An overview of TSP ready to use applications

As a matter of fact TSP is an active and evolving project so that the most up to date informations
may be found at the source (always “use the source, Luke”).

The two primary source of informations are:

1. The source code itself which may be browsed or downloaded at Savannah:
https://savannah.nongnu.org/projects/tsp

CVS Browse: http://cvs.savannah.nongnu.org/viewcvs/7root=tsp

Download Area: http://download.savannah.nongnu.org/releases/tsp/

2. The TSP mailing lists, including the archives

https://savannah.nongnu.org/mail/?group=tsp

1.2 Reader's guide

The guide may be read linearly. Nevertheless, the guide fall in 3 parts which may be read separately.

Part 1 describes the TSP Design and Principle (Chapter 2), without reference to any

1 http://catb.org/~esr/jargon/html/U/UTSL.html

page 5/94

https://savannah.nongnu.org/mail/?group=tsp
http://download.savannah.nongnu.org/releases/tsp/
http://cvs.savannah.nongnu.org/viewcvs/?root=tsp
https://savannah.nongnu.org/projects/tsp
http://catb.org/~esr/jargon/html/U/UTSL.html

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

programming language.

Part 2 describes the way to program with TSP. Chapters 4 to 9 explain how to use TSP in

different programming language. Chapter 3 explains how to get and install the source code

from Internet repository. Chapter 10 gives pointers to TSP documentation.

Part 3 describes the use of TSP application. Chapter 11 lists the currently available TSP

applications and their usage.

TSP observer should read Part 1.

TSP user should read Part 1 then Part 3.

TSP programmer should read Part 1 then Part 2 and Part 3.

1.3 Glossary

You will find hereafter a list of terms used throughout this document with a small definition. We

advise the interested reader to go to Wikipedia (http://www.wikipedia.org) for finding more detailed

definition.
Name | Definition
API | Application Programming Interface

(http://en.wikipedia.org/wiki/Application programming interface)

Blackboard | The TSP Blackboard is a structured shared memory space. It realizes a local
publish/subscribe Idiom.

Doxygen | A documentation generator tool used by TSP in C: http://www.doxygen.org.

See http://en.wikipedia.org/wiki/Documentation generator for general
information about documentation generator.

ONC-RPC | The Open Network Computing Remote Procedure Call

(http://en.wikipedia.org/wiki/ONC RPC) which defined in RFC 1831
(http://www.ietf.org/rfc/rfc1831.txt) is a remote procedure call originally
design by SUN for their NFS

(http://en.wikipedia.org/wiki/Network File System) network file system.

QoS

Quality of Service.

TCP/1P

Transport Control Protocol over Internet Protocol, a wide spread network
protocol (http://en.wikipedia.org/wiki/TCPIP)

TSP

Transport Sample Protocol

page 6 /94

http://en.wikipedia.org/wiki/TCPIP
http://en.wikipedia.org/wiki/Network_File_System
http://www.ietf.org/rfc/rfc1831.txt
http://en.wikipedia.org/wiki/ONC_RPC
http://en.wikipedia.org/wiki/Documentation_generator
http://www.doxygen.org/
http://en.wikipedia.org/wiki/Application_programming_interface
http://www.wikipedia.org/

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

Name | Definition

XDR | eXternal Data Representation
(http://en.wikipedia.org/wiki/External Data Representation).

XML-RPC| A simple XML Remote Procedure Call (http://en.wikipedia.org/wiki/XML.-
RPC). This is a remote procedure call protocol whose encoding scheme is
based on XML and transported by HTTP.

page 7 /94

http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/External_Data_Representation

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

2 TSP Design

This chapter describes the overall TSP Design and Principle.

2.1 TSP History

TSP started in 2002 from the collaboration of BT C&SI (formerly Syntegra) and EADS-Astrium
(formerly Astrium) in the domain of satellite avionics validation testbeds. TSP has now been used in
different fields and is thus not bound to the space domain.

2.2 TSP Objectives

TSP stands for Transport Sample Protocol. TSP main goal is to provide an efficient mean to
observe evolving data. The evolving data may be variable coming out of a simulation process or
physical value taken from a numerical bus or physical captor (temperature, speed, etc...).

2.3 Provider/Consumer Principle

In TSP there is two main roles
the provider which produces observable data and,
the consumer which observes (draws, plots, views, writes to file, ...) the data produced by

the provider
{Provides Timed Data}

{_. ____________ [-
TSP Consumer {Observes} TSP Provider
- e e e - -

A TSP Provider may be considered as a cyclical or pseudo-cyclical process that produces

page 8 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

timestamped data. How the provider produces the data is out of the scope of TSP. The TSP only
indicates how the provider is offering the produced data to TSP consumer. A TSP Provider has
several attributes or properties as described in the following figure:

TSP Provider

-base_frequency: double

The pseudo frequency advertised by the provider (in Hz)
-sample_symbol_list: TSP_sample_symbol_info_t==
The list of TSP sample symbol

-max_session_number: int

The maximum number of consumer session authorized to connect to provider
-name: string

The name of the provider

-max_period: int

The maximum period value handled by this provider
-current_consumer_session: int

The current number of handled consumers sessions
-status: TSP_status_t

-protocol_version_id: int

The latest protocol version handled by the provider

+TSP_request_open(in request:TSP_request_open_t): TSP_answer_open_t
+TSP_request_close(in request:TSP_request_close_t): int
+TSP_request_information({request:TSP_request_information_t): TSP_answer_sample_t

+TSP_request filtered information({in request:TSP_request information t,
in filter_kind:TSF_Filfer_kind_t,
in filter_string:string): TSP_answer_sample_t

+TSP_request sample(in request:TSP request sample t): TSP answer_sample t
+TSP_request sample init(in request:TSP_request sample init t): TSP _answer_sample_init
+TSP_request sample destroy(in request:TSP_request sample destroy t): TSP _answer_sample destroy t
+TSP_request async_sample_ read(async_sample:TSP_async _sample t): TSP async_sample t
+TSP_request_async_sample_write(async_sample:TSP_async_sample_t)

+TSP_request_feature(in request:TSP_request_feature_t): TSP_answer_feature_t
+TSP_exec_feature(in feature:TSP_exec_feature_t): int

2.3.1 Cyclical nature of a provider

The aspect to understand about the TSP provider is its “pseudo-cyclical” nature. A provider should
advertise its base frequency, in Hz, this theoretically means that this provider will be able to
produce a [set of] sample symbol value [s] at this specified rate. Nevertheless, as you will see later
a TSP consumer should NEVER consider that this base frequency is a real-time one. 1Hz
may not be 1 second of wall clock time, it may be more, it may be less or even totally unrelated
(mathematically speaking) to real time.

In fact a TSP consumer may ask a TSP provider for TSP sample symbols which are described by
TSP _sample symbol info t:

page 9/94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

TSP_sample_symbol_info_t

+name; string
The symbol name which may be any string

+provider_global_index: int

The unique provider-side identifier (PGI)
+provider_group_index: int
+provider_group_rank: int

+type: T5P _datatype_t

The TSP type of the symbol

+dimension: unsigned int
The dimension of the symbol 1 for scalar > 1 for arrays
+period: int

Should be == 1

+phase: int

Should be == 0

The sample TSP sample symbol info t structure entirely defines what the consumer will
receive when asking for the symbol: type (floating point value, signed or unsigned integer,
characters...) dimension (for arrays).

The period parameter specifies whether the consumer wants to receive ALL symbol values
generated by the provider (period=1) or a subset of them (period>1). For example if period
= 4 the consumer will receive 1 value out of 4 generated by the provider. More precisely if the

provider base frequency is 32Hz, the consumer will receive data at 8Hz = 32Hz / 4.

The phase argument specifies the offset in the cycle count of the provider.

page 10/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

The period and phase usage is better explained with an example. Let's say the provider has a 4Hz
base frequency, with a symbol called 't ime' whose value is evolving as follow:

time values on provider

Phase 0 | Phase 1 | Phase 2 | Phase 3 | Phase 0 | Phase 1 | Phase 2

0.000 0.250 0.500 0.750 1.000 1.250 1.500

Here are the values obtained by the consumer when asking for 't ime' symbol.

Period = 1, Phase = 0

0.000 ‘ 0.250 ‘ 0.500 ‘ 0.750 ‘ 1.000 ‘ 1.250 ‘ 1.500

Period = 2, Phase =0

0.000 0.500 1.000 1.500

Period = 2, Phase = 1

0.250 0.750 1.250 1.750

As you will see soon the consumer asks for a symbol using its name, period and phase, the provider
will complete the other parameters when answering to the sample request.

page 11 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

2.3.2 Consumer/Provider collaboration mean

Configuration is dome using
TSP Command Channel |(Asynchronous TSP)

AsynchronousfTSP (Request)

TSP Ennsu_T_er TSP Provider

Synchronoug TSP

Sample Data are collected using
TSP Data Channel (Synchronous TSP)

The TSP provider and consumer collaborate using two communication means

1. the TSP Command Channel is the so-called “asynchronous” communication mean between

TSP providers and consumers. Asynchronous TSP is used for:
a) Getting informations about the provider,
b) Opening a new TSP session, asking for sample configuration,
¢) Reading/writing one value etc...

2. the TSP Data Channel is the so-called “synchronous” communication mean between TSP
providers and consumers. Synchronous TSP is used to sample data which are “sampled” on
provider-side at a specified pace.

page 12 /94

The TSP Design & Programming Guide

The typical TSP sequence call is described hereafter:

TSP Consumer

T5P_request_open
|
TSP _answer_open
- = = = = = = = = = = = = -
T5P_request_informations
-
T5P_answer_sample
- = = = = - _— - - == == =
T5P_request_sample
-
T5P_answer_sample
il = = = = = - == === -
TSP_request_sample_init
|
T5P_answer_sample_init
+ —————————————
T5P_reguest_sample_destroy
-
T5P_answer_sample_destroy
+ —————————————
T5P_reguest_close
—-

Rev 1.1 for TSP v0.8.1

TSP Provider

2.4 TSP Command Channel — Asynchronous TSP

TSP consumers and providers interact using the TSP Command Channel (Asynchronous TSP). This
is the mean used to send configuration request describing what data is to be observed. The TSP

Command Channel is a “logically unconnected” communication mean, which may be realized by
different transport protocol (TCP/IP, XML-RPC, SOAP, CORBA, ONC-RPC, etc...). The default
protocol used in the current TSP implementation is ONC-RPC (RFC1831, RFC1832).

page 13/94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

2.4.1 TSP URL and Request Handler

A TSP consumer may contact a TSP provider using a TSP URL which has the following syntax:
request_handler_protocol://host/provider name:instance

For a Stubbed Server on tsp_demo the TSP URL would be:
rpc://tsp demo/StubbedServer:0

For a BlackBoard provider running on bb_simu pseudo simulator it would be;
rpc://tsp _demo/bb simu:0

Most of the consumer accept abbreviated TSP URL and try to find missing part, for example giving
rpc://tsp demo will try to connect to first provider on tsp_demo. The RPC URL scheme was
designed with the idea that the Command Channel may be transported using different request
handler protocols. The first implementation is using ONC-RPC. There is an alpha XML-RPC
(http://www.xmlrpc.com/) implementation in TSP C library.

2.4.2 Request Open/Close

When a consumer wants to negotiate a TSP Session with a TSP provider it has to send a TSP
Request Open to the provider. The Provider answers with a TSP Answer Open which specifies
success or failure. On success the consumer obtains a session identifier which is called channel
identifier in TSP. The channel ID is used in each subsequent TSP request in order to identifies the
TSP Session on provider side. Using this channel ID the provider maintains a set of provider-side
consumer configuration state:

Which TSP symbols where asked for this TSP session?

Is the consumer currently receiving sample?

page 14/ 94

http://www.xmlrpc.com/

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

TSP_request_open_t

+version id: int
TSP Protocol Version
+argv: TP argv_t

Arguments to be sent from consumer to provider

TSP_request_close_t

TSP_answer_open_t

+version_id: int
TSP Protocol Version
+channel_id: unsigned int

The TSP Channel Identifier

+version_id: int
TSP Protocol Version
+channel_id: unsigned int

The TSP Channel Identifier

+s5tatus: TSP _status_t
+status_str: string

When the consumer wants to terminate its TSP session it sends the TSP Request Close and the
provider frees any provider-side data related to this session. The TSP provider may garbage collect
the TSP session if 'broken link' is detected during sample.

A TSP Request Open may fail if the concerned provider does not want to accept more session. The
current C implementation limits the number of sessions to 100. One may customize this limit for its

own purpose or set-up some other kind of quality of service (QoS).

The TSP Request Open is a MANDATORY request, it MUST be sent to provider before sending
any other TSP Request.

2.4.3 Request [Filterered] Informations

After opening a TSP Channel a consumer may (optionally) ask the TSP provider for informations.
This is done with the TSP Request Informations or TSP Request Filtered Informations.

page 15/94

The TSP Design & Programming Guide

TSP_request_information_t

+version_id: int
TSP Protocol Version
+channel_id: unsigned int

The TSP Channel Identifier

Rev 1.1 for TSP v0.8.1

TSP_request_filtered_information_t

+version_id: int

TSP Protocol Version
+channel_id: unsigned int

The TSP Channel Identifier
+Tilter_kind: int

The type of the filter (NONE, SIMPLE, REGEX, SQL...)

+filter string: string

Data used by the specified filter

The TSP provider will answer with a TSP Answer Sample containing the complete list of available
symbols or a filtered list if Request Filtered Informations was used.

TSP_answer_sample_t

+version_id: int
TSP Protocol Version

+channel_id: unsigned int

The TSP Channel Identifier

+provider_timeout: int

+provider group number: int

+symbols: TSP sample_symbol_info list t

A list of TSP sample symbols informations

+base_frequency: double
The advertised provider base frequency

+max_period: int

+HMay_consumer_number
+currently_connected consumer_number: int
+status: T5P status_t

Filtered Request is very useful for provider which have a huge number of available symbols. This
specific request was introduced of a “real-life” bb_tsp_provider offering more than 1 000 000 of
symbols. Note here that offering a huge number of symbols is easy as long as consumer do not ask

to effectively sample all of them.

The TSP Request Filtered Information has more arguments than TSP Request Information:

page 16 /94

filter kind: for specifying the kind of filter you want to use. There are 2 kinds of filter
implemented NONE and STMPLE.
filter string: whichis a string representing the data to be used by the selected filter
kind. For the STMPLE filter kind the string must be the pattern used to match the symbol

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

name.

