The Transport Sample Protocol: A Provider/Consumer
programming Tutorial

Frederik DEWEERDT Eric NOULARD
frederik.deweerdt@gmail.com eric.noulard@gmail.com

Version 1.0 of October 20, 2006

P @ Be @' By @ Byll Bell Bell S I! Fe [BeX Bs

Abstract

This document is a TSP programmer primer’s guide. Using it you should be able to quickly
understand what are the TSP objectives, how to install TSP on your system and how to use
TSP within your application. In order to fully understand the document one should have a
reasonable understanding of C language programming and basic knowledge of TCP /IP networked
application.

CONTENTS

CONTENTS

Contents

1 What is TSP?
1.1 TSP principles
1.2 The TSP tools
1.3 Getting TSP

2 Installing TSP
2.1 Software Prerequisite
2.2 TSP binary installation
TSP binary installation for Windows
2.2.2 TSP binary installation for Unix
2.3 TSP source installation
TSP source installation for Windows
2.3.2 TSP source installation for Unix
2.3.3 TSP Source tree primer

2.2.1

2.3.1

3 Testing TSP installation
3.1 Standalone TSP test (1 host)
3.2 Networked TSP test (at least 2 machines)

4 Building a TSP Provider
4.1 The observed application
4.2 Providerizing the program

5 Building a TSP consumer
5.1 Writing a simple consumer
5.2 Ready-to-use consumers

A Installing prerequisite software
A.1 CMake
A.2 ACPLT-ONCRPC

A.2.1 Verifying Portmap Service/Daemon
A.3 PthreadsWin32
A.4 NullSoft Scriptable Install System

References

15

............................... 15
........................ 16

19

.................................. 19
................................. 20

28

................................. 29
.................................. 32

33

.. 33
..................................... 33
........................ 33
....................................... 33
............................. 34

34

LIST OF LISTINGS LIST OF TABLES

List of Listings

1
2
3
4
>
6
7
8

9

10
11
12

A simplified simulator Lo L 19
Headers of the TSP aware simulator 21
TSP core initialization e 22
GLU initialization function e 25
GLU get Sample Symbol Information L. 25
GLU run o e e 26
Headers of the TSP consumer application 29
Initialize TSP consumer library and open TSP Session 29
Request for Information on TSP Symbols 000 30
Requesting selected symbolso o oo 30
Consumer Sample loop L 31
Terminate TSP consumer e 32

List of Figures

[I

TSP Provider/Consumer principleso e 1
TSP typical sequence e e e 20
GLU vs TSP library o o 21
Windows Help TSP API documentation 24

List of Tables

1

TSP tools synoptic oL e 2

i

1 WHAT IS TSP?

1 What is TSP?

1.1 TSP principles

TSP stands for the Transport Sample Protocol. TSP is a sampling framework, mostly written in
C and accessible in a wide variety of languages (Java, Ruby, Perl, Python) and platforms (Linux,
OpenBSD, FreeBSD, Solaris, DEC OSF and Windows).

The aim of TSP is to provide an easy and straightforward way for programmers to sample data
that lies within a running program. To achieve that goal, TSP provides two core components:

e The TSP provider. Plugged into the observed program, it’s role is to provide the observed data
to the outside world (TSP consumer) by embedding it in the TSP protocol.
e The TSP consumer negotiate with a TSP provider the data he wants to consumer. It is able

to parse and understand the TSP protocol and display collected data it in some useful way.

This TSP principle is depicted on figure 1 on page 1. A TSP provider may be any application which

Configuration is done using
TSP Command Channel [(Asynchronous TSP}

AsynchronousfTSP (Request)

TSP cGnsu_T__er TSP Provider

Synchronougf TSP

Sample Data are collected using
T5P Data Channel [5ynchronous TSP)

Figure 1: TSP Provider/Consumer principles

wants to expose any evolving data to the outside world in a easy, efficient and dynamic fashion.
The evolving data provided by a TSP provider are called TSP symbols. A TSP consumer is an
application which wants to get the evolving value TSP symbols in order to display or store those
values. A typical TSP usage in the satellite test and integration domain is to have EGSE which are
TSP providers and Graphical display which are TSP consumers.

Using the TSP software development kit you will be able to bring the simple efficiency of TSP
into your application.

1.2 The TSP tools 1 WHAT IS TSP?

1.2 The TSP tools

TSP itself is both a Protocol and a Software Development Kit (SDK) including a set of ready-to-use
tools such as sample file recorder, GUT graph display, Blackboard Library | | and others helpers
tools and /or library. It is out of the scope of this document to describe them all, we just provide here
on Table 1a synoptic list of TSP Tools which indicates their role and if those tools are available on
Unix, Windows or other TSP supported platforms. In the following table the first column “P/C/B”
indicates whether the TSP tools is on Provider side, Consumer side, or Both sides. When only
a specific unix platform (Solaris, Linux, FreeBSD, ...) is concerned it is indicated as such in the
“Platform” column, otherwise Unix is given. If you want more detailed informations about TSP tools
please consult | , §11 TSP Applications|.