An example of TSP Request Filtered usage is given hereafter using the generic_consumer.
In this first example we want to see what symbol containing the string '99' in their name is offered
by a Stubbed Server provider:

I. $ tsp_request generic -u rpc://tsp_demo/StubbedServer
tsp_request filtered information SIMPLE 99

2. tsp request generic: TSP provider URL is <rpc://tsp demo>

3. Request Open successfully sent to : <rpc://tsp demo/StubbedServer:0>

4. Obtained channel Id : <0>

5. Provider::base frequency = 100.000000

6. Provider::max period = 100000

7. Provider::max consumer = 100

8. Provider::current consumer nb = 1

9. Provider <symbols list begin>

10. pgi = 00000099, Symbol99, type = TSP TYPE DOUBLE, dim = 1

11. pgi = 00000199, Symboll99, type = TSP_TYPE DOUBLE, dim = 1

12. pgi = 00000299, Symbol299, type = TSP _TYPE DOUBLE, dim = 1

13. pgi = 00000399, Symbol399, type = TSP _TYPE DOUBLE, dim = 1

14. pgi = 00000499, Symbol499, type = TSP _TYPE DOUBLE, dim = 1

15. pgi = 00000599, Symbol599, type = TSP TYPE DOUBLE, dim = 1

16. pgi = 00000699, Symbol699, type = TSP_TYPE DOUBLE, dim = 1

17. pgi = 00000799, Symbol799, type = TSP _TYPE DOUBLE, dim = 1

18. pgi = 00000899, Symbol899, type = TSP _TYPE DOUBLE, dim = 1

19. pgi = 00000990, Symbol990, type = TSP_TYPE DOUBLE, dim = 1

20. pgi = 00000991, Symbol991, type = TSP _TYPE DOUBLE, dim = 1

21. pgi = 00000992, Symbol992, type = TSP_TYPE DOUBLE, dim = 1

22. pgi = 00000993, Symbol993, type = TSP _TYPE DOUBLE, dim = 1

23. pgi = 00000994, Symbol994, type = TSP TYPE DOUBLE, dim = 1

24, pgi = 00000995, Symbol995, type = TSP_TYPE DOUBLE, dim = 1

25. pgi = 00000996, Symbol996, type = TSP TYPE DOUBLE, dim = 1

26. pgi = 00000997, Symbol997, type = TSP _TYPE DOUBLE, dim = 1

27. pgi = 00000998, Symbol998, type = TSP TYPE DOUBLE, dim = 1

28. pgi = 00000999, Symbol999, type = TSP TYPE DOUBLE, dim = 1

29. Provider <symbols list end>.

30. Request Close successfully sent to <rpc://tsp demo/StubbedServer:0>

page 17/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

In this second example we want to see symbols offered by a provider answering at TSP URL
rpc://tsp _demo/bb simu and containing the string '_0_'in their name:

1. $ tsp_request generic -u rpc://tsp_demo/bb_simu

tsp_request filtered information SIMPLE 0
2. tsp request generic: TSP provider URL is <rpc://tsp demo/bb simu>
3. Request Open successfully sent to : <rpc://tsp demo/bb simu:1>
4. Obtained channel Id : <4>
5. Provider::base frequency = 32.000000
6. Provider::max period = 100000
7. Provider::max consumer = 100
8. Provider::current consumer nb = 1
9. Provider <symbols list begin>
10. pgi = 00000017, DYN 0 d gsat, type = TSP TYPE DOUBLE, dim = 4
11. pgi = 00000018, ORBT 0 d possat m, type = TSP TYPE DOUBLE, dim = 3
12. pgi = 00000019, ECLA 0 d ecl sol, type = TSP _TYPE DOUBLE, dim = 1
13. pgi = 00000020, ECLA O d ecl lune, type = TSP TYPE DOUBLE, dim = 1
14. pgi = 00000021, POSA 0 d DirSol, type = TSP _TYPE DOUBLE, dim = 3
15. pgi = 00000022, POSA 0 d DirLun, type = TSP _TYPE DOUBLE, dim = 3
16. pgi = 00000023, Sequenceur 0 d t s, type = TSP TYPE DOUBLE, dim = 1
17. Provider <symbols list end>.
18. Request Close successfully sent to <rpc://tsp demo/bb simu:1>

2.4.4 Request Extended Informations

The TSP _sample symbol t contains all the necessary informations for defining a TSP
symbol; nevertheless sometimes some other informations may be interesting for specific provider or
consumer. Example of extended informations are:

- unit : second, meter, etc...

- profile, order : TSP only support 1-dimensional arrays so if your application wants to map 1-
dimensional array to multi-dimensional the provider may indicates that such 1-D array of
dimension 9 should map to a 3*3 matrix in a row-major column ordering. Here
profile="3*3"” and order="row” .

The extended informations ARE NOT normalized by the TSP protocol, so consumer/provider pair
should agree on their semantic. Generic Consumer should be able to display those informations but
nothing more.

For this need, some TSP providers may provide “extended informations” for the concerned TSP
symbols. The extended information is a list of “key/value” pair which is attached to each symbol
that needs it. It is up to the provider to add extended informations to symbols. On the same provider,

page 18 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

some symbols may have extended information and other may not.

2.4.5 Request Sample/Samplelnit/SampleDestroy

The sampling process is the heart of TSP. Using TSP you are able to receive sample symbols values,
i. e. values of a TSP symbols varying over time. Those “sample” values are provided by a TSP
provider in a flexible and efficient way. When a consumer wants to receive sample symbols value it
has to send:
1. one or several TSP Request Sample in order to describe and negotiate what it wants to
“sample”
2. aRequest Sample Init[ialization] in order to start the sampling and obtain a data address of
the TSP Data Channel used to receive sample
3. aRequest Sample Destroy when he wants to terminate the sampling process.

The structure of the Sample Requests and Answer is illustrated in the following figure:

page 19/94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

TSP_answer_sample_t

+version_id: int

TSP_request_sample_t TSP Protocol Version
+version id: int +channel_id: unsigred int
TSP Protocol Version The TSP Channel Identifier

+channel_id: unsigrned int +provider_timeout: int

The TSP Channel Identifier +provider_group_number: int
+symbols: TSP sample symbol_info list t

+Teature words[d] : unsigned int A list of T5P sample symbols informations

The TSP features requested

+consumer_timeout: int
+symbols: TSP sample symbol_info list t

The requested sample symbaols list +max_period: int
+MEX_consumer_number

+currently connected_consumer_number: int
+status: T5P_status_t

+base_freguency: double
The advertised provider base frequency

TSP_answer_sample_init_t

+version_id: int

+version id: int TSP Protocol Version

TSP Protocol Version : . .
+channel_id: unsigned int

+channel_id: unsigned int The TSP Channel Identifier
The TSP Channel Identifier

TSP_request_sample_init_t

+data_address: string

String encoded TSP Data Channel Address
+status: TSP _status_t

TSP_answer_sample_destroy_t

+version_id: int

+version id: int) TSP Protocaol Version
TSP Protocol Version

TSP_request_sample_destroy_t

+channel_id: unsigned int

+channel_id: unsigned int The TSP Channel Identifier
The TSP Channel Identifier
+status: T3P _status_t

When the consumer sends a TSP Sample Request it receives a TSP Sample Answer. The answer
mostly consists in a global status (TSP_status t) which may be TSP _STATUS OK or
TSP _ERROR_XXX? and the list of validated requested symbols,
TSP _sample symbols info list t.

When status is TSP STATUS OK the consumer may proceed with Request Sample Init.
When status is TSP STATUS ERROR_SYMBOLS the consumer hast to check the symbols list
contained in the answer. The symbols whose provider global index set to -1 are the ones that may

not be satisfied by the provider because they are unknown.

2 consult the API documentation for the list of possible ERROR codes

page 20/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

When status is not TSP STATUS OK the consumer has to resend an updated TSP Request Sample
until he gets an OK status.

The consumer should not send a TSP Request Sample Init unless the last TSP
Request Sample he sent triggered a TSP Answer Sample with TSP_STATUS OK.

Once the status is OK the consumer sends the TSP Request Sample Init and gets a TSP Answer
Sample Init which contains the address of the TSP Data Channel to use to receive the sampled data.
The string representing the data address has the form <host>:<port>. The consumer hast to open a
TCP socket on this <host>:<port> in order to receive the TSP sample values..

As soon as the consumer is connected to the TSP Data Channel he will receive the samples.
When the consumer doesn't want to receive samples anymore he has to send the TSP Request

Sample Destroy which terminates the sample process. The provider will release the TSP Data
Channel and close the socket.

2.4.6 Request Asynchronous Read/Write

If a consumer needs to pick only one value of a symbol it may use the TSP Request Asynchronous
Read.

Using this request the consumer does receive a stream of sample data but only one value. Another
difference with Request Sample is that the provider cannot ensure WHEN the value was collected
on provider side. If a consumer sends 2 Request Asynchronous Read he cannot assume anything
useful about the time it will take to get the answer.

It is to be compared with a Request Sample for which the provider guarantees the sample values
sent over the TSP Data Channel respect the TSP Request Sample timing contract (period, phase).
Different values of the same symbol on the TSP Data Channel MUST have been sampled by the
provider at the rate specified by the request sample.

The TSP Request Asynchronous Write may be used to ask the TSP provider to write a value onto a
symbol.

This is up to the provider to accept or not asynchronous read and/or write request. The default GLU
implementation does not implements asynchronous read and write operation. The Blackboard GLU

page 21 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

used by the Blackboard provider does.

The generic consumer may be used to send TSP Request Asynchronous Read or Write request to a
TSP Provider. Here follows an example of use on a bb tsp provider running on
localhost. The TSP URL is not specified on command line so the implicit value
rpc://localhost is used.

. $ tsp request filtered information SIMPLE Sequenceur

2. Provider::base frequency = 30.000000

3. Provider::max period = 100000

4. Provider::max consumer = 100

5. Provider::current consumer nb = 1

6. Provider <symbols list begin>

7. pgi = 00000049, Sequenceur 0 d t s, type = TSP TYPE DOUBLE, dim = 1

8. Provider <symbols list end>.

9. $ tsp request async sample read 49

10. 2054.760000

I1. $ tsp request async sample read 49

12. 2055.150000

13. $ tsp_request filtered information SIMPLE disp

14. Provider: :base frequency = 30.000000

15. Provider: :max period = 100000

16. Provider: :max consumer = 100

17. Provider: :current consumer nb = 1

18. Provider <symbols list begin>

19. pgi = 00000000, bb simu display level, type = TSP _TYPE UINT32, dim
=1

20. Provider <symbols list end>.

21. $ tsp request async sample read 0

22.0.000000

23.$ tsp request async sample write 0 5

24.$ tsp request async sample read 0

25.5.000000

26.$ tsp request async sample write 0 0

27. $ tsp request async sample read 0

28.0.000000

29. %

We use request filtered information (lines 1—S8) in order to find the PGI (provider global index) of
the symbol. Then we send request asynchronous read and write. The first argument of those

page 22 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

requests is the PGI, the second argument of the write request is the value to be written.

2.5 TSP Data Channel — Synchronous TSP

When a TSP Consumer wants to observe data it negotiates the list of the concerned [sample]
symbols. After that, it will receive in a predefined order the data he asked for. The communication
mean used to received data is the TSP Data Channel (Synchronous TSP). The data transmitted over
the TSP Data Channel is encoded in XDR (RFCI1832) in order to avoid endianness
(http://en.wikipedia.org/wiki/Endianness) issue between providers and consumers. The TSP Data

Channel is a “logically connected and lossless” communication mean which may be implemented

over different transport protocol. The default data channel of the current TSP implementation is
TCP/IP socket.

page 23 /94

http://en.wikipedia.org/wiki/Endianness

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

3 Understanding TSP modules

The TSP project consists in several modules which may be used for different needs or environments.

3.1 The TSP modules

The TSP project is divided into the following modules:

CVS module Role
name
tsp The TSP in C language. This module includes the core TSP protocol libraries,
the TSP Blackboard, some ready to use provider and consumer written in C.
Jjtsp The 100% Java TSP, which is the way to use TSP in Java.
tsp_docs The TSP documentation module including specifications, this guide and more.

perltsp The TSP Perl binding, which is the way to use TSP in Perl.

pytsp The TSP Python binding, which is the way to use TSP in Python.

tcltsp The TSP Tcl binding, which is the way to use TSP in TCL.

rubytsp The TSP Ruby binding, which is the way to use TSP in Ruby.

3.2 Accessing the TSP sources

TSP is hosted as a Savannah non-Gnu project; thus the different TSP modules may be publicly

accessed on Savannah at https://savannah.nongnu.org/projects/tsp .

The TSP released version may be downloaded using the download/file section of the Savannah TSP
project.

Bleeding edge TSP snapshot may be retrieved through (anonymous) CVS access. Savannah offers
anonymous read-only access to CVS and full read-write access to registered TSP Project members.

page 24 /94

https://savannah.nongnu.org/projects/tsp

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

4 TSP in C

The TSP C module is written in ANSI C, using only standard library either C standard library or
POSIX API (pthread). TSP in C is meant to be as portable as possible and is currently running on
Linux (32bit Intel, Power PC), DEC OSF, Solaris 2.5+ (Sparc, Intel), Free BSD and VxWorks.

4.1 Setting up your TSP

TSP in C comes as a software toolkit. You may use TSP in your application by using a binary TSP
distribution or by building your own TSP using the TSP source distribution. The primary TSP
distribution format is the source distribution. It is out of the scope of the TSP project to build binary
distribution for all TSP supported platforms.

4.1.1 TSP Binary distribution

If you get a binary TSP distribution such as pre-packaged RPM for your favorite Linux distribution,
you may install it as usual, for example:

rpm -1 tsp-0.7.3-1.1i586.rpm
If you did get a Source RPM you may rebuild the binary RPM before installing by doing:

rpm -i tsp-0.7.3-1.src.rpm
rpmbuild -bb /usr/src/RPM/SPECS/tsp.spec
rpm -i /usr/src/RPM/RPMS/1586/tsp-0.7.3-1.1586.rpm

The exact path for /usr/src/RPM may vary depending on your Linux distribution. The resulting
binary RPM does depend on your target architecture too. If you are not familiar with RPM, please
go to http://www.rpm.org/ or any other RPM resources in order to find detailed informations about
RPM usage.

The TSP should be installed under TSP HOME whose value may depends on the packager of the
RPM. A typical binary distribution will have:

page 25/94

http://www.rpm.org/

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

TSP_HOME SUBDIR What's inside
/opt/tsp-| /bin The binary TSP executable such as ready-to-use providers
<version>

(tsp_stub server,bb tsp provider,...), ready-to-
use consumers (tsp gdisp, targa,

tsp ascii writer, tsp request generic)
blackboard tools command line....

/include The TSP public includes to be used within your application
using TSP public APIL.

/1ib The TSP library to link with when using TSP API.

/scripts Helper scripts like bb_tools or tsp request xxx

wrapper scripts.

This directory contains tsp profile.sh and

tsp profile.csh.On Linux systems those file may be
added to your /etc/profile.d/ directory in order to set
up path and environment variables for the TSP user on the
system. Those files are sourced on each shell startup (see your

Linux manual for more informations).

You may want to rebuild your own TSP binary distribution tailored for your system using a tarball
source distribution, or a your private CVS extracted source tree. You may get both on Savannah:
http://savannah.nongnu.org/projects/tsp .

4.1.2 TSP Source distribution

If you get a tarball source TSP distribution such as you may found in the download section of the
Savannah project (http://download.savannah.nongnu.org/releases/tsp/), you should follow these
steps:

untar the archive: tar zxvf tsp-<version>-Source.tar.gz
this should create a tsp directory

$ tar zxvf tsp-0.8.1-Source.tar.gz
wailt for tar ending

- configure your TSP (cmake --help for more options) using out-of-source CMake
feature

page 26 / 94

http://download.savannah.nongnu.org/releases/tsp/
http://savannah.nongnu.org/projects/tsp

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

$ mkdir tsp build
$ cd tsp build
$ cmake ../tsp-0.8.1-Source
wait for cmake configure ending

- set-up some environment variables as indicated at the end of the configure scripts

$ source src/scripts/tsp dev.login.sh

Using host target <Linux>

Using TSP_SRC BASE=/home/noularde/tsp-0.8.1-Source
Using TSP _BIN BASE=/home/noularde/tsp build

Using STRACE DEBUG=1

$
The tsp dev.login. sh script sets-up some environment variables. When you are using
a TSP source toolkit, you need to source this file in each shell you want to use the TSP
source kit. The environment variables defined or modified by the script are:
1. TSP SRC BASE is the variable defining the 'base' directory of your TSP source
tree,
2. TSP BIN BASE is the variable defining the 'base' directory of your TSP build tree,
3. STRACE DEBUG, is the variable which controls the amount of trace the TSP
libraries are sending to standard output when running a program using the TSP
libraries.
4. PATH which is updated in order to include the path to the TSP binary executable
when they are built
- compile your TSP
$ make

wailt the compilation end

After that you will have a compiled and usable TSP development kit.

Since TSP is using CMake out-of-tree build feature results of compilation ends up in a separate tree
from the source tree. The source tree is locate at STSP SRC BASE and the build tree at
$TSP_BIN BASE.

The obtained TSP source tree is the following:

$TSP_SRC_BASE

SUBDIR What's inside

src The sources of the TSP core libraries and consumers and
providers applications

make The CMake includes used by TSP build system

external Some external source codes or binaries which may be useful to

page 27 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

build some part of the TSP. They are not part of the TSP but
are delivered here for convenience. Some of them are
contribution from the TSP Team for improving TSP portability,
like the external /VxWork/posix module.

tests

The tests sources code (may be scripts or C code ...)

When you compile TSP all the compilation result goes in build tree STSP BIN BASE and its sub-

directories.

$TSP_BIN BASE
SUBDIR What's inside
Src Build-time or configure time generated sources.
doc Doxygen Generated API documentation.
scripts The public TSP scripts (exported scripts)

<arch>/<mode>/bin

The binaries executables for this specific architecture (for
example Linux) in this compile mode (Debug or Release)

<arch>/<mode>/1ib

The libraries (static or shared) for this specific architecture.

<arch>/include

The public TSP includes (exported includes)

The $TSP_BIN BASE directory contains all what is needed to build a TSP binary release.

When you develop inside TSP you have to understand the structure of the STSP_SRC BASE/src

directory and its sub-directories

$STSP_SRC_BASE/src

SUBDIR What's inside

consumers Directory containing the ready-to-use TSP consumers
applications (ascii_writer, gdisp, gdisp+, generic...)

core Directory containing the Core TSP libraries used to build
consumers and providers.

doxy The directory containing doxygen configuration files and
CMakelLists.txt.

providers Directory containing the ready-to-use TSP providers

applications (stub, bb_provider, res_reader,...).

page 28 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

scripts Directory containing some useful shells scripts beginning with
the configure generated tsp dev.login. sh script.

utils Directory containing utility libraries (Blackboard, XML
configuration file reader/writer, etc...) used by some

consumers or providers.

4.2 Provider side programming

TSP Provider-side programming globally means enabling your favorite application to provided TSP
symbols. Nevertheless there are different ways to achieve this goal:

1. write your home made provider conforming to the GLU interface

2. re-use some ready-to use provider libraries
We will examine hereafter the 2 options.

4.2.1 Writing a GLU type provider

Developing a new TSP provider is very simple you only need to write a set of functions
implementing the TSP GLU interface. The GLU is the part of a TSP provider application which is
specific to the concerned provider. The TSP provider library will call the GLU interface in order to
answer to the TSP Requests, using TSP protocol.

TSP Provider

Application TSP Consumer

Application

TSP Provider TSP Consumer

TSP Protocol
TSP Protocol /_f_\nf—\

Every TSP provider must create a GLU object and pass it has an argument of the TSP provider
library initialization. Here is an example of the STUB provider initialization (see
$TSP_SRC_BASE/src/provider/stub/server main.c)

page 29 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

GLU handle t* GLU stub = GLU_stub create();

if (TSP_STATUS OK==TSP_provider init (GLU stub, &éargc, &argv)) {

if (TSP_STATUS OK!=TSP provider run (TSP ASYNC REQUEST SIMPLE |
TSP_ASYNC_REQUEST NON BLOCKING)) {

1
2
3. /* Init server */
4
5

6 return -1;

7 }

8. TSP provider urls (TSP PUBLISH URLS_PRINT | TSP_PUBLISH URLS FILE);
9 sigwait (&allsigs, &whatsig);

10. TSP provider end();

11. }

A GLU handle is created at line 1 and passed for TSP provider library initialization at line 4.

The GLU may be considered as a structured callback. The GLU Interface is an Object-Oriented C
interface using plain ANSI C structure and ANSI C function pointers. It is specified as a C structure
named GLU handle t in the $TSP SRC BASE/src/core/include/tsp glu.h
include. This C structure is the C implementation of the following GLU_handle_ class:

GLU_handle_t

#name: string

Ftype: GLU server_ type t
Fbase_frequency: double
#Fprivate_data: woid*

#Fdatapool: struct T5F_datapool_t*

+get name(): GLU get serwver_name_ Tt

+get typel(): GLU get server_type Tt

+get _base_fTreguency(): GLU get base fTreguency Tt

+get instance(): GLU get instance Tt

+initialize(): GLU init_+t

+runi) GLU_rum_ft

+start(): GLU start_ Tt

+get pgi(): GLU get pgi_ Tt

+get ssi(): GLU get_ssi list ft

+get filtered ssi list(): GLU get Tiltered ssi_list Tt
+get ssi list fromPGI(): GLU get ssi 1ist fromPGI_Tt
+get ssei_list fromPGI(): GLU get _ssei list fromPGI_ft

+aet nb_symbols(): GLU_get nb_swymbols_ft
+async_read(): GLU async_sample read Tt
+async_write(): GLU async_sample write Tt

Every GLU xxxx ft type is a C function pointer typedef, defined and documented in the
$TSP_SRC _BASE/src/core/include/tsp glu.h include file. A new GLU must not
implement ALL the functions of the GLU interface.

page 30/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

There is mandatory GLU method (C function pointer) that MUST be implemented and there is
optional method for which default implementation may be provided by the default GLU (see
$TSP_SRC BASE/src/core/ctrl/tsp default glu.c). The default GLU may be
considered as an Abstract Base class for GLU.

Here is the example of the STUB GLU creation
(see STSP_SRC_BASE/src/provider/stub/glue stub.c):

1. /* create the GLU handle instance for STUB */

2. GLU handle t* GLU stub create() {

3.

4. /* create a default GLU */

5. GLU handle create (&stub GLU, "StubbedServer",GLU SERVER TYPE ACTIVE, TS
P STUB FREQ) ;

6.

1. stub_GLU->initialize = &STUB GLU init;

8. stub_GLU->run = &STUB_GLU_thread;

9. stub_GLU->get ssi_list = &STUB_GLU get ssi_list;

10. stub GLU->get ssei list fromPGI
11.

12. return stub GLU;

13.} /* GLU stub create */

&STUB GLU get ssei list fromPGI;

The mandatory GLU methods are:

- 1initialize: this function is called only once at the end of TSP provider init
function. It is supposed to do whatever initialization the further calls to the GLU will need

- run: this function is called at the end of the TSP_provider run function. The run GLU
method will be launched in a separate and is supposed to never return the GLU sampling
activity is terminated.

- get ssi list: (get Sample Symbol Information List) this function is used by the TSP
provider library in order to obtain the complete list of symbols provided by the GLU.

All other GLU methods are optional since default implementation may be built either by using the 3
mandatory method or by giving a default simple behavior. Implementing non-mandatory method
may be useful since the specific GLU may provide a far better (in terms of performance)
implementation than the default one.

This the case of the Blackboard provider which overrides the get pgi method with a more
efficient method
(see STSP_SRC_BASE/src/provider/bb provider/bb tsp provider.c).

page 31 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

The Blackboard provider overrides async read and async write too since the default
implementation simply refuses asynchronous read or write.

The GLU method uses TSP data types in their prototype like:
SSI: Sample Symbol Information (see TSP_sample symbol info t and
TSP sample symbol info list t)
SSEI: Sample Symbol Extended Information (see
TSP _sample symbol extended info t and
TSP sample symbol extended info list t)

Those structures are defined and their usage documented in the source code (doxygen comments),
see STSP_SRC_BASE/src/core/common/tsp common * .

There is one more thing to say about GLU, a GLU may be ACTIVE or PASSIVE. An ACTIVE
GLU has only one instance and does not wait for the TSP consumer to produce the sample data. It is
driven by a process which may not be suspended like real time simulation or external world. This is
the most common case. A PASSIVE GLU may suspend its sample data flow, this is the case of the
TSP provider which reads their sample data from a file (see generic_reader or res_reader Provider).

The better way to understand how a GLU is working and how to implement the GLU interface is to
go to the examples in STSP_SRC BASE/src/provider/* subdirectories.

The STUB server is a good starting point for writing a new ACTIVE GLU, see
$TSP_SRC_BASE/src/provider/stub

The Generic Reader s a good starting point for writing a new PASSSIVE GLU, see
STSP SRC BASE/src/provider/generic reader.

4.2.2 Using a Blackboard provider

If you already have a nice C application and you want it to provides sample symbols using TSP, but
you don't want to code your own GLU, you may use a TSP Blackboard.

Adding TSP to an existing C/C++ application using a Blackboard is usually done in less than 2
days of work including basic TSP learning.

The C TSP comes with a utility library implementing the Blackboard idiom. The TSP Blackboard is

a structured shared memory area where data may be published.
The Blackboard library itself is independent of the TSP, the Blackboard library source code is

page 32 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

located at: STSP_SRC_BASE/src/util/libbb.

You may examine an example of pseudo-simulator using a TSP Blackboard at:
$TSP_SRC_BASE/src/util/libbb/bbtools/bb simu.c.

Here is an extract of the bb_simu code:

/* Create Blackboard */

KKK KK KK K K Kk

n _data = 1000;

data size = n _data*8 + 500*30*4 + 200000*8;

if (BB NOK==bb_create (&mybb,basename (argv[0]),n data,data size)) {
bb attach (&mybb, basename (argv[0])) ;

W o NNk LD

/* Publish data in the BB */

/**************************/

—_
)

. display level = (uint32 t¥*)
bb_simple publish (mybb,"display level",basename (argv[0]),-1,
E BB UINT32, sizeof (uint32 t),1);

12.

13. Titi= (double*) bb_simple publish (mybb,"Titi",basename (argv[0]),1,
E BB DOUBLE, sizeof (double),1);

14.

15.[...]

16. /* use the published data */

17. *display level = 0;

18. *Titi = 3.14159;

19. [...]

20. /* send synchro for Blackboard TSP provider

2]1. bb_simple synchro go (mybb,BB_SIMPLE MSGID SYNCHRO COPY);

In the previous example we see that publishing a data in a TSP Blackboard (lines 11 and 13) is
equivalent to a call tomalloc (3) . If the returned address is non NULL you may use it in your
program (lines 17 and 18). Afterwards if you want to distribute the values of the published data
suing TSP you only have to send synchronization (line 21).

The symbols values may be distributed using TSP by using the ready-to-use Blackboard provider as
explained in section 11.1.2.

4.3 Developing a new consumer

page 33 /94

The TSP Design & Programming Guide

The C TSP comes with several TSP consumers in the tsp/src/consumers sub-directories. The
simplest are either the tutorial consumer (tsp/src/consumers/tutorial) or the stdout

(tsp/src/consumers/stdout).

A full featured console consumer is the AsciiWriter (tsp/src/consumers/ascii writer).
The most efficient way to develop a new consumer is to read the source code of one or several
consumers, in order to understand the practical use of the consumer C API. Do not forget to use the

doxygen generated API documentation which is a handy TSP developer tool for using TSP C APL.

Developing a new TSP consumer (in C) is as simple as understanding the TSP design and the TSP

C consumer API (tsp_consumer.h).

Here is a shortened example taken from the tutorial client:

Rev 1.1 for TSP v0.8.1

e A e

[\ T N T NS I NS R e e e e e e)
R = I S N i

#include <stdio.h>

#include <stdlib.h>

/* All what you need for creating a TSP consumer */
#include <tsp consumer.h>

#include <tsp time.h>

/* Just for fast exit */
void perror and exit (char *txt)

{ perror (txt); exit (-1);}

. /* Everthing must begin somewhere */

.int main(int argc, char *argv[]) {

const TSP answer sample t* information;

TSP _sample symbol info list t symbols;

int i, count frame, wanted sym=10, t = -1;

TSP provider t provider;

char* url;

/* Initialisation for TSP library. */

if (TSP_STATUS OK!=TSP_consumer_init (&argc, &argv))

perror and exit ("TSP init failed");

. [... handle program argv/argc ...]

/* Connects to all found providers on the given host.

*/

page 34 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.

40.

41.
42.
43.

44.
45.
46.
47.
48.

49.

50.

51.

52.
53.
54.

55.

provider = TSP_consumer_ connect url (url);
if (O==provider)

perror and exit ("TSP consumer connect url failed ");

/* Ask the provider for a new consumer session.*/
if (TSP_STATUS OK!=TSP_consumer request open (provider, 0, 0))

perror and exit ("TSP_request provider open failed");

/* Ask the provider informations about several parameters, including
* the available symbol list that can be asked. */
if (TSP_STATUS OK!=TSP_ consumer_ request information (provider))

perror and exit ("TSP_request provider information failed");

/* Get the provider information asked by
TSP consumer request information */

information = TSP consumer get information (provider);

if (wanted sym > information-
>symbols.TSP sample symbol info list t len)

wanted sym = information-
>symbols.TSP sample symbol info list t len;

/* Will use only the "wanted sym" first symbols of provider */

symbols.TSP sample symbol info list t val =
(TSP_sample symbol info t*)calloc(wanted sym,
sizeof (TSP _sample symbol info t));

symbols.TSP_sample symbol info list t len = wanted sym;
for(i = 0 ; i < wanted sym ; i++)
{
symbols.TSP sample symbol info list t val[i].name = information-
>symbols.TSP sample symbol info list t val[i].name;
symbols.TSP_sample symbol info list t wval[i].period = 1; /* at
max frequency */
symbols.TSP sample symbol info list t val[i].phase = 0; /*
with no offset */

printf ("Asking for symbol = %$s\n",
symbols.TSP sample symbol info list t val[i].name);

/* Ask the provider for sampling this 1list of symbols. Should check
if all symbols are OK*/

page 35/94

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

56. if(TSP_STATUS OK!=TSP consumer request sample (provider, &symbols))
57. perror and exit ("TSP request provider sample failed");

58.

59. /* Start the sampling sequence. */

60. if (TSP _STATUS OK!=TSP consumer request sample init (provider, 0, 0))
61. perror and exit ("TSP_request provider sample init failed");

62.

63. /* Loop on data read */

64. for (count frame = 0; count frame<100;)

65. {

66. int new sample=FALSE;

67. TSP_sample t sample;

68.

69. /* Read a sample symbol.*/

70. if (TSP_STATUS OK==TSP consumer read sample (provider, &sample,

&new_sample))

71. {

72. if (new sample)

73. {

74. if (t != sample.time)

75. {

76. count frame++;

TI. t = sample.time;

78. PELREE (T=—=———=—=—==
========\n", count frame, t);

79. }

80. i = sample.provider global index;

81. printf ("# Sample nb[%

sd]

\t%s \tval=%f\n", 1,

symbols.TSP sample symbol info list t val[i].name,

sample.uvalue.double value) ;

82. }
83. else
84. {
85.

received samples */

86. tsp_usleep (100*1000) ;
87. }

88. }

89. else

90. {

91. perror and exit

/* Used to give time to other thread for filling fifo of

/* in S, so about 100msec */

("Function TSP consumer read sample failed !!

page 36 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

\n") ;
92. }
93. }
94,

95. free (symbols.TSP sample symbol info list t val);
96. /* Stop and destroy the sampling sequence*/
97. if (TSP_STATUS_OK!=TSP_consumer_request sample destroy (provider))

98. perror and exit ("Function TSP consumer request sample destroy
failed");

99.