Table 1: TSP tools synoptic

P/C/B | Tool Description Platform
Name
B TSP Core | The TSP Core is the base TSP software module in C language. | Unix
This is the mandatory module for building TSP Provider or | Win32
Consumer in C. The TSP Core may be configured to use ONC-
RPC or XML-RPC. XML-RPC channel is currently in alpha
stage. Concerned TSP source locations:

e tsp/src/core/common

tsp/src/core/ctrl

tsp/src/core/ctrl_init

tsp/src/core/driver

tsp/src/core/include

tsp/src/core/rpc

e tsp/src/core/misc_utils

P Stubbed The TSP Stubbed Server is a TSP provider which generates | Unix
Server 1000 TSP tests symbols at 100Hz. It can viewed as faked | Win32
simulator whose purpose is to be an example of TSP Provider
side programming. Concerned TSP source locations:

e tsp/src/providers/stub

P RT This is a variant of TSP Stubbed Server running on PC type | Linux
Stubbed machine under linux, which is driven by the RTC chip and
use POSIX compliant realtime system interface. Concerned
TSP source locations:

e tsp/src/providers/rt_stub

\V table continues on next page </

1.2 The TSP tools

1 WHAT IS TSP?

Table 1: TSP tools synoptic (continued)

P/C/B | Tool Description Platform
Name
P VX VXWorks specific version of TSP Stubbed Server. Concerned | VxWorks
Stubbed TSP source locations:
e tsp/src/providers/vxstub
p RES Binary RES file format (EADS-Astrium) reader. Concerned | Unix
Reader TSP source locations:
e tsp/src/providers/res_reader
P Gen Generic file reader. The generic file reader may read data file | Unix
Reader in different file format and provides symbols value as described
by the file format handler. Concerned TSP source locations:
e tsp/src/providers/generic_reader
P BB Blackboard provider. Concerned TSP source locations: Unix Vx-
Provider Works
e tsp/src/providers/bb_provider
C Visu 3D An experimental OpenGL consumer. Concerned TSP source | Linux
locations:
e tsp/src/consumers/Visu3D
C Ascii A TSP consumer which may write to ascii files in different file | Unix
Writer format. Concerned TSP source locations:
e tsp/src/consumers/ascii_writer
C GDisp A Graphical (GTK+1.2) TSP consumer which may display | Unix
graphs and textual values. Concerned TSP source locations:
e tsp/src/consumers/gdisp
C Targa A Sophisticated Graphical (GTK+1.2) TSP consumer which | Unix
may display graphs and textual values. Using Targa one may
build it’s synoptic interactively and save/restore your sam-
pling configuration. Concerned TSP source locations:
e tsp/src/consumers/gdisp+
\/ table continues on next page N/

1.3 Getting TSP 1 WHAT IS TSP?

Table 1: TSP tools synoptic (continued)

P/C/B | Tool Description Platform
Name
C Generic The generic TSP consumer is a test consumer which offers | Unix

Consumer | command line options for sending any TSP Request to a TSP | Win32
provider. sampling configuration. Concerned TSP source lo-
cations:

e tsp/src/consumers/generic

®© end of table ©

1.3 Getting TSP

TSP is an Open Source software' one may get the TSP software at TSP home on Savannah |TSP].
The download section, http://download.savannah.nongnu.org/releases/tsp/ contains source
and binary release for different languages and platform.

LTSP license is LGPL www.gnu.org/licenses/lgpl.html

4

http://download.savannah.nongnu.org/releases/tsp/
www.gnu.org/licenses/lgpl.html

2 INSTALLING TSP

2 Installing TSP

TSP is an Open Source software so one may install TSP either from a pre-compiled binary installer
of from the source archive using your favorite C compiler and some development tools. If you do not
understand the difference between source installation and binary installation it means you certainly
needs a binary installer. Binary installer comes as an executable “.exe” program on the Windows
platform and as an RPM or [compressed| Tar archive on Unix platform.

2.1 Software Prerequisite

TSP needs some third party tools which needs to be installed before TSP. The main dependencies
are:

1. Binary installation dependencies

(a) a POSIX thread library
(b) an ONC-RPC library and portmapper

2. Source installation dependencies

(a) CMake build system | |
(b) a POSIX thread library
(¢) an ONC-RPC library and portmapper
(d) NSIS Installer (Windows Platform Only) [NSI]
Since pre-requisite depends on the target platform (Linux, Windows, Solaris...), please read the

appropriate specific installation instructions in the forthcoming section below.

2.2 TSP binary installation
2.2.1 TSP binary installation for Windows

1. Get tsp-<z.y.z>-Windows.eze from http://download.savannah.nongnu.org/releases/tsp/

http://download.savannah.nongnu.org/releases/tsp/

2.2 TSP binary installation 2 INSTALLING TSP

2. Execute the installer by doudble-clicking on the downloaded file. You should have administrator
privilege to perform a successful installation

& tsp 0.8.1 Setup E“EJ@

Welcome to the tsp 0.8.1 Setup
Wizard

This wizard will quide wou through the installation of tsp
0.5.1.

It is recommended that vou close all other applications
before starting Setup, This will make it possible to update
relewvant system files without having to reboot wour
compuket,

Click Mext ko continue.,

Mext = | [Cancel

3. Accept the LGPL license policy (Open Source Software)

7 tsp 0.8.1 Setup E]li|@

| Lo o License Agreement
kl‘.‘L Please review the license terms before installing tsp 0.8.1.

Press Page Down to see the rest of the agreement,

GMU LESSER GEMERAL PUBLIC LICEMSE ~
Wersion 2,1, February 1999

Copyright (23 1991, 1999 Free Software Foundation, Inc.
51 Franklin St, Fifth Floar, Boston, Ma 02110-1301 US4
Ewervone is permitked to copy and distribute verbatim copies

of this license document, but changing it is not allowed,

[This is the First released version of the Lesser GPL. It also counts
as the successor of the GMU Library Public License, version 2, hence
the wersion number 2.1.] w

If wou accept the terms of the agreement, click I Agree to continue, You must accepk the
agreement to install tsp 0.8.1.

< Back. ” I Agree] [Cancel

2.2 TSP binary installation

2 INSTALLING TSP

4. Choose whether you want system path to be modified for including TSP executable. If you
choose “Add tsp to the system PATH for all users” every user of the system may launch TSP
SDK excutable from any location. If unsure check “Add tsp to the system PATH for all users”.

 tsp 0.8.1 Setup

Install Options

i

(3)Do not add tsp ko the system PATH;
() Add tsp ko the system PATH For all users
() Add tsp ko the system PATH For current user

Chose options Faor installing ksp 0.3.1

B default ksp 0.8.1 does not add its direckory to the system PATH.

FE&X

< Back

” Mext >] [Cancel

5. Chose TSP install location

L,

and select another Folder, Click Mext ko continue.,

Destination Folder

Choose Install Location

Choose the Folder in which to install tsp 0.5, 1,

Setup will install tsp 0.8, 1 in the Following Folder, Toinskall in a different folder, click Browse

| Etowse, ..

Space required; 13,4MB
Space available: 3, 3GE

< Back

” Mext =] [Cancel

2.2 TSP binary installation 2 INSTALLING TSP

6. Chose TSP start menu folder name

 tsp 0.8.1 Setup E|E|El

R ﬂi 43 ioni Choose Start Menu Folder
= M i L Choose a Skark Menu Folder For the tsp 0.8, 1 shortouts,
- E | ‘\]\.l_

b

Select the Start Menu Folder in which wou would like bo create the program's shorbcuks, You
can also enker a name to creake a new Folder,

Accessoires LS
ActivePer| 5.8.8 Build 817
Eluetaoth

BT Remote Access Client
CDR. Tools Front End
CMake 2.4

CYSNT

Cyberarmor

Cygwin

Cygwin-es

Dell Accessories

D Do not create sharkcuts

[< Back ” Install] [Cancel]

7. The TSP for Windows installer will install prerequisite softwares and copy some DLL to system
folder. This is not a choice but it may takes some time thus be patient. ..

8. TSP is now properly installed on your system

& tsp 0.8.1 Setup E“E|gl

Completing the tsp 0.8.1 Setup
Wizard

tsp 0.8.1 has been installed on wour computer,

Click Finish to close this wizard.

2.2.2 TSP binary installation for Unix

It is not an objective of the TSP Team to maintain and distribute binary packages for many Unix
flavor (All Linux distribution, Solaris, DEC OSF...). So the favorite way of installing TSP on Unix
is from source. Nevertheless, if your source installation does not go smooth you may ask for help on
the TSP Developer mail list http://lists.nongnu.org/mailman/listinfo/tsp-devel.

8

http://lists.nongnu.org/mailman/listinfo/tsp-devel

2.3 TSP source installation 2 INSTALLING TSP

2.3 TSP source installation

’If you have made a TSP binary installation you may skip this section.