100. /* Close the session.*/

101. if (TSP_STATUS OK!=TSP_consumer request close (provider))

102. perror_and exit ("Function TSP consumer request close failed");
103. /* call this function when you are done with the library.*/

104. TSP_consumer_end() ;

105. return 0;

106.}

4.4 Source code documentation (API doc)

The TSP API is documented using special comment in the source code itself. Doxygen
(http://www.doxygen.org) is the tool used by TSP in order to generate readable documentation

(HTML, PDF, etc...) from source code special comment.
You may browse latest TSP generated documentation from http://www.ts2p.org/tsp/API doc/html.

Every TSP developer must document his source code. You will find hereafter some
recommendations and example of code documentation using doxygen tags.

It is not the purpose of this guide to explain all the features and objectives of Doxygen, you may
find all needed informations about doxygen from http://www.doxygen.org.

4.4.1 General Doxygen usage

The Doxygen documentation is governed by the tsp Doxygen configuration file which may be found
here : STSP_ BIN BASE/tsp.doxy.

page 37 /94

http://www.doxygen.org/
http://www.ts2p.org/tsp/API_doc/html/index.html
http://www.doxygen.org/

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

Note that this file 1s a cmake output that is produced out of
$TSP_SRC_BASE/src/doxy/tsp.in configure input file. This is done with the
intent to maintain the TSP version information only in a single place (the
$TSP_SRC BASE/CMakeLists.txt file). If you ever need to change something
in the TSP doxygen configuration file, do it in
$TSP_SRC_BASE/src/doxy/tsp.in and make apidoc will trigger cmake

run automatically.

The $STSP SRC BASE/src/doxy/tsp.in file may be edited by any text editor with the
Doxygen manual in the other hand (http://www.doxygen.org/manual.html) or using the
doxywizard tools which is distributed with the Doxygen software.

The TSP C API documentation may by the simple command:
- ant tool (http://ant.apache.org/)

$ cd $TSP_BIN BASE
S make apidoc$

The generated HTML documentation is located in STSP_BIN BASE/doc/api/html/ and you
may open the STSP BIN BASE/doc/api/html/index.html file with your favorite
browser in order to browse the documentation:

page 38 /94

http://ant.apache.org/
http://www.doxygen.org/manual.html

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

Fichier Edition Affichage Aller & Marque-pages Outils Aide delicio.us .

LY QOO &E .

) hittp://www.ts2p.org/tsp/AP_doc/htmi/index.html 2 e

TSP
-~ [£] Main Page

- [£] Data Fields

@ Data Structures

&

2 Modules
E{[) The Transport Sampk

() TSP Libraries

@ ASCI Writer Lil
- [£] Generic Consu
¢ TSP Core Libra
”'[j BB TSP Provid
@ Generic Reader
EH{[) TSP Applications
- TSP Consumer
@ TSP Providers
~[£] BB Tools Comn
~[2] TSP Utilities

EH{{g The BlackBoard (BB)

4 The BB Core Libra
- [E] The BB Simple Lit
@ The BB Tools

~[€] The BB Utilities Li

*{@: Related Pages

Ng=——————) >

TSP: The Transport Sample Protocol

UEINNEEE | Modules | Data Structures | Data Fields | Related Pages

TSP Documentation

0.8.0cvs 5
Introduction

This is the Transport Sample Protocol (TSP) APl documentation. You'll find hereafter the documentation for the main
modules of the TSP project.

Main TSP Module

The main TSP modules are:

® The Transport Sample Protocol
¢ The BlackBoard (BB)

Installing and using TSP SDK

TSP SDK comes as either RPM (source or binary) or compressed tar archives. The primary format of distribution is gzip
compressed tar archive (tar.gz) and may be found on Savannah TSP download area:

http//download.savannah.nongnu.org/releases/itspl .
RPM based SDK

If you get a binary TSP distribution such as pre-packaged RPM for your favorite Linux distribution, you may install it as
usual, for example:

rpm —i tsp-0.7.3-1.1586.rpm

Terming

4.4.2 TSP Doxygen structure and usage example

We define here some rules for using Doxygen within TSP. Doxygen has a wealth of feature to define

documentation blocks. We describe here some recommendation for basic doxygen usage, please

consult the doxygen manual (http://www.stack.nl/~dimitri/doxygen/manual.html) for more details.

Using the TSP doxygen configuration file the following files type will be parsed by doxygen:

File Patterns

Supposed File Content

*.h, *.c

Header and Implementation ANSI C files. The public API
documentation must be done in the .h file with NO duplicate in

corresponding .c implementation. All C public API should be

documented:

page 39 /94

http://www.stack.nl/~dimitri/doxygen/manual.html

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

File Patterns Supposed File Content
structure, enumeration, typedef etc...
functions
MACRO definition (#define)
*.x ONC-RPC IDL file. All items of the IDL should be documented:

structure, enumeration, typedef etc...
functions
MACRO definition (#define)

*.dox Doxygen “free” documentation files. Those files may be used to create
doxygen documentation blocks or structures which are not directly
linked to source code. There is at least one mandatory .dox file
$TSP_SRC_BASE/src/doxy/tsp doc tree.dox, which is
used to define the main TSP doxygen documentation tree. Other file
may be added since doxygen may be used to write documentation as you
usually do it with pure HTML or LaTeX, docbook etc...

4.4.2.1 TSP Doxygen main structure

The TSP doxygen documentation structure 1s defined in the
$STSP_SRC_BASE/src/doxy/tsp _doc_ tree.dox file. This file defines the documentation
main page for the project and the high level documentation groups for TSP. Those high level
documentation groups may be used later to attach new documentation group with @ingroup
doxygen facility.

4.4.2.2 Grouping

Doxygen has a flexible and lazy way to build “groups” of documentation. When used with
“module” structured languages like C++, the groups definition may be inferred by the source code
structure, for example, the: Class Provider would generate a “Provider” documentation group.

In TSP in C, we are using C language :)), hence we do not have implicit grouping information
besides the file and directory structure. For that we decided (for TSP doxygen documentation) to
explicitly define doxygen documentation groups that reminds the TSP design and C

implementation.

The overall (not detailed) documentation groups defined by the TSP design are shown below:

page 40 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

TSP

Consumer
Library \

Provider
% Library \

Libraries

consumers

| N S—

Providers

The rules for defining a new doxygen documentation group are the following:

A properly defined design module must define a new group: TSP Core, TSP Consumers,

TSP Providers, Blackboard, etc...

An application must have its own module attached to a sub-group of TSP Applications
Consumer Applications should be put inside the TSP Consumers documentation
module
Provider Applications should be put inside the TSP Providers documentation module

A Library used by any other application or library should have its own documentation

module

Using these rules you should be able to add or understand the documentation groups shown in the
currently generated documentation.

page 41 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

Main Page | | Data Structures | Data Fields | Related Pages

TSP Modules

Here is a list of all modules:

® The Transport Sample Protocol
< TSP Libraries
® ASCH Writer Library
® Generic Consumer Library
® TSP Core Libraries
® Provider Core Library
B Request Handler
® RPC Request Handler
8 XML-RPC Request Handler
® GLU Library
® GLU Default Instance
® Consumer Core Library
® RPC Client
B XML-RPC Client
® The TSP Abstract API
® BB TSP Provider Library
® Generic Reader Library
® Macsim Format Library
o TSP Applications
B TSP Consumers
B ASCI Writer
m ASCIH Writer Library
= GDisp
® GDisp+
B GDisp+ Library
m Kernel API

When you want to create a group you have to use the @defgroup doxygen special command, as in
the following example (excerpt from
STSP_SRC BASE/src/core/ctrl/tsp provider.h)

1. /**
2. * @defgroup TSP ProviderLib Provider Core Library
3. * @ingroup TSP Corelib

4. * The Provider module is the set of all

5. * provider library interface.

6. * @{

7. */

The @defgroup command defines the group using a key and a displayed name on a single line

page 42/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

(see line 2 of the previous example). @ingroup specifies that this group is a sub-group of the first
argument of @ingroup. The @{ opening prefix specify that the following doxygen comments will
be put in the previous @defgroup until a @} closing suffix is encountered. Most of the time the
closing prefix is located at the end of the C header file.

@defgroup is lazy in the sense that multiple @defgroup is silently ignored by doxygen such
that the first effectively @defgroup and other are equivalent to @addtogroup (see doxygen
documentation for this).

You may use multiple @ingroup in case you want some groups of documentation to appear as
sub-group of different groups just as in the following example:

/**

* @defgroup TSP AsciiWriterLib ASCII Writer Library
* The TSP ascii writer consumer library APIT.

* @ingroup TSP AsciiWriter

* @ingroup TSP Libraries

* @{

*/

The currently defined TSP _AsciiWriterLib group will be seen as a subgroup of both
TSP _AsciiWriter and TSP Libraries. This is a handy way to refer to the same group in
different places without duplicate information.

4.4.2.3 Structure, Enumeration, Macros, Typedef

Every single “type” defined in public C header should be documented using doxygen. This is true
for C structure, enumeration or typedef; the pre-processor constructs such as Macros. You will find
hereafter an example for each kind of documented constructs.

C Structure documentation example

/**
* BlackBoard data descriptor.
* Each data published in a blackboard is described using
* one such structure.
*/
typedef struct S BB DATADESC {
/** Variable name */
char name [VARNAME MAX SIZE+1];
/** The Variable type */
E BB TYPE T type;

Jxx

* Dimension. 1 if scalar, > 1 for single dimension array.

page 43 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

C Structure documentation example

* There is no multidimensionnal array type.
%/
uint32 t dimension;
/x% -
* Type size (in byte).
* This size enables the appropriate computation
* of the data offset in the raw data BlackBoard area.
*
size t type size;
/**
* Data offset (in bytes) in the raw data BlackBoard area.
Y

unsigned long data offset;

/**

* The index of the aliases published (Q@ref bb alias publish)
* data in the BlackBoard data descriptor array

* -1 if genuine published data (not an alias).

*/

int alias target;

} S_BB DATADESC T ;

C Enum + Typedef documentation example (small comment)

L. /**
2. * BlackBoard publishable data type.
3. * Any data published with @ref bb publish, @ref bb alias publish
4. * or Qref bb simple publish should be specified with its type.
5. Il
6. typedef enum {E BB DISCOVER=0, /*!< Discover is used by @ref

bb subscribe when discovering data type */
7. E BB DOUBLE=1, /*!< An IEEE double precision floating point */
8. E BB FLOAT, /*1< An IEEE simple precision floating point */
9. E_BB INTS, /*!< An 8bit signed integer 5
10. E BB INT16, /*!< A 1l6bit signed integer */
11. E BB INT32, /*!< A 32bit signed integer */
12. E BB INT64, /*!< A 64bit signed integer */
13. E_BB UINTS, /*!< An 8bit unsigned integer 5
14. E BB UINT16, /*!< A 1l6bit unsigned integer A
15. E_BB UINT32, /*1< A 32bit unsigned integer 5
16. E_BB _UINT64, /*1< A 64bit unsigned integer .
17. E BB CHAR, /*!< An 8bit signed character i
18. E_ BB UCHAR, /*!< An 8bit unsigned character s

page 44 / 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

C Enum + Typedef documentation example (small comment)

19. E BB USER /*!< A user type of any size (should be
supplied) in @ref bb publish */

20.} E_BB TYPE T;

Note that if your different enumeration values needs lengthly comments you may use /**
lengthly comment */ BEFORE the value instead of /*!< small comment */ after as
in the previous example.

C Enum + Typedef documentation example (lengthly comment)

/** GLU server type */
typedef enum GLU server type t
{
Jxx
GLU is active. Means that the data are continuously produced
and must be read at the same pace (or faster) by the provider.
When GLU is active their shouldn'tr be more that one
GLU instance running by provider.
* (@see GLU get instance.
*/
GLU SERVER TYPE ACTIVE,
/ * %
* GLU is passive. Means that the data are produced only when the
* provider ask for them (typically File Based Glu/Provider)
*/
GLU_SERVER TYPE PASSIVE
} GLU_server_type t;

b S .

Macro documentation example

/**
* The BlackBoard version identifier.
* Since the BlackBoard is evolving, the BlackBoard structure
* itself may change from time to time.
* If suche change occurs the BB VERSION ID is changed
* such that @ref bb check version may be called in order
* to check if the BlackBoard version used by an application
* is compatible with the process currently trying to use
* BlackBoard.
“f
#define BB VERSION ID 0x0002000

page 45 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

4.4.2.4 Functions

Every public function must be documented as in the following example. Note that even if doxygen

does not force you to do it, it is recommended to indicate the intent of the function parameters (in

out or in,out).

Function documentation example

B A ol e

/**
* function to encode double
* @param[in] v_double data to encode.
* @param[in] dimension of the data
* @param(out] out buf buffer to write the data
* @param[in] out buf size size of the buffer
* @return TRUE or FALSE. TRUE = OK
*/
uint32 t TSP_data channel double encoder (void* v double,uint32 t
dimension, char* out buf, uint32 t size);

4.4.2.5 Main and Programs

Every main program must define its own documentation group using @defgroup <program>

which

is @ingroup <TSP Application subgroup>. Unlike other doxygen

documentation, this one should be written in the C file where the main program is implemented.

Main program documentation example
from src/consumers/ascii writer/tsp ascii writer main.c

L=

/**
* @defgroup TSP AsciiWriter ASCII Writer
* A TSP ascii writer consumer.

* a TSP consumer which is able to output symbols values in different
ASCII file format.

* It's output may be standard output or file with other options to
chose file format and eventual

* size limit. It's main purposes is to be able to export TSP
distributed symbols and value to

page 46 / 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

Main program documentation example
from src/consumers/ascii writer/tsp ascii writer main.c

7.

10.
11.
12.

13.
14.
15.

16.

17.

18.
19.
20.

21.

22.
23.
24.
25.

26.

27.

28.
29.
30.

* some kind of CSV (Comma Separated Value) format in order to be
easily post processed by

* spreadsheet softwares or simpler plotting software like

* Gnuplot
(http://www.gnuplot.org/).

* You may specify different file format output which essentialy change
the header of the file.

*

* \par tsp ascii writer [-n] -x=\<sample config file\> [-o=
\<output filename\>] [-f=\<output file format>] [-1=\<nb sample\>] [-u
TSP provider URL]

* \par
*

* <1li> \b -n (optional) will check and enforce no duplicate
symbols</1i>

* <1li> \b -x the file specifying the list of symbols to be
sampled</1i>

% <1li> \b -f (optional) specifying the format of output file.
Recognized file format are

2

a <1i> \b simple ascii tabulated ascii no header</1li>

* <1li> \b bach tabulated ascii with BACH
header</1i>

1 <1li> \b macsim tabulated ascii with MACSIM
header</1i>

*

i Default is \b simple ascii.