TSP can be downloaded as a source code tar.gz archive from http://download.savannah.
nongnu.org/releases/tsp/. Note that the tar.gz source archive is as usable on the windows plat-
form as it is on unix platforms?. The TSP source code is portable and configurable. The CMake TSP
build system detect what may be compiled on the host platform and configure the source accordingly.

As TSP, since version 0.8.1, uses the CMake build system, CMake is a prerequisite for any TSP
source installation. Please check that you have a properly installed CMake (see A.1) before reading
on about source installation. TSP source are meant to be built using CMake out-of-source build
feature. This means that the compiled binaries (object, libraries and executable) are produced in a
separate tree from the source tree. You will see TSP with CMake source configuration example in
the forthcoming sections.

2.3.1 TSP source installation for Windows

1. Check you have the minimal prerequisite softwares installed:
(a) CMake see A.1.
2. Get tsp-<z.y.2>-Source.tar.gz from http://download. savannah.nongnu.org/releases/tsp/

3. Unpack the archive at your favorite place. In the following screenshot the source location is
C:\Data\tsp .

4. Run CMake and chose a build directory which is separate from source (this is called out of
source build).

. CMake 2.4 - patch 2)B)x)
Where is the source code: |E;\Da[a\tsp Browse...

wWhere to build the binaries: |C;\Data\build_tsp j e

[T Show Advanced Values

Cache Values

Right click an a cache walue for additional options [delete, ignare, and kelp).
Prezz Configure to update and display new values in red.
Press 0K to generate selected build files and exit.

Configure Cancel Delete Cache Help

Build in C++

5. Click on Configure, CMake will ask you for which build tools he should generate files, for
example “ Visual Studio 7 .Net 2003

Many Windows Zip softwares are able to extract tar.gz archives, see for example http://www.7-zip.org/

http://download.savannah.nongnu.org/releases/tsp/
http://download.savannah.nongnu.org/releases/tsp/
http://download.savannah.nongnu.org/releases/tsp/
http://www.7-zip.org/

2.3 TSP source installation

2 INSTALLING TSP

CMake 2.4 - patch 2

Where iz the source code: IC;\D atastsp

Browse... |

[~ Show Advanced Yalues

‘where to buid the binaries:lE:\D atavbuild_tzp

PSS oot Generator

Build For: MET

Please select what build system vou want CMake to generate files For,
ou should select the tool that you will use ko build the project.
Press CK once you have made your selection,

LI Blowse...l

Eorland Makefiles
MinGy Makefiles
M55 Makefiles
Makefiles
Uiz Makefiles
Wisual Studio &
isual Studio 7

BN =l

=1

Configure |

=]

HE
Wisual Studio & 2005

Buidin C++

‘Wakcom Whake

Wisual Studio & 2005 Wing4

6. After the Generator is selected on you Clicked OK, CMake will do its first discover task and

you should obtain something similar to:

. CMake 2.4 - patch 2

Wwhere is the source code: I[;;\Data\tsp

Browse... |

[~ Show Advanced Yalues

‘where to build the binaries:lE:\Data\build_tsp

LI Erowse...l

— Cache Y alue

C:/Datadtsplexternal/ACPLT-ONCRPCAnclude/rpcipe. £
C:/Datastzp/estemnal AACPLT-OMCRPC/source/acplt-on
C:/Datastsplextemnal AACPLT-OMCRPC/lib/oncrpe. ib
OFF

oM

OFF

uli}

uli}

uli}

£

Prezz OF to generate

(]

FRight click on a cache value for additional options [delete, ignore, and help).
Press Configure to update and display new values in red.

selected build files and exit.

Cancel Delete Cache Help

Buid TSP test port

7. Then click on Configure again in order to make CMake do its configuration task, and you get:

. CMake 2.4 - patch 2

‘Where iz the source code: IC_\Da[a\[sp

Browse... |

[~ Show Advanced Yalues

‘where to build the binaries:lE:\Data\build_tsp

LI Erowse...l

— Cache Value

ACPLT_OMCRPC_INCLUDE
ACPLT_OMCRPC_INSTALL
ACPLT_OMCRPC_LIBRARY
BUILD_&PI_DOC
BUILD_CONSUMER
BUILD_OMLY_TSP_PORT
BUILD_PROVIDER
BUILD_SHARED

BUILD_‘wIN32 ACPLT_ONCFRC

C:/Datadtsplexternal/ACPLT-ONCRPCAnclude/rpcipe. £
C:/Datastzplextenal/ACPLT -OMNCRPC/ source/acplt-on
C:/Datastsplextemnal AACPLT-OMCRPC/lib/oncrpe. ib
OFF

OM

OFF

OM

OM

OM

|

Prezz OF to generate

Configure QK

FRight click on a cache value for additional options [delete, ignore, and help).
Fress Configure to update and dizplay new values in red.

selected build files and exit.