* o </1i>

* <1li> \b -o (optional) the name of the output file. If not
specified standard out is used</1li>

* <1i> \b -1 (optional) the maximum number of sample to be stored
in file. Unlimited if not specified.</1i>

* \b -u (optional) the TSP provider URL. If not specified
default is localhost.</1i>

*
* @ingroup TSP Consumers

*/

If the main itself is using its own library then the library used by this main program should trigger a

new documentation subgroup. That group should be a @ingroup of the main program group and

TSP libraries groups as in the following example:

page 47 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

Main program library documentation example
from src/consumers/ascii writer/tsp ascii writer.h

/**

* Qdefgroup TSP AsciiWriterLib ASCII Writer Library
* The TSP ascii writer consumer library API.

* @ingroup TSP AsciiWriter

* @ingroup TSP _Libraries

* @{

“f

page 48 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

5 TSP in Java

TSP programming in Java is possible using the 100% Java jtsp module. As with C
implementation, TSP in Java includes:

a library which may be used to develop your own TSP consumer in Java,

some “ready to use” TSP consumers (jstdout, jsynoptic plugins, ...)
The main difference with TSP in C is that the current jtsp only implements the consumer side of the
TSP protocol. In fact, at the time of the writing there is no need for provider-side programming in
Java.
Another difference is the fact that there is less ready-to-use consumers because most of jtsp users
embed their own jtsp-based consumer directly in their application.

5.1 Using the JTSP API

The design of jtsp follows the previously presented design. It is even more simple to understand the
Java TSP due to the object-orientation of the TSP design and the object oriented support of the Java
language.

You will see hereafter a part of the JTSP class hierarchy:

page 49 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

(® TspSession (@ TspConsumer

o answerOpen: TspAnswerQpen o sessionMap: HashMa

o requestender; TspReguestSen o TonC 0
splonsume
o sampleSat: TspSampleSet

o: state: int @ :Iuseﬁe.ssinnh
@ getSession()
& TspSession() @ initialize()
@ closel) i@ nbSessionl)
@ open() @ openSession()
@ requestinfosi) @ reguestinfos()
@ reguestSample()
@ requestSampleFinalizel)
@ requestSamplelnit() {9 TspConsumerExcepti
@ requestSamplalnit(}
@ TspConsumerException()
winterfacas d: TsplonsumerException()
@ TspSessionStatus @ TspConsumerException()

5F BROKEN: int @ TspConsumerException()

8 IDLE: int

i OPENED: int

8F SAMPLE_CONF: int

8F SAMPLE_FINALIZE: int
& SAMPLE_INIT: int

i SAMPLE_RECEIVE: int
i SENDER_READY: int

(& TspRequest

@ print()
@ TspRequestinfos ® TspRequestOpen ® TspRequestClose
@ theRequest: TSP_request_information_t @ theRequest: TSP_request_open_1 @ theRequest: TSP_request_closs i
& TspRequesilnfos() & TspRequesiOpen() & TspRequesiClose()
& TspRequestinfos() & TspRequesiOpen() & TspRequesiCloss()
@ printi) d: TapRequestOpeni) @ print{)
® TspRequestSample
TspRequestSamplelnit TspRequestSampleFinalize
< theRequest: TSP_requesi_sample_1 G preq p @ preq P
@ theRequest: TSP _requesl_sample_inii_1 < theRequest: TSP _requesl_sample_destroy_1
& TspRequesiZamplel)
é: TspRequesiSamplel) d: TspRequestSamplelnit() é: TspRequestSampleFinalize()
oc TspRequestSamplel) d: TspRequestSamplelnit() oc TspRequestSampleFinalize()
i gelTspESlArmay() d3 TepRequesiSamplelnit() oc TspRequesiSampleFinalize()
o s=iTspESIArmay()

page 50/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

@ TspAnswer
@ prini()
@ TspAnswerSampleFinalize 9 TspAnswerSample © TspAnswerSamplelnit @ TspAnswerOpen
@ theAnswer: TSP_answer_sample_destroy_1 @ theAnswer: TSP_answer_sample_1 & theAnswer: TSP_answer_sample_init_{ @ theAnswer: TSP_answer_open_1
d: TspAnswerSampleFinalize() d: TspAnswerSample() d; TspAnswerSamplelnit() d: TepAnswerDpen()
i@ prind() i@ gelSSIByPGI) @ printt) @ prini()
i gelTspSSlArray()
@ prini()

5.1.1 Ant and Eclipse usage

The favorite way to build JTSP is to use Ant (htt://ant.apache.org/). The Ant build file for JTSP is
located at the root of the jtsp source tree: jtsp/build.xml. Using the Ant build file you may

build jtsp with or without eclipse with a simple command line and a properly installed JDK.

The JTSP requires a Java 1.4 and should compile properly under 1.5.

- [EEpStdOUTjava - EClipsersok

Eile Edit Refactor Source MNavigate Search Project Run Window Help
i @ | - O~ Q- (& W e | F | & B G B |&@)ava
f# Package Explorer 33 . Hierarchy| = B || [J] jtspstdout java 22 = B8 outline ﬂh =08
= [g - TspConsumer maisPasTrop = new TspConsumer() % & ®W Q sﬁ
v >jtsp [cvs.savannah.nongnu.orgl | /* Set up Logging level */ b (@ create-jar =
TspConfig.setLogLevel (TspConfig.LOG_FINER); .
= Hsrc - b (@ create-src-zip-dist
- [Htsp /* Initialize consumer*/ b @ create-src-zip-dist-tin
TspConsumer.initialize(args); —
= [consumer b (@ distclean
b String sURL = args.length == 0 ? "" : args[b (@ generate-rpc
B ppl TspURL url = TspURLFactory.createWithDefaul g P
b i plugin int symbol rank = b @help
b il int nb_print = 100; b @ icdfwriter-
wput if (args.length = 1} { JecwrerTn
b Hcore symbol_rank = Integer.decode{args[1l]).1 b @ jstdout-run
3 i } po@j ic-
it provider if (args.length > 2) { ® jsynoptic-run
b SR util nb_print = Integer.decode(args[2]).intV main [default]
b = JRE System Library [jdk-1.4.2_09] } b (@ prepare-dist
b (joncrpcjar 1.1 (Binary) int sessionld = maisPasTrop.openSession(url b @ test E
b (cdfjavajar 1.1 (Binary) 4 T T S T 4 »
b ic-1.0jar 1. - . =~ [e, =
Cdjsynoptic-1.04ar 1.1 (ASCH -kkv) Problems | |Javadoc | Declaration El Console % Gk BE| % B~ i~ g
b 3 =build
o <terminated=> jtsp build.xml [Ant Build] /usr/lib/jdk-1.4.2_09/binfjava (26 avr. 2006 17:48:06)
b Gylib [echo] for example ant jstdout-run -Dtsp.url="///StubbedServer" -
b [fysrc_test [echol _ _
.) [echo]l You can run T':-F' Junit test with the command :
|5y AUTHORS 1.1 (Binary) [echo] an - -
M build.xml 1.9 (ASC [echo] (junit.jar into the lib directory of
5 [echal n add junit.jar
|54 COPYING 1.2 (Binary) [echo] C) 1
|5y README 1.4 (ASCIl -kkv) [echo] get junit.jar at :
) BUILD SUCCESSFUL
|53 TODO 1.2 (Binary) ~ | Total time: 4 seconds b
1 3] 3
description="0 build all TSP component"

page 51 /94

http://ant.apache.org/

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

5.1.2 Source code documentation: javadoc

The JTSP is as usual available as source code commented using javadoc’ comment. Thus the API
documentation may be generated using the javadoc tool.

5.2 Jstdout example

Jstdout is the simpler example for using TSP in Java. This is an example of a minimal 100% Java
TSP Consumer written using JTSP. You'll find hereafter a some shortened sample of the Jstdout

java consumer code. You may find the entire code in
jtsp/src/tsp/consumer/app/JjtspStdOut.java.

1. package tsp.consumer.app.jstdout;

2. import tsp.core.*

3.

4, class jtspStdout {

5. public static void main (String[] args) {

6. try {

7. /* Create a consumer object */

8. TspConsumer maisPasTrop = new TspConsumer () ;

9. /* Initialize consumer*/

10. TspConsumer.initialize (args) ;

11. [... handle main arguments ...]

12. /* Open a TSP Session */

13. int sessionlId = maisPasTrop.openSession (url) ;

14. TspSession mySession = maisPasTrop.getSession (sessionId) ;
15.

16. /* request Infos */

17. TspAnswerSample asi = maisPasTrop.requestInfos (sessionId) ;
18.

19. /* build request sample */

20. TspSampleSymbols sampleSymbols = new TspSampleSymbols (asi) ;
21. [... include the symbol you want in request sample ...]

22.

23. TspRequestSample rgs = new TspRequestSample (

24. mySession.answerOpen.theAnswer.version id,

3 http://java.sun.com/j2se/javadoc/writingdoccomments/

page 52 /94

http://java.sun.com/j2se/javadoc/writingdoccomments/

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
S1.
52.
53.
54.
55.
56.
57.
38.
59.

[ooo

[ooo

}

mySession.answerOpen.theAnswer.channel id,
fw,

1,

new TSP sample symbol info list t());

rgs.setTspSSIArray (sampleSymbols.toTspSSIArray()) ;

/* send the requestSample */

mySession.requestSample (rgs) ;

/* begin sampling */

mySession.requestSampleInit () ;

/* print 50 sample value */

wait for first sample then ...]

for (int k = 0; k < nb print; ++k) {

if (mySession.getSampleSet () .nbSample () == 0) {
try {Thread.sleep(100);}

catch (InterruptedException e) {}

}

sample = mySession.getSampleSet () .getSample () ;

System.out.println (

"Sample
+

+ 4+ + + + o+

}
/* end sampling */

<n
k

"> = { time stamp ="
sample.time stamp

", provider global index ="
sample.provider global index

, value="

sample.value) ;

mySession.requestSampleFinalize() ;

/* close Session */

maisPasTrop.closeSession (sessionId) ;

catch some exceptions ...]

} /* end of main */

As you can see writing a TSP consumer in java is really simple thanks to the object-orientation and

the simplicity of the TSP protocol and jtsp API.

page 53 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

5.3 JCDF Writer

The JCDFWriter is a proof of concept consumer which has not been used a lot until now.
Nevertheless, the main idea is to experiment with the Nasa CDF file format
(http://cdf.gsfc.nasa.gov/) which has valuable properties such as storing “sparse” value and varying

values. Nowadays TSP consumers are not used for storing huge amount of data, since most of TSP
users interactively and dynamically display a relatively small amount (500) of symbols picked-up in
a large number (1 000 000) of possible samples. The CDF experiment was a way to prepare future
use.

5.4 Jsynoptic TSP plugin

Included in the JTSP module there is a TSP Plugin for Jsynoptic, an Open Source framework for
building nice synoptic. For more informations about Jsynoptic visit the Jsynoptic project at
SourceForge: http://jsynoptic.sourceforge.net .

The jsynoptic plugin source is located at jtsp/src/tsp/consumer/plugin/jsynoptic.
You should refer to the Jsynoptic documentation for using it. The Jtsp plugin “only” adds a TSP

data source to the possible Jsynoptic source.
=]

ichier | Edition Qutils Affichage Aide
Cirl-H Y Jez]

gﬂﬂ:il:.u cr-o [@ 8 2C #H~- F~ | 4~ |KNE B u_

Open TSP Provider GMI)... | Sans Titre 1 |

Open TSP Providet... : -

Enregistrer Ctrl-5 |

Enregistrer sous...

Imprimer... Ctrl-p

Génerer image... Ctrl-G

Fermer

Quitter Cirl-0

Générateur de Sources

Num| |
Modéle | Expression | :
|Aléatuire (Gaussienne) - ||
4] 2] |
= -

page 54/ 94

http://jsynoptic.sourceforge.net/
http://cdf.gsfc.nasa.gov/

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

As the time of the writing the Jsynoptic framework has some performance limitation. Jsynoptic is
working well with TSP data source but it's difficult to render TSP samples at high frequency rate.
Your experience may vary but trying to display TSP samples at more than 4Hz will probably leads
to hieratic behavior of Jsynoptic.

The problem does not really come from JTSP plugin but more from the toolkit used to render the

value which was designed for displaying static data collection and not high rate data stream. An
optimization effort is necessary; JTSP Team is waiting for contribution or funding for this aspect.

page 55/94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

6 TSP in Perl

Perl TSP binding enable the use of TSP consumer API within a Perl script. It has been done by
Pierre MALLARD with SWIG interface generator (http:/www.swig.org/).

The CVS module is: perltsp

page 56 / 94

http://www.swig.org/

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

7 TSP in Python

Python TSP binding enable the use of TSP consumer API within a Python script. It has been done
by Julien BRUTUS with SWIG interface generator (http://www.swig.org/).

The CVS module is: pytsp

page 57 /94

http://www.swig.org/

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

8 TSP in Ruby

The Ruby TSP binding has been contributed recently by Stéphane GALLES. It is in alpha stage
since it uses a bleeding edge XML-RPC command channel. Using this development feature enables

a 100% Ruby implementation.

The CVS module is: rubytsp

page 58 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

9 TSP in Tcl

The TCL TSP binding is not available as the time of the writing but it may be done as Perl or
Python using SWIG interface generator.

page 59 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

10 TSP documentation modules

Most of TSP documentations are published under the GNU FDL (Free Documentation License).
This is the case of the document you are currently reading.

10.1 TSP Specifications

The TSP specifications are exposed in the TSP User's Requirement Document or TSP URD.

This document explains the features of the TSP protocol without explaining any implementation
aspect. Using TSP specifications one should be able to realize a TSP implementation from scratch.

The document may be found here: tsp docs/tsp specs/TSP_URD.sxw

10.2 TSP White paper

The TSP white paper is a short introduction to TSP design and possibilities. It may read easily and
quickly in order to have an overall idea of what is TSP.

The document may be found here: tsp docs/tsp whitepaper/tsp whitepaper.xml

The document is written in Docbook XML format and may be easily transformed into PDF, HTML
or other document format.

10.3 TSP Design and programming guide

This is the guide your are currently reading.

The document may be found here:
tsp docs/tsp progguide/tsp programming guide.odt

The document is written in OASIS OpenDocument format using OpenOffice 2.x. You may find a

ready to read/print PDF version of the document at:
tsp docs/tsp progguide/tsp programming guide.pdf

PDF version is generated with the built in capability of OpenOffice to generate PDF. The reference
version is the OO one. You should check if PDF version is not outdated.

10.4 Blackboard Design and Programmers guide

page 60 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

The Blackboard is a versatile TSP utility library which deserves its own guide. The blackboard
clearly ease the use of TSP. Adding a TSP provider to your application may be done in less than a
day by:

1. Adding a blackboard to your application and,

2. Use the ready-to-use Blackboard TSP provider.

The Blackboard may well be useful without TSP too, since it may be used within an application as a
simple multi-process publish/subscribe library.

The document may be found here: tsp docs/tsp bbguide/tsp bbguide.*

page 61 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

11 TSP Applications

You will find hereafter some user documentation for working with the ready-to-use TSP
applications bundled with the TSP distribution. The present documentation has some nice screens
or console shots but you may find more up to date usage documentation in the Doxygen generated
documentation in the TSP Applications section and TSP Consumers and/or TSP Providers

subsections.

Fichier Edition Affichage Aller a8 Marque-pages Outils Aide %

G)) @ O ﬁ ' file:/ffhome/noularde/TSPitsp_all/tsp/dist/doc/api/htmlfindex.html

TSP: The Transport Sample
Protocol

TSP
- [E] Wain Page

@ Data Structures

- [E] Data Fields

EH[) Modules

Em The Transport Sample Prot
@ TSP Libraries

Elm TSP Applications

Ell:g TSP Consumers
@ ASCII Writer Collaboration diagram for GDisp+:

..... [E) Gbisp

@ Generic Consumer
B[} TSP Providers
=@ BB TSP Provider
“[E] Res File Reader
--[E] BB Tools Command L
- [E] TSP Utilities GDisp+ Library

The GDisp+ libraries.
=@ The BlackBoard (BB)
@ Related Pages

Main Page | Modules | Data Structures | Data Fields | Related Pages

GDisp+

[TSP Consumers]

tsp_gdisp+ is the second generation TSP consumer GUI. More...

Modules

Detailed Description
tsp_gdisp+ is the second generation TSP consumer GUI.

This a gtk+1.2 (which should evolve to gtk+2 x), GUI which may be used fo efficiently draw or view TSP
sample symbol. GDispt includes following features:

® Multi ¥ vs X graphing capability
40 D 3 ® Graph snapshot =
Terming

11.1 TSP Providers

The TSP distribution includes ready-to-use TSP Providers. If you get a binary TSP distribution or a

page 62 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

properly compiled TSP source kit you should have the binary executable of those TSP providers in
your PATH. Unlike ready-to-use TSP consumers which may have GUI (Graphical User Interface),
TSP providers are command line executable.

Some of them like bb_provider come both as a command line tool (bb tsp provider) and as a
library (1ibbb tsp provider) usable from your favorite application.

Other are command-line only tools which may help to develop and/or debug TSP enabled
applications.

11.1.1 Generic Reader

The generic reader is a TSP provider which pick its symbol definition and values from file. It is
called generic_reader since it is designed to be easily extensible for reading several file format.

The TSP Generic Reader is located in tsp/src/provider/generic reader.

At the time of the writing the generic reader only support one file format which is the “macsim” file
format. An example of use of the generic reader is:

$ tsp generic reader -x test macsim.res -f macsim

#

Launching <generic reader server> for generation of Symbols from a generic
file #

=== ===
TSP Provider on PID 11387 - URL #0 : <rpc://tsp demo/GenReaderServer:0>

GLU: source file is <test macsim.res>

GLU: format file is <macsim>

The corresponding ascii wtiter session is:

$ tsp _ascii writer -x src/providers/generic reader/test macsim.dat
tsp ascii writer: sample config file is
<src/providers/generic reader/test macsim.dat>

tsp ascii writer: selected output file format is <Simple tabulated ASCII
format>

tsp ascii writer: Load config file...

tsp ascii writer: Validate symbols against provider info...
AsciiWriterLib:: Initially asking for <3> symbol (s)
AsciiWriterLib:: Enforcing same period for every symbols <begin>...
AsciiWriterLib:: Enforcing same period <done>.

AsciiWriterLib:: Finally asking for <3> symbol (s)

tsp ascii writer: Ascii writer running...

67.6 -0.997838725116478 0.615156387812678
[oool

68.9 -0.203604735112341 0.786401448233788
69 -0.104845336357333 0.84414139157743
tsp ascii writer: Ascii writer stopped...

S

page 63 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

The generic provider will serve the “whole” file from the beginning each time a new consumer is
connected. Each consumer connection (i.e. TSP session) is handled by a separate PASSIVE GLU
instance such that:
« each GLU instance may wait (PASSIVE GLU) for the consumer to read sample, which
ensures the consumer won't lose any sample
- each GLU instance may only handle a single consumer.

11.1.2 Blackboard provider

The Blackboard provider is located in src/providers/bb provider directory and is
compiled to the bb tsp provider command line and 1ibbb tsp provider library. The
Blackboard provider attaches itself to an existing Blackboard, then parses symbols definition from
the published data in the Blackboard. The BB provider then waits for synchronization request sent
by the owner/creator of the Blackboard. This is illustrated by the following figure:

-
“ BlackBoard

- A
- - ~
{subscribe} ; by
. ! miulti-process {sybscribe) TP
- shared \
P - -*.?' memory ~ . "'f Grapher
-~

* {publish} .~
-

+

TSP
ascii

. _ ™, I writer
Application
publish data and L
asynchroneously signal The Blackboard TSP provider
to Blackboard that a subscribes to the Blackboard TSP symbols are sent to
data set is coherent and flip/flop copy data zone the concerned TSP CnnsumersB|
when receiving
Note that several part of data set coherent message
the appliclation may is sent through the Blackboard
publish/subscribe internaly message guele.

Blackboard enable application and bb_tsp_provider collaboration
Using a Blackboard is the fastest way to bring TSP to an existing application. The only thing the

application has to do is to create a Blackboard and publish the data it wants to distribute. After that
the application must send synchronization each time a sample set is ready.

page 64 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

The TSP Blackboard utility libraries are located in src/util/1ibbb (and its sub directories).

You may experiment the tsp bb provider command using the bb simu example application
which create a Blackboard named “bb_simu” with some symbols published in it.
In order to try this

1. Runthe bb simu -s (bb_simu with synchro blackboard)

$ bb simu -s
Run with synchro ACTIVE

QToto = 0xb7bd5144, Toto[0] = 0
@QToto = 0xb7bd5148, Toto[1l] 1
@Toto = 0xb7bd514c, Toto[2] = 2
QTiti = 0xb7bd5150, Titi = 3.141590

INFO : BB PUBLISH DYN 0 d gsat[4] type double

INFO : BB PUBLISH ORBT 0 d possat m[3] type double
INFO : BB PUBLISH ECLA 0 d ecl sol[l] type double
INFO : BB PUBLISH ECLA 0 d ecl lune[l] type double
INFO : BB PUBLISH POSA 0 d DirSol[3] type double
INFO : BB PUBLISH POSA O d DirLun[3] type double

INFO : BB PUBLISH Sequenceur 0 d t s[l] type double

Toto[0] = O
Toto[1l] =1
Toto[2] = 2

Titi = 3.141590
Tata[0] = -1.000000
Tata[l] = 0.000001
Tata[2] = 0.500001
Tata[3] = 0.707107
Tata[4] = 0.809017
Tata[5] = 0.866026
Tata[6] = 0.900969
Tata[7] = 0.923880
Tata[8] = 0.939693

2. Runthe bb tsp provider on the”’bb_simu” Blackboard created by the application
(bb_simu and bb_tsp_provider should run on the same host)

$ export STRACE DEBUG=3
$ bb tsp provider bb simu 32

Info| |tsp provider.c##TSP_cmd line parser##214: No GLU stream init
provided on command line

Info| |[bb tsp provider.c##BB GLU init##310: Skipping unhandled symbol type
<13> name <bb simu MyType t var>

Info| |[bb tsp provider.c##BB GLU init##310: Skipping unhandled symbol type
<13> name <bb simu MyType t var.insider>

Info| |bb tsp provider.c##BB GLU init##310: Skipping unhandled symbol type
<11> name <bb simu astring>

page 65/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

Info| |tsp datapool.c##TSP global datapool init##216: No More datapool
thread

Info| |bb utils.c##bb logMsg##197: bb tsp provider::GLU thread : Provider
thread started with <50> symbols

As you can see the Blackboard provider has seen 50 distributable symbols in the
Blackboard. Some symbols may not be distributed using TSP since they are user defined
structure (there is a way to distribute user type consult TSP Blackboard guide for those
precise issues).

3. Launch a TSP consumer
tsp_ascii_writer example

$ tsp_ascii writer -x src/util/libbb/bbtools/bb simu.dat -u rpc://tsp demo
tsp ascii writer: sample config file is <src/util/libbb/bbtools/bb simu.dat>
tsp ascii writer: TSP provider URL is <rpc://tsp demo>

tsp ascii writer: Load config file...

tsp ascii writer: Validate symbols against provider info...

AsciiWriterLib:: Asking for symbol <bb simu 1 Titi> with period <1>
AsciiWriterLib:: Asking for symbol <bb simu 1 Tata[0]> with period <2>

AsciiWriterLib:: ---> [period forced to <1>]
AsciiWriterLib:: Asking for symbol <bb simu 1 Tata[l]> with period <2>
AsciiWriterLib:: ---> [period forced to <1>]

AsciiWriterLib:: Checking for symbol like <unknown var2> on provider side.
AsciiWriterLib:: Symbol <unknown var2> not found on provider side.
tsp ascii writer: Ascii writer running...

1.197514159E+04 8.744105840E-01 4.851866966E-01

1.197714159E+04 8.849757282E-01 4.656371553E-01
1.197914159E+04 8.951038654E-01 4.458576792E-01
1.198114159E+04 9.047899942E-01 4.258580355E-01
1.198314159E+04 9.140293315E-01 4.056481002E-01
1.198514159E+04 9.228173148E-01 3.852378531E-01
1.198714159E+04 9.311496047E-01 3.646373729E-01
1.198914159E+04 9.390220865E-01 3.438568322E-01
1.199114159E+04 9.464308728E-01 3.229064928E-01

tsp ascii writer::Captured signal<2>
tsp ascii writer: Ascii writer stopped...
[noularde@tsp demo tsp]

tsp_gdisp example:

$ tsp gdisp -x src/util/libbb/bbtools/bb simu.xml -u rpc://tsp demo
Loading 'src/util/libbb/bbtools/bb simu.xml' conf file

nb page = 2

nb var = 13

page 66 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

- A0 =

Displayed pages

Fefresh frequency : 10 Hz

TextYiew bb_simu_1_Tatal21 : 0, 50000077

disp level_h : GraphYiew

bb_simu_1_Titi

disp level_b

bb_sinu_display_level : 0
Titi : 26419,142
bb_sinu_1_Totol0] :

bb_sinu_1_Totoll] -1

bb_sinu_1_Tatalll : -0.23664675

11.1.3 Stubbed Server

The TSP Stub Server is located in tsp/src/provider/stub.

It is the simplest example of TSP provider implementation. It may be run with no argument as

following:

page 67 /94

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

$ export STRACE DEBUG=3

S tsp_stub server

#

#

Launching <StubbedServer> for generation of 1000 Symbols at 100Hz

#

#

Infol| |tsp_provider.c##TSP_cmd line parser##214: No GLU stream init provided on
command line
Infol |tsp_datapool.c##TSP _global datapool init##216: No More datapool thread

TSP Provider on PID 2944 - URL #0

Infol| |glue stub.c##STUB GLU thread##114: TOP 1000

Symbol2=0

Infol| |glue stub.c##STUB GLU thread##114: TOP 2000

Symbol2=0

Symbol3=0

Symbol3=0

: <rpc://tsp demo/StubbedServer:0>

: t=0

: t=0

Symbol1=0

Symbol1=0

When launched the stub server produces 1000 TSP Symbols at 100Hz pseudo frequency.

The symbol of PGI=0 is named 't' and symbols with PGI ranging from 1 to 999 are named

SymbolNNN, that is to say Symboll, Symbol2, ... Symbol999.

We may check this fact using the tsp request filtered information command

(generic consumer wrapper command) as follow:

Symbol1l7

Provider
Provider
Provider
Provider
Provider
pgi
pgi
pgi
pgi
pgi
pgi
pgi
pgi
pgi
pgi
pgi

$

: :base frequency

::max period

::max consumer
::current consumer nb =
<symbols list begin>

00000017,
00000170,
00000171,
00000172,
00000173,
00000174,
00000175,
00000176,
00000177,
00000178,
00000179,

Symboll7

Symbol170
Symboll71
Symbol172
Symboll173
Symboll74
Symbol175
Symboll76
Symbol177
Symbol178
Symbol179

Provider <symbols list end>.

= 100.000000
100000
100

1

$ tsp request filtered information -u rpc://tsp demo/StubbedServer:0 SIMPLE

tsp request generic: TSP provider URL is <rpc://tsp demo/StubbedServer:0>

The 't' symbol represents a sort of time which is strictly increasing and other symbols are some nice

plottable functions like, sinus, cosines, square functions, constant values, etc...

11.1.4 Res Reader

The tsp res reader (ResReader) is a TSP provider which provides symbols and value from a

file which respects the 'Res' file format.

The TSP Res Reader is located in tsp/src/provider/res reader.

page 68 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

The ResReader is very simple. After you launch it with the file as argument, it will provide the
sample values contained in the file until the end of the file. This is a “one shot” provider. After the

ResReader has delivered all the values it terminates itself.

You find hereafter an example of use of the ResReader. The consumer asking for symbols on this
example session is the ResWriter, a TSP consumer asking the provider for all its symbols and

storing the values in a file which respects the 'Res' file format.

$ export STRACE DEBUG=3
$ tsp res reader tests/auto/file.res

#

Launching <res reader server> for generation of Symbols from .res file

#
Infol| |tsp provider.c##TSP cmd line parser##134: Tsp ARG : '--tsp-stream-init-start'
Info| |tsp provider.c##TSP cmd line parser##134: Tsp ARG : '--tsp-stream-init-stop'
Infol| |glue res.c##RES GLU init##164: stream init = 'tests/auto/file.res'

Infol||glue res.c##RES GLU init##172: Total number of records = 1001

Infol||glue res.c##RES GLU init##173: Total number of variables = 82

Infol||glue res.c##RES GLU init##174: Data type = FLOAT

Info||tsp session.c##TSP add session##250: New consumer connected : channel id=0

Infol| |tsp_provider.c##TSP_provider request filtered information##406: Requested
filter NONE

Info| |tsp_provider.c##TSP _provider request sample##447: Consumer No 0 asked for 82
symbols

Info||tsp group algo.c##TSP_group algo get groups summed size##194:
groups_summed size is 82
Info| |glue res.c##RES GLU loop##125: New record : time=0, val[0]=0
Infol| |glue res.c##RES GLU loop##125: New record : time=1, val[0]=0.03125
o0l
Infol| |glue res.c##RES GLU loop##125: New record : time=1000, val[0]=999.031
Info| |tsp_datapool.c##TSP_datapool push commit##112: GLU sent EOF

The corresponding ResWriter session is following.

page 69 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

$ export STRACE DEBUG=3
$ $ tsp res writer -f out.res

Info||client res.c##main##142: Autodetect CPU : 32 bits

Infol| |tsp_consumer.c##TSP_consumer connect url##499: Trying to connect to
<rpc://localhost/:0>

Info| |tsp client.c##tsp remote open progid##94: CONNECTED to server localhost

Infol| |tsp client.c##TSP remote open server##150: Server opened : 'ResServer'

Info| |tsp_consumer.c##TSP_consumer store informations##178: Provider base frequency =
32.000000 Hz

Infol||client res.c##main##222: Id=0 Sym='t'

Infol|client res.c##main##222: Id=1 Sym='wz'

Infol||client res.c##main##222: Id=2 Sym='wy'

Infol|client res.c##main##222: Id=3 Sym='wx'
[oool

Info||client res.c##main##222: Id=80 Sym='thp rouex'

Info||client res.c##main##222: Id=81 Sym='pto zpyp'

Info| |tsp consumer.c##TSP consumer request sample##1006: Total group number = 1

Info||client res.c##main##286: file=out.res

Info| |tsp consumer.c##TSP request provider thread receiver##1055: Receiver thread
started. Id=3059940272

Info| |tsp stream receiver.c##TSP stream receiver receive##277: Received socket EOF
WarninG| |tsp data receiver.c##TSP _data receiver receive##370: Unable to receive group
size and time stamp

Infol| |tsp_consumer.c##TSP_request provider thread receiver##1069: function
TSP data receiver receive returned FALSE. End of Thread

Info| |tsp consumer.c##TSP consumer read sample##1217: Received status message
BN ERR R

Infol| |tsp_consumer.c##TSP_consumer read sample##1221: status message EOF

Info| |tsp consumer.c##TSP consumer end##416: End...