Cancel Delete Cache Help

Build consumers

10

2.3 TSP source installation 2 INSTALLING TSP

8. Finally click on OK in order to make CMake generate the project files. If you open the build
directory you will see that you now have a “Microsoft Visual Studio 7 .Net” solution file TSP.sln
which is ready to use.

'?

Fichier Ediion Affichage Favoris Qutils 7
O Précédente - ? ? p) Rechercher = Dossiers E'
Adresse ([0) Cr\Datalbuild_tsp 4 a oK
Dossiers X Mom Taille = Type
() Config.Msi -~ @TSP.sln 34 Ko Micrasoft Yisual Studio Solution Object
2 5 cygein tep.doey ko Fichier DORY
= [Data RUM_TESTS.vcproj.cmake 23 Ko Fichier CMAKE
= build_tsp RUN_TESTS.vcprDj 23 Ko W4+ Project
PACKAGE veproj.cmake 23 Ko Fichier CMAKE
PACKAGE.vcproj 23 Ko NC4+ Project
INSTALL.vcproj.cmake 23Ko Fichier CMAKE
INSTALL.vcproj 23 Ko NC4+ Project
@ DartTestfile bxt 1Ko Document texte
CPacksourceConfig.cmake SkKo Fichigr CMAKE
CPackCaonfig.crake S ko Fichier CMAKE
@ CMakeCache.bxt 15kKo Document kexte
cmake_install crnake 7 Ko Fichier CMAKE
ALL_BUILD.veproj.crake 23Ko Fichier CMAKE
ALL_BUILD.vcproj 23 Ko NC4+ Project
I wWindows Dossier de fichiers
|Chtests Dossier de Fichiers
IZ)src Dossier de fichiers
) scripts Dossier de fichiers
IZRPM Dassier de Fichiers
I ZJexternal Dossier de fichiers
IZdoc Dossier de fichiers
2 |2)CMakeFiles Dassier de Fichiers
£ > < >

2.3.2 TSP source installation for Unix

The installation under Unix is straightforward, just deviating slightly from the standard ./configure;
make ; make install routine since we want an out of source build:

1. Check you have the CMake installed (see A.1).
2. Get tsp-<z.y.z>-Source.tar.gz from http://download.savannah.nongnu.org/releases/tsp/

3. Unpack the archive at your favorite place:
cd $HOME; tar zxvf tsp-<x.y.z>-Source.tar.gz. The command should create a directory
$HOME\tsp-x.y.z-Sources containing the whole TSP C SDK sources.

4. Create your build directory cd $HOME; mkdir tsp_build and change directory cd tsp_build

5. Run CMake from within the build directory,

e you may run the default configuration using the non interactive cmake command
cmake $HOME\tsp-x.y.z-Sources

e or you may run the interactive curse CMake interface ccmake which looks like the
Windows interface in a full text version.

(a) You run ccmake $HOME\tsp-x.y.z-Sources and get:

11

http://download.savannah.nongnu.org/releases/tsp/

2.3 TSP source installation 2 INSTALLING TSP

= naulard=cutsn s fhormsinaularedeiisn builed - TSP O.H0 (BUILD) - fangal=

Session Edition Affichage Signets Configuration Aide

CMAKE BACKWARDS COMPATIBILITY: For backwards compatibility, what version of CMake command]
ente t tion CHake Ve o 4 - tch 3

rl

A=) @ TSP 0.8.1 (SRC) @ TSP 0.8.1 (BUILD) =

(b) Then you hit "¢’ key for “configure” and make CMake do its first discover task and
you get

= noulardsctso dame: fhomainoulardafesn build - TSR 080 (BUILD) - dangala

Session Edition Affichage Signets Configuration Aide

IILD_XMLRPC
BUILD TYPE

~=| @TSPO0.B.1(SRC) @ TSP 0.8.1 (BUILD) =

(c) Afterwards you hit ’c’ key again for making CMake do its configuration work:

= poulardzd@tsg dames fhomzinoulardaiian build - TSR 080 (BUILD) - fangale

Session Edition Affichage Signets Configuration Aide

fusr/bin/gtk-config
/usr/bin/lex

~=|| @/TSP0.8.1(SRC) | & TSP 0.8.1 (BUILD) ix

(d) Last step is to hit ’g’ for making CMake generate the Makefiles. CCMake exits
properly and you may proceed as if you had launch cmake (and not ccmake).

6. Launch the build command and wait for termination:

12

2.3 TSP source installation 2 INSTALLING TSP

the command make will build TSP.

L) noularde demio: fnome/noulardelt d PO BUIDY = Konsole o] x
Session Edition Affichage Signets Configuration Aide
nel uinté

warning:

[

A @|TSP0.8.1(SRC) | (M TSP 0.8.1 (BUILD) i

Note that make may eventually re-run the non-interactive cmake automatically. You should
not worry about this.

7. Packaging TSP:

Before installing TSP it’s better to build a binary TSP package you will be able to deploy on
every machine you need, just as you can do with the TSP for Windows installer.

The command make package will build the binary TSP package.

Ao| M TSP (Savannah BUILD) | TSP (Savannah SRC) | TSP Tutorial (Savannah BUILD) @ TSP Tutoriz « ¥ i

Will build a unix tar and gzip-compressed archive whose name depends on your machine
architecture, in our example this leads us to: tsp-0.8.1-Linux-i686.tar.gz .

8. Install TSP

Take the tsp-<version>-<system>-<arch>.tar.gz binary TSP package you have built in the
previous step and untar the archive at the install place you want with the following command:

tar zxvf tsp-0.8.1-Linux-i686.tar.gz

This will produce a tsp-0.8.1-Linux-i686 directory containing the TSP install directory
tree:

13

2.3 TSP source installation 2 INSTALLING TSP

tsp-0.8.1-Linux-1686
|-- bin
| -- include
|-- 1lib

‘-- scripts

e bin contains binary executables,
e include contains public include files,

e 1ib contains libraries,

e scripts contains helper scripts and test files.
After that you may want to update your PATH to include <path_to_tsp_install>/bin .

2.3.3 TSP Source tree primer

A quick look at the TSP sources may be helpful in understanding and locating the TSP components:

<tspdir> $ tree -L 2

[...]

|-- src

I | -- consumers
I | -- core

I | -- providers
[...]

The core directory contains the code implementing the core TSP functionalities: both the
consumer and provider API are implemented there

The consumers directory contains readily available TSP consumers coded by the TSP team.
They target a wide range of uses, and are well beyond the scope of this document, it is recommended
to refer to the TSP Design € Programming Guide Document | |-

The providers directory contains TSP providers that might prove useful as reference for the

future provider writer. In particular, the src/providers/stub directory contains the Stub Server
provider.

14

3 TESTING TSP INSTALLATION

3 Testing TSP installation

To make sure that we now have a working TSP installation on our system, we will proceed two small
tests:

e the first test will check a TSP installation on a single host which may or may not be connected
to a LAN,

e the second test will check a TSP installation on 2 hosts interconnected with a TCP/IP LAN.

3.1 Standalone TSP test (1 host)
This test simply consists in launching two TSP applications:

e one provider, the stub server and,

The Stub Server is a test and tutorial TSP provider that generates TSP Symbols value at
approximately 100Hz. It is used to test TSP installation and may be used to test new TSP
consumers.

e one consumer the stdout consumer,

The Stdout Client consulmer is a test and tutorial TSP consumer which may connect to any
TSP provider and request a specified number of TSP symbols and print their ebolving values
on standard output.

The screenshots shown hereafter are taken on a Windows system but you may run the same test on
any TSP supported unix systems too. The test TSP applications used here may be launched from
the TSP start menu on windows but we will give you the corresponding command line command
and arguments usable both on Windows and on Unix platforms.

1. Launch the Stub Server, either with command line tsp_stub_server (Unix) or
tsp_stub_server.exe (Windows) or even from the TSP start menu group:

& tsp0.6.1

] 1sPCleanUp

EP TsPHelp
[Topstdoutclient

&) Uninst{Emplacement : €:\Program Files\tsp 0.8.11bin|
r

Now the StubServer is running and wainting for a TSP consumer to connect. The StubServer
console window should display something like that:

e+ TSPStubServer

1
TSP Provider on PID 2684 — URL #8 : <{rpc:-//FRTPLDB4366271/StubbedServer:8>

If ever the StubServer is not able to start please check if you RPC Portmapper is running
properly as described at §A.2.1.

15

3.2 Networked TSP test (at least 2 machines) 3 TESTING TSP INSTALLATION

2. Launch the Stdout Client, either with command line tsp_stdout_client -p 10 -s 2 -n 0
(Unix) or tsp_stdout_client.exe -p 10 -s 2 -n 0 (Windows) or even from the TSP start
menu group:

] 1sPCleanUp

Y TsPHelp
] TsPstdoutclient

&) Lininst{

Emplacement : C:\Program Files\tsp D.S.l'l,bini
r

Now the StdOut Client console window should display just like that:

Jpp—
received #
==f

sing provider URL <localh

IC:“Program Filesstsp B_8_1sbinxtsp_stdout_client. = Azking for:
 samples (@ => INFINITE loop>
of <2> TSP symbols
at period <1@>.
C:“Program Files“tsp B.8.1%bin“tsp_stdout_client. : INFINITE LOOP mode <Ctrl-C
for stopping sample)
C:~Program Filesstsp B.B.1~binstsp_stdout_client. : Asking for 2 symbols
symhol <@> is <{t>
symbol <{1> iz <{Symboll>

Set nhll]l time=15278 t=152_700008 Symboli=0_.941832
Set nh[2] time=15280 t=152.8800608 Symholli=0.983574
Set nhI3] time=15290 t=152.700000 Symboll=A.856288
Set nhl4] time=15308 t=153.000000 Synboll=0_800447
Set nhI5]1 time=15318 t=153.18006068 Symbholl=0.7366087
Set nhib]l time=15320 t=153.2000080 Symholl=A.665408
Set nhI?] time=15338 t=153.300000 Symholl-A.5875608
Set nhl8]1 time=15348 t=153.4800080 Symbholl=0.563841

The Stdout display TSP symbols values provided by the Stubbed Server. This is an infinite
loop you may terminate by hitting Ctrl-C within the Stdout Client console window.

Now you should close both windows.

The console should not close, otherwise it means that something in the initialization went wrong.
In case it does close, consider running the ’cmd.exe’ program, change dir to the directory where the
provider’s binary lies, and launch it by typing tsp_stub_server.exe , you should be able to read
an informative message.

3.2 Networked TSP test (at least 2 machines)

TSP is meant to be used between several hosts exchanging data using the TSP protocol. When the
standalone TSP is OK you may run the same test using 2 machines. You have to run the Stubbed
Server just as before and to run the Stdout Client from a command line and providing the necessary
network argument.

On our example the StubbedServer is run on a Windows box whose IP address is 192.168.0.2, so
that the Stdout Client running on a Linux Box connected to the Windows box’s network should be
run with the following command line:

tsp_stdout_client.exe -u 192.168.0.1 -p 10 -s 2 -n O

The corresponding screens shots are shown just below:

16

3.2 Networked TSP test (at least 2 machines) 3 TESTING TSP INSTALLATION

o eric@bagherra. bordeneuve.fr: fhomelferic - Shell - Konsole

Session Edit View Bookmarks Settings Halp

2| | shel

If the Stdout client cannot connect to the Stubbed Server:
1. Check TSP installation on each box by running the standalone test

2. Check the network connectivity between the provider box and the consumer box by trying
network connectivity test like ping each other.

3. Check whether the provider box does not have some firewall software activated.

If one of your host is a Linux box you may play with several graphical TSP consumers with
your StubbedServer running. Note that some TSP consumers may not have been compiled on
your systems if some development libraries (libxml2, gtk+1.2 etc...) have not been detected
by CMake. In the scripts directory of your TSP installation you have some handy TSP
consumer configuration files.

e TSP GDisp:
tsp_gdisp -u 192.168.0.1 -x <TSP_install_dir>/scripts/stub_gdisp_config.xml
This should lead to something like:

e TSP Ascii Writer:
tsp_ascii_writer -u 192.168.0.1 -x <TSP_install_dir>/scripts/stub_ascii_writer_co

17

3.2 Networked TSP test (at least 2 machines) 3 TESTING TSP INSTALLATION

Check | , §11.2 TSP Consumers] if you want more instructions.

18

© 00 N O U R W N

AR R R R W W W W W W W W W WNNNNNNNNNN R e e
AW NN = O © 00N 30 WO © 0N ORI WN RO ®© N0 U W N - O

4 BUILDING A TSP PROVIDER

4 Building a TSP Provider

This section describes the necessary steps needed to add a provider to an existing program. For
simplicity’s sake, this program will consist on a simple loop incrementing two variables. Our job will
be to make those variables available to a basic TSP consumer.

We will start by studying the original code, then we will had the necessary TSP hooks to make
the code TSP aware. We will then use targa , which is a handy GTK+ TSP consumer?, to display
the data. To conclude, we will write a simple consumer to display the value of our variable to a
console’s screen.

4.1 The observed application

Listing 1 shows a sample simulator in action. It simply consists in a simulation() function (line
8), that runs as a thread. This function iterates 20000 times, incrementing the test_variablel
(line 20) and decrementing the test_variable2 (line 21), both of which, we will suppose, are of
crucial importance for our project.