11.2 TSP Consumers

11.2.1 Generic Consumer

The generic consumer purpose is to have an handy command line tool to test TSP providers and to
provide a reference C source code usage of the TSP Request on Consumer side.

Just like BB Tools Command Lines the generic consumer has a BusyBox-like design
(http://www.busybox.net). The generic interface is;

tsp_request_generic [generic_opts] <tsp_ request> [request opts]
generic_opts

+ -u (optional) TSP Provider URL. Default is localhost
+ -s (optional) silent mode (may be used for silent scripting)
+ -v (optional) verbose mode

+ -n (optional) no newline read mode
tsp_request

page 70/ 94

http://www.busybox.net/
file:///home/noularde/TSP/tsp_all/tsp/dist/doc/api/html/group__BBToolsCommandLine.html

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

. tsp_request_open

+ tsp_request_close

+ tsp_request_information

+ tsp_request_filtered_information

+ tsp_request_feature

. tsp_request_sample

+ tsp_request_sample_init

+ tsp_request_sample_destroy

+ tsp_request_async_sample_write

+ tsp_request_async_sample_read
And there 1s some predefined wrapper scripts for the 4 most used requests:

tsp_request_information

- tsp_request_filtered_information

-+ tsp_request_async_sample_read

. tsp_request_async_sample_write

When used with the wrapper name the command line is:
tsp_request <specific_req name> [generic_opts] [specific_request_ opts]

Some usages examples are explained hereafter.

11.2.1.1 tsp_request_information

The TSP request informations may be sent to show ALL the list of symbols which are offered by a
provider; some minimal informations about symbols are shown.

Example, request send on bb_tsp_provider running on localhost and attached to bb_simu:

$ tsp_request_information -u rpc://localhost/bb_simu
tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

Provider: :base frequency = 10.000000
Provider: :max period = 100000
Provider: :max consumer = 100
Provider: :current consumer nb = 1

Provider <symbols list begin>
pgi = 00000000, bb simu display level
pgi = 00000001, bb simu int8[0]
pgi = 00000002, bb simu int8[1]
pgi = 00000003, bb simu uint8[0]
pgi = 00000004, bb simu uint8[1]

pgi = 00000005, bb simu MyType t var.a

pgi = 00000006, bb simu MyType t var.d

pgi = 00000007, bb simu MyType t var.byte

pgi = 00000008, bb simu MyType t var.insider.ai[0]
pgi = 00000009, bb simu MyType t var.insider.ail[l]
pgi = 00000010, bb simu MyType t var.insider.f

pgi = 00000011, bb simu 1 Toto[0]

page 71 /94

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

$

pgi = 00000012,
pgi = 00000013,
pgi = 00000014,
pgi = 00000015,
pgi = 00000016,

pgi = 00000017,
pgi = 00000018,
pgi = 00000019,
pgi = 00000020,
pgi = 00000021,
pgi = 00000022,
pgi = 00000023,
pgi = 00000024,
pgi = 00000025,
pgi = 00000026,

pgi = 00000027,
pgi = 00000028,
pgi = 00000029,
pgi = 00000030,
pgi = 00000031,
pgi = 00000032,
pgi = 00000033,

pgi = 00000034,
pgi = 00000035,
pgi = 00000036,
pgi = 00000037,
pgi = 00000038,
pgi = 00000039,
pgi = 00000040,
pgi = 00000041,
pgi = 00000042,
pgi = 00000043,
pgi = 00000044,
pgi = 00000045,

pgi = 00000046,
pgi = 00000047,
pgi = 00000048,
pgi = 00000049,
Provider <symbols list end>.

bb simu 1 Toto[1]
bb simu 1 Toto[2]
bb simu 1 Titi
bb simu 1 Tata
bb simu 1 Tata
bb simu 1 Tata
bb simu 1 Tata
bb simu 1 Tata
bb simu 1 Tata
bb simu 1 Tata
bb simu 1 Tata
bb simu 1 Tata[8]

bb simu 1 HugeArray[0]
bb simu 1 HugeArray|[l
bb simu 1 HugeArray|[2
bb simu 1 HugeArray[3
bb simu 1 HugeArray[4

bb simu 1 HugeArray[6
bb simu 1 HugeArray[7
bb simu 1 HugeArray|[8

]
]
]
]
bb simu 1 HugeArray|[5]
]
]
]
]

bb simu 1 HugeArray[9

DYN O d gsat[0]
DYN 0 d gsat[1]
DYN 0 d gsat[2]
DYN O d gsat[3]

ORBE_a_ _possat m[0]
ORBT 0 d possat m[1]
ORBT 0 d possat m[2]

ECLA 0 d ecl sol

ECLA 0 d ecl lune
POSA 0 d DirSol[0]
POSA 0 d DirSol[1l]
POSA 0 d DirSol[2]
POSA 0 d DirLun[O0]
POSA O d DirLun[1]
POSA 0 d DirLun[2]
Sequenceur 0 d t s

11.2.1.2 tsp_request_filtered_information

The TSP request filtered informations is just the same as request informations with filtering

capability option.

Here follows

an

example

of filtered

information

request

sent on

TSP URL

rpc://localhost/bb simu, and showing symbols whose name contains 'gsat":

page 72/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

$ tsp _request filtered information -u rpc://localhost/bb simu SIMPLE gsat
tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

Provider: :base frequency = 10.000000
Provider::max period = 100000
Provider::max consumer = 100

1

Provider: :current consumer nb
Provider <symbols list begin>
pgi = 00000034, DYN O d gsat[0]

pgi = 00000035, DYN 0 d gsat[1]
pgi = 00000036, DYN 0 d gsat[2]
pgi = 00000037, DYN 0 d gsat[3]

Provider <symbols list end>.

$

11.2.1.3 tsp_request_async_sample_read

The TSP request asynchronous sample read may be used to read on symbol value. When you want
to asynchronous read or write a symbol you should first gets is PGI (Provider Global Index) by
using request [filtered] informations first.

Here is an example for reading the value of 'Sequenceur_0_d_t_s"

$ tsp_request filtered information -u rpc://localhost/bb simu SIMPLE d t
tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

Provider: :base frequency = 10.000000
Provider: :max period = 100000
Provider::max consumer = 100

1

Provider::current consumer nb

Provider <symbols list begin>
pgi = 00000049, Sequenceur 0 d t s

Provider <symbols list end>.

$ tsp _request async sample read -u rpc://localhost/bb simu 49

tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

1170.690000

$ tsp_request async sample read -u rpc://localhost/bb_simu 49

tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

1171.420000

$

Note that TSP request asynchronous sample read (or write) is not a mandatory request that must be
honored by all TSP Providers, if you try this on StubbedServer for example:

page 73 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

$ tsp request filtered information -u rpc://localhost/StubbedServer SIMPLE
Symbol230
tsp_request generic: TSP provider URL is <rpc://localhost/StubbedServer>

Provider: :base frequency = 100.000000
Provider: :max period = 100000
Provider: :max consumer = 100
Provider: :current consumer nb = 1

Provider <symbols list begin>
pgi = 00000230, Symbol230
Provider <symbols list end>.
$ tsp_request async _sample read -u rpc://localhost/StubbedServer 230
tsp request generic: TSP provider URL is <rpc://localhost/StubbedServer>
tsp_request generic::tsp request async sample read: async read refused (or
not handled) by provider
$

11.2.1.4 tsp_request_async_sample_write

The TSP request asynchronous sample write may be used to write (if Provider authorized it) on
symbol value. When you want to asynchronous read or write a symbol you should first gets is PGI
(Provider Global Index) by using request [filtered] informations first.

Here is an example for writing the value of 'bb_simu_display_level":

$ tsp request filtered information -u rpc://localhost/bb simu SIMPLE dis
tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

Provider: :base frequency = 10.000000
Provider: :max period = 100000
Provider: :max consumer = 100

1

Provider::current consumer nb

Provider <symbols list begin>
pgi = 00000000, bb simu display level

Provider <symbols list end>.

$ tsp request async sample read -u rpc://localhost/bb simu 0

tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

0.000000

$ tsp request async sample write -u rpc://localhost/bb simu 0 45

tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

$ tsp request async sample read -u rpc://localhost/bb simu 0

tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

45.000000

$ tsp request async sample write -u rpc://localhost/bb simu 0 0

tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

$ tsp request async sample read -u rpc://localhost/bb simu 0

tsp request generic: TSP provider URL is <rpc://localhost/bb simu>

0.000000

$

page 74 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

11.2.2 Res Writer

tsp res writer is a simple file writer TSP consumer. It asks for all the symbols of the
provider it is connected to and stores the values in a “res” file format file until the provider gives
him EOF or the user interrupts its execution (hit Ctr1-C). See the tsp res reader example.

11.2.3 ASCII Writer

tsp ascii writer is a TSP consumer which is able to output symbols values in different
ASCII file format. Its output may be standard output or file. Several file format output may be
chosen using the -f command line option. Its main purposes is to be able to export TSP distributed
symbols and values to some kind of CSV (Comma Separated Value) format in order to be easily
post processed by spreadsheet softwares or simpler plotting software like Gnuplot
(http://www.gnuplot.org/).

The ASCII writer command line arguments are the following:

tsp_ascii_writer [-n] -x=<sample_config_file> [-o=<output_filename>] [-f=<output file
format>] [-lI=<nb sample>] [-u TSP_provider URL]

-n (optional) will check and enforce no duplicate symbols

-x the file specifying the list of symbols to be sampled

-f (optional) specifying the format of output file. Recognized file format are
simple_ascii tabulated ascii no header
bach tabulated ascii with BACH header
macsim tabulated ascii with MACSIM header

-0 the name of the output file

-1 (optional) the maximum number of sample to be stored in file

-u (optional) the TSP provider URL, default is localhost.

Example of use (default ASCII file format output):

$ cd $TSP_SRC BASE

$ tsp_ascii writer -x src/util/libbb/bbtools/bb simu.dat -u rpc://tsp demo
tsp_ascii writer: sample config file is <src/util/libbb/bbtools/bb simu.dat>
tsp ascii writer: TSP provider URL is <rpc://tsp demo>

tsp ascii writer: selected output file format is <Simple tabulated ASCII

page 75/ 94

http://www.gnuplot.org/

The TSP Design & Programming Guide

format>

tsp_ascii writer:
tsp ascii writer:

AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib: :
AsciiWriterLib::

tsp ascii writer:

Asking for symbol
Asking for symbol

Load config file...

Validate symbols against provider info...

<bb simu 1 Titi> with period <1>
<bb simu 1 Tata[0]> with period <2>

-——> [period forced to <1>]

Asking for symbol <bb simu 1 Tata[l]> with period <2>

-——> [period forced to <1>]

Checking for symbol like <unknown var2> on provider side.
Symbol <unknown var2> not found on provider side.

Ascii writer running...

Rev 1.1 for TSP v0.8.1

Do
.298311416E+05
.298331416E+05
.298351416E+05
.298371416E+05
5o

o o 01 U1

298291416E+05

298391416E+05

tsp ascii writer

tsp_ascii writer:

$

-3.895918475E-01 9.209876179E-01
-3.690309488E-01 9.294171070E-01
-3.482878202E-01 9.373876436E-01
-3.273727047E-01 9.448952917E-01
-3.062959302E-01 9.519363441E-01
-2.850679048E-01 9.585073237E-01

::Captured signal<2>

Ascii writer stopped...$

Another example of use with MACSIM header

$ cd S$TSP_SRC_BASE

$ tsp ascii writer -f macsim -x src/util/libbb/bbtools/bb simu.dat -u

rpc://tsp_demo

tsp_ascii writer:
tsp ascii writer:
tsp ascii writer:
tsp ascii writer:
tsp ascii writer:
tsp_ascii writer:

AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib::
AsciiWriterLib: :

tsp ascii writer:

Asking for symbol
Asking for symbol

bb simu 1 Titi
bb simu 1 Tata

provided output file format is <macsim>
selected output file format is <CNES MACSIM file format>

sample config file is <src/util/libbb/bbtools/bb simu.dat>

TSP provider URL is <rpc://tsp demo>

Load config file...

Validate symbols against provider info...

<bb simu 1 Titi> with period <1>
<bb simu 1 Tata[0]> with period <2>

-——> [period forced to <1>]

Asking for symbol <bb simu 1 Tata[l]> with period <2>

-——> [period forced to <1>]

Checking for symbol like <unknown var2> on provider side.
Symbol <unknown var2> not found on provider side.

Ascii writer running...
1 : double : s
2 : double : s

bb

5.
.203631416E+05
.203651416E+05
.203671416E+05
.203691416E+05

o o o1 U1

simu 1 Titi
203611416E+05

bb simu 1 Tata(1l)
.370072612E-01
.445377138E-01
.516017473E-01
.581958733E-01
.643168356E-01

bb simu 1 Tata(2)
.493098802E-01
.284029646E-01
.073338813E-01
.861130344E-01
.647509030E-01

5.203711416E+05

tsp_ascii writer:
tsp ascii writer:

$

O W W W W W
NN W W W

.699616116E-01 .432580358E-01

:Captured signal<2>

Ascii writer stopped...

page 76 / 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

The TSP provider used is bb tsp provider attached to the bb simu pseudo simulator. The
bb simu.dat ASCII Writer configuration file is the following:

#a comment
##another one

##ccc

##ddd

bb simu 1 Titi 1
#unknown varl 15
tiot

#bb simu 1 Toto
bb simu 1 Tata[0]
bb simu 1 Tatal[l]
unknown var?2

RN N

11.2.4 GDisp

tsp gdisp is the first generation GUI TSP consumer. It's written using GTK+1.2. It has limited
capabilities but it is small and very efficient at drawing a huge amount of TSP symbols. It has a
simple XML configuration file which may be used to described the TSP Symbols you want to draw

or view. The tsp gdisp command line is the following:
tsp_gdisp [-u TSP_provider URL] -x config.xml

Example of use of TSP GDisp on a StubbedServer running on localhost:

Launch the tsp stubbed server:

$ cd $TSP_SRC BASE
$ tsp stub server

#
Launching <StubbedServer> for generation of 1000 Symbols at 100Hz
== ===

TSP Provider on PID 7160 - URL #0 : <rpc://tsp demo/StubbedServer:0>

Launch tsp gdisp

$ cd STSP SRC_BASE

$ tsp gdisp -x src/consumers/gdisp/sexy.xml
Loading 'src/consumers/gdisp/sexy.xml' conf file
nb page = 3

nb var = 41

page 77/ 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

tsp_ gdisp may display TSP sample symbol as “View” which is textual display

Synboll0d
Synboll0l : -0,79515635 Synboll0d : -0,98985747
Synboll02 : 0.21094736 Synmbollld : 0,67541769
Synboll03 : 1.4492692 Titleh
Synbolldd : 26.311339 Synbol20l :; 0,080646964
Title? Symnbol202 @ 0,090610193

Symbollds : 4.2 Symbol203 1.660131
Synbollot : 8,3900424 Synbol20d : 71.521636
Title3 Symbol207 A0

Synboll07 : Synbol20d -1
Synboll08 : -1 Symbol209 : 16,060148
Synboll109 : -0,98985747 Symbol2ld @ 0,98546021
Synbolll0 : 0,67541769 Symbol211 : 0,1797523

Titled

page 78 / 94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

20 100 110 120

Synbol?2

100 110 120

Synbol3

100 110 120

Or “Draw” which is plot display:

Every set of tsp gdisp display is considered as a “page” which may mix “View” and “Draw”:

Another
Synbollo8 ; -1 Symbol308 : -1
Synboll0g : O Symnbol309 : -1,8292187

Synbol? Synbold

an 100 110 120 an 100 110 120

page 79 /94

The TSP Design & Programming Guide

B

(|

it

*

The corresponding “sexy.xml” XML configuration file is:

Displayed pages
][z [=

Refresh frequency : 10 Hz

o

The page may be hidden or displayed using the t sp gdisp Control Panel;

=

Rev 1.1 for TSP v0.8.1

<?xml version="1.0"?2>
<page config display frequency="10.0" period="1"

widget="draw"
visible="true" no border="false" rows="3" duration="50.0">

<page title="Draw" x="50" y="50" width="450" height="440" rows="3" >

<variable
<variable
<variable
<variable
<variable
<variable
</page>

name="t"
name="Symbol2"
name="Symbol3"
name="Symbol4"
name="Symbol5"
name="Symbol6"

type="DOUBLE" />

type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"

/>
/>
/>
/>
/>

<page title="View" x="510" y="50" width="0" height="0" widget="view"

rows="14">
<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable

<variable
<variable
<variable
<variable
<variable
<variable

name="Titlel"
name="Symboll01"
name="Symbol102"
name="Symbol103"
name="Symbol104"
name="Title2"
name="Symboll05"
name="Symbol106"
name="Title3"
name="Symbol1l07"
name="Symbol108"
name="Symboll09"
name="Symboll10"

name="Titled"
name="Symbol108"
name="Symbol109"
name="Symboll10"
name="Title5"
name="Symbol201"

type="TITLE" />

type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"

type="TITLE" />

type="DOUBLE"
type="DOUBLE"

type="TITLE" />

type="HEXA"

type="DOUBLE"
type="DOUBLE"
type="DOUBLE"

type="TITLE" />

type="DOUBLE"
type="DOUBLE"
type="DOUBLE"

type="TITLE" />

type="DOUBLE"

/>
/>
/>
/>

/>
/>

/>
/>
/>
/>

/>
/>
/>

/>

page 80 /94

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

<variable name="Symbol202"
<variable name="Symbol203"
<variable name="Symbol204"
<variable name="Symbol207"
<variable name="Symbol208"
<variable name="Symbol209"
<variable name="Symbol210"
<variable name="Symbol211"
</page>

type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"
type="DOUBLE"

/>
/>
/>
/>
/>
/>
/>
/>

<page title="Mixed" x="510" y="330" width="0" height="0" widget="view"

rows="4" >

<variable name="Title" type="TITLE"

<variable name="Symboll08" type="DOUBLE" />
<variable name="Symboll09" type="DOUBLE" />
<variable name="Symbol7" type="DOUBLE" widget="draw"
<variable name="Another" type="TITLE"

<variable name="Symbol308" type="DOUBLE" />
<variable name="Symbol309" type="DOUBLE" />

<variable name="Symbol8" type="DOUBLE" widget="draw"

</page>
</page_config>

/>

/>

/>

The configuration file must have <page config> root node with any number of <page> sub

nodes. Each page has a set of <variable> sub-node specifying the name and the displayed type

of the variable.

GDisp may only be connected to one provider at one time. If you want to display different symbols

coming from different providers you have to launch several tsp gdisp and specify the

appropriate ~u <TSP Provider URL> option.

Every sample symbols specified in the configuration file will be asked by tsp gdisp in a single

TPS Request Sample.

11.2.5 Targa

targa is the second generation GUI TSP consumer which was designed to improve then replace

tsp gdisp. It's still written in GTK+1.2 and will be ported to GTK 2.x as soon as possible

(contribution are welcomed). targa has a clean graphical kernel design with Pluglns architecture. It

may load/save its configuration in an XML file, connect to several TSP provider at the same time.

The targa command line is:

page 81 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

targa [-u TSPurl] [-h host] [-x config.xml]
« TSPurl the TSP URL
+ host the hostname or IP address
« config.xml the Targa xml configuration file

Launching targa on a machine where a TSP provider is running will bring the Targa main board:

GRISF+ Copyrightt

File [Data Plots Help

& 21:02 . GDISP+ Graphic Tool, Wersion 1.0

JE1:02 : Implementation is thread-safe.

{3 :21:02 . AI170 requested colors have been allocated.
{32102 : Local host is 'tsp_demoa”.

{3 21:02 : Session opened on <rpedfsp_demosStubbedServer:0s=
J21:02 01 TSP provider(s) found an hast tsp_demao.

@ 21:02 : Local host is tsp_dema’.

{3 21:02 : Session opened on <rpc:tsp_demo/StubhedServer:0x "l
JET:0E 1 TSP provider(s) found on host tsp_demo. e
{3 21:02 : Mew configuration correctly performed.
) 21:02 : A total of 1000 symbols have been processed. =
H 4 » H
b —

When you click on the Data Menu you obtain the list of symbol found by Targa:

page 82 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

sYymbols Frovidenrs M Graphic Flots

Al Bymbols Sampled Symbols Providers Graphic Plots

Available Symbaols : 1000

tBlame Unit Coamment -
Symbol h/a. undefined

Symbolli h/a. undefined

Symbol100 n/a. undefined

Symbol107 hn/a undefined

Symhol10Z h/a undefined

aymbol103 h/a. undefined

aymbol104 h/a. undefined

aymbol105 h/a. undefined

Symbol106 n/a. undefined

Symbol107 hn/a undefined

Symhol103 h/a undefined

aymbol103 h/a. undefined

aymbolll h/a. undefined

aymbol110 h/a. undefined

Symbol111 n/a. undefined

Somhnl1dl? o=} [Rlatal=tilaT=1sl b
4 3
sart By ® MName Ascending Mame Descending
Filter
Drag & Drop Scope Unique @ Single Page &l Pages

W Spply | ¥ Daone

- -

Using the Plot drop down menu you may build a new page:

page 83 /94

The TSP Design & Programming Guide

Rev 1.1 for TSP v0.8.1

File Data f5l Help
& z1.02 . GD : CH+C
JE21:02 : Implementation is t
{3 21:02 - AN170 requested allocated.
{3 :21:02 : Local hostis 'tsp_y 2% 2 Ctl+2
) 21:02 : Session opened ol 3w 3 Cil+3 [Stubbedserverl= w»
2102 01 TSP provider(s) | demo. e
321:02 Local host is tsp_y %4 Cil+d
) 21:02 : Session opened 0l 5 x5 Ctl+5 StubbedServerO=
:] 21:02 -1 TSP prwider(s) TOLTTL O st lbp_dEmD.
3 21:02 : Mew configuration correctly performed.
2102 : A total of 1000 symbols have been processed. =
H 4 [H
S =

After you have chosen the kind of page, you get a new graphical page on which you may drag'n'drop

symbols:

&ll Symbols [Sampled Symbols Providers Graphic Plots
Available Symbols : 1000 Serverls @
Mame Unit Comment =
Symhol358 nia undefined
Symhbol353 nia undefined
Sy undefined
Symbol360 hia undefined
Symbolg61 nia undefined
Symhol362 nia undefined
Symbola63 nia undefined
Symhol364 nia undefined
Symbol365 hia undefined
Symhol366 néa undefined
Symhol367 nia undefined
Symbol96s néa undefined
Symhol363 nia undefined
Symbolg7 hia undefined
Symhol370 nia undefined
Sumbal371 hia undefined b
L) »
Sort By ® Mame Ascending MName Descending
Filter
Drag & Drop Scope Unigue (@ Single Page All Pages
" Apply ¥ Done
-

Then you may click on the start sampling button of the Targa main board (Green Cross) to begin the

sampling process which will update [all] the graphical page[s]:

page 84 /94

The TSP Design & Programming Guide

sier personnel

File Data Plots

GLISH-F Copyright (2) 2005,

All Symbols Providers Graphic Plots
Sampled Symbols (for information only)

Properies Infarmation

=@ rpcditsp_demosStubbedServer0

L@ Infarmation

B i ySampled Symbals

Et t

B Symboll

B Symbol36

W

Rev 1.1 for TSP v0.8.1

o_st tsp_demo.
_demo/StubbedServer.0= @
ost tsp_demo.

etformed.
heen processed. m |

Girziohiie Pagz #L

L e A 2 S T A T A e L

page 85/94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

12 Developer Handbook

12.1

Common Problems (FAQ)

Q/A

Description

Ql

My favorite provider refuse to start-up after a busy debugging/crashing period, what's
up?

Al

You may have exhausted the rpc id on your provider machine, stop all providers process
on this machine and launch tsp rpc cleanup

Q2

My consumer can connect to the provider but does not receive any symbols values?

A2

Most of the time this is a name resolution problem see bug #14770 and bug #14783 on

Savannah.

Check if your provider may resolve its own name used by the consumer in the TSP
URL properly.

Check if your consumer knows how to reach provider by name and not by @IP.

12.2

Savannah Access

If you ever (want to) become a registered TSP at Savannah you'll find hereafter some useful recipes

for clean TSP development process with Savannah.

If you want to use access Savannah SSH authenticated CVS access and you are behind an https

proxy, you may use https tunneling to access the savannah cvs machine. Proceed as follow:

1. install a Proxy Tunnel command like http://proxytunnel.sourceforge.net , (you don't need to

have administrator right to install or use such tool).

2. put those lines in your ~/ .ssh/config:

Host cvs.savannah.nongnu.org
ProxyCommand proxytunnel -g <proxyserver> -G <proxyport> -d %h -D 443

if your proxy server requires username/password, use:

page 86 /94

http://proxytunnel.sf.net/
https://savannah.nongnu.org/bugs/?func=detailitem&item_id=14783
https://savannah.nongnu.org/bugs/?func=detailitem&item_id=14770

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

proxytunnel -g <proxyserver> -G <proxyport> -u <username> -s <password> -d sh -D 443

For example imagine you have a Squid proxy without authentication running on port 3128 whose

@IP is 192.168.0.1 (private network address):
proxytunnel -g 192.168.0.1 -G 3128 -d %h -D 443

Note that if your proxy accepts to establish connections on port 22 (genuine SSH port) it is better to
use port 22 (ssh) connection instead of 443 (https) since the Savannah CVS server may not answer
to SSH connection on 443 (this feature is active at the time of the writing but may not be supported
by Savannah in the future).

page 87 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

13 Support

13.1 Open Source Model Support

TSP is an Open Source project (LGPL license http://www.gnu.org/copyleft/lesser.html) and as such
does not offer any guaranteed support to its users. Nevertheless the Open Source community using
TSP is active and will be proud to provide you with their knowledge of the TSP on the TSP mailing

lists: https://savannah.nongnu.org/mail/?group=tsp .

The favorite process is the following:

1. Check that your question has not already been answered on the list by browsing/searching
the mailing list archives,

2. Subscribe to the mailing list, this is not mandatory but eases question/answer process since
non-member cannot post non-moderated message and most people answer on the list and not
to the sender,

3. Send your question to the list,

4. Wait for answers which will come through the list,

5. Unsubscribe if you are done with your TSP questions.

Using this process facilitates the communication between TSP actors and due to the mailing list
archives , anyone coming after may browse/search the mailing archives for similar questions.

13.2 Professional Support

If your project needs professional support for TSP, some companies may provide you specific
contract for this. Just ask for professional support on the TSP mailing list and any professional TSP

stakeholder will come back to you in private with his/her proposal.

page 88 /94

https://savannah.nongnu.org/mail/?group=tsp
http://www.gnu.org/copyleft/lesser.html

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

14 GNU Free Documentation License

see http://www.gnu.org/copyleft/fdl.html

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or non commercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below,

refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept
the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with

page 89 /94

http://www.gnu.org/copyleft/fdl.html

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

the relationship of the publishers or authors of the Document to the Document's overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words,
and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding
the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as "Acknowledgements", "Dedications”, "Endorsements", or "History".) To
"Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled
XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as
regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

page 90 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of

previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

page 91 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document (all of
its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgments" or "Dedications", Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgments and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements"”, provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for

page 92 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1
publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of
all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming
one section Entitled "History"; likewise combine any sections Entitled "Acknowledgments”, and any sections
Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or
on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is
less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the

page 93 /94

The TSP Design & Programming Guide Rev 1.1 for TSP v0.8.1

terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgments", "Dedications", or "History", the requirement (section
4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from

time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

page 94 / 94

http://www.gnu.org/copyleft/

	 1 Introduction
	 1.1 Purpose of this guide
	 1.2 Reader's guide
	 1.3 Glossary

	 2 TSP Design
	 2.1 TSP History
	 2.2 TSP Objectives
	 2.3 Provider/Consumer Principle
	 2.3.1 Cyclical nature of a provider
	 2.3.2 Consumer/Provider collaboration mean

	 2.4 TSP Command Channel – Asynchronous TSP
	 2.4.1 TSP URL and Request Handler
	 2.4.2 Request Open/Close
	 2.4.3 Request [Filterered] Informations
	 2.4.4 Request Extended Informations
	 2.4.5 Request Sample/SampleInit/SampleDestroy
	 2.4.6 Request Asynchronous Read/Write

	 2.5 TSP Data Channel – Synchronous TSP

	 3 Understanding TSP modules
	 3.1 The TSP modules
	 3.2 Accessing the TSP sources

	 4 TSP in C
	 4.1 Setting up your TSP
	 4.1.1 TSP Binary distribution
	 4.1.2 TSP Source distribution

	 4.2 Provider side programming
	 4.2.1 Writing a GLU type provider
	 4.2.2 Using a Blackboard provider

	 4.3 Developing a new consumer
	 4.4 Source code documentation (API doc)
	 4.4.1 General Doxygen usage
	 4.4.2 TSP Doxygen structure and usage example
	 4.4.2.1 TSP Doxygen main structure
	 4.4.2.2 Grouping
	 4.4.2.3 Structure, Enumeration, Macros, Typedef
	 4.4.2.4 Functions
	 4.4.2.5 Main and Programs

	 5 TSP in Java
	 5.1 Using the JTSP API
	 5.1.1 Ant and Eclipse usage
	 5.1.2 Source code documentation: javadoc

	 5.2 Jstdout example
	 5.3 JCDFWriter
	 5.4 Jsynoptic TSP plugin

	 6 TSP in Perl
	 7 TSP in Python
	 8 TSP in Ruby
	 9 TSP in Tcl
	 10 TSP documentation modules
	 10.1 TSP Specifications
	 10.2 TSP White paper
	 10.3 TSP Design and programming guide
	 10.4 Blackboard Design and Programmers guide

	 11 TSP Applications
	 11.1 TSP Providers
	 11.1.1 Generic Reader
	 11.1.2 Blackboard provider
	 11.1.3 Stubbed Server
	 11.1.4 Res Reader

	 11.2 TSP Consumers
	 11.2.1 Generic Consumer
	 11.2.1.1 tsp_request_information
	 11.2.1.2 tsp_request_filtered_information
	 11.2.1.3 tsp_request_async_sample_read
	 11.2.1.4 tsp_request_async_sample_write

	 11.2.2 Res Writer
	 11.2.3 ASCII Writer
	 11.2.4 GDisp
	 11.2.5 Targa

	 12 Developer Handbook
	 12.1 Common Problems (FAQ)
	 12.2 Savannah Access

	 13 Support
	 13.1 Open Source Model Support
	 13.2 Professional Support

	 14 GNU Free Documentation License