Listing 1: A simplified simulator

#include <stdio.h>
#include <assert .h>
#include <pthread .h>

/*

¥ The pseudo simulation function

*/

void #simulation (void *unused)

{
unsigned long test variablel;
unsigned long test variable2;

test variablel = 0;
test variable2 “0UL;
J*
* The pseudo simulator main loop.
*/
while (test variablel < 20000) {
/% Update internal state of our simulator +/
test variablel++4;
test variable2 ——;
/* wait for next simulator cycle x/
usleep (100000);

return NULL;

}
/*

¥ This the main entry point of our

* pseudo simulator

*/

int main(int argc, char xargv[])

{
pthread t simu thread;
int ret;

printf("#\n");
printf("#,Launching <0bserved App>\n");
printf("#\n");

/* Create a thread which launches the simulation function x/
ret = pthread create(&simu_ thread, NULL, simulation , NULL);

/* pthread create retcode must not be NULL x/

3You’ll find the sources at src/consumers/gdisp+

19

45
46
47
48
49
50
51
52
53
54

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

assert (!ret);

/* Wait for the simulation termination by joining the
* simulation thread

*/

pthread join(simu thread, NULL);

printf("#===,End ===#\n");
return 0;

4.2 Providerizing the program

Now that we identified the data to be provided by our program, we will proceed the necessary steps
to make the simulator TSP-aware.

Let’s recall from | | that being a TSP provider means being able to answer to TSP requests,
those TSP requests are used between a TSP provider and a TSP consumer to negotiate the samples
they will exchange. A typical TSP request sequence is shown on figure 2.

TSP Consumer TSP Provider
T5P_request_open
- N
TSF_answer_open
-, - - — - - — = - - - — - - -

\

ot | Negotiate
TSP _answer_sample - -
- — - - — - - - - - - . Sampling

TSP_request_informations

T5P_request_sample

L
'Hr;_

TSP_answer_sample
[l — — = = = — _— = —_—— - -

T5P_request_sample_init
-

TSP_answer_sample_init v "'I\
i ¥ R:’j‘cefve/Send
TSP_request_sample_destroy k_, »* Samp“les
'—
TSP le_dest \ 1
o — Y ' Terminate
TSP_request_close - ’ Samp“ng
Y Y

Figure 2: TSP typical sequence

The typical TSP sequence is simple:

1. Negotiate sampling configuration with the provider,

20

N O ot s W N

4.2 Providerizing the program

4 BUILDING A TSP PROVIDER

2. Start sampling and loop to receive samples,

3. Ask for sampling termination.

This may seems hard to implements but the TSP Library makes it really simple to do. The TSP
Library will take care of handling the request/answer mecanism for us as soon as the application:

e Implements and register a object-oriented C callback object called the GLU.

e Calls some TSP API for initialization and termination,

e Tells the TSP library for sample update.

Figure 3 illustrate the layered aspect of TSP GLU interface.

TSP Provider
Application

TSP Consumer

ok

Instance

Application

)
CTSP Provide

Library

(oo mi?)

Library

@)

@)

TSP Protocol
TSP Protocol

Figure 3: GLU vs TSP library

The TSP GLU object is a C structure which contains data and pointer to functions. We may
not detail the whole structure content here but the main idea is that whenever the TSP library
needs informations for filling-up TSP Answer to Consumer TSP request (available sample symbol
list, name and type description of the symbols etc...), the TSP Library will call the GLU structured
callback object our application has provided. Let’s go for some source code now.

As expected, we will first include the needed TSP headers at the top of the source file. This is
shown in listing 2.

Listing 2: Headers of the TSP aware simulator
#include <tsp abs types.h> /* platform independant data types definition x/
#include <tsp provider init.h> /% provider init API %/
#include <tsp glu.h> /* TSP GLU object definition and API x/
#include <tsp common.h> /* TSP common structure manipulation API x/
#include <tsp datapool.h> /* TSP provider datapool API %/

21

© 00 N OO R W N

I o T S Y S S
O © 0N O R W N = O

21

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

Those headers contains the needed prototypes of the functions used in listing 3 in order to interface
our application with the TSP Library. The listing 3 illustrates how to create a GLU object in our
main application and register it to TSP library during its initialization. This example is taken from
the Stubbed Server provider you may found in tsp/src/provider/stub the example has been
slightly modified to makes it more simple and readable at first glance. You should read all the code
and comments keeping in mind the 3 steps for programming a TSP provider:

1. Build your own GLU object structured callback,
2. Register the GLU object into TSP Provider library and initialize TSP,

3. Launch TSP provider request handler AKA TSP_provider_run .

Listing 3: TSP core initialization

/* declare my GLU object static wvariable x/
static GLU_ handle tx stub_GLU = NULL;

/* Create the GLU object instance +/
GLU handle t *STUB_ GLU create()

{
/%
¥ Create a default GLU object instance
*
GLU handle create(&stub GLU, /* pointer to pointer to GLU object */
"SampleTSPProvider", /* Provider name */
GLU SERVER TYPE ACTIVE, /* my GLU can’t wait it is ACTIVE x/
100.0); /* my advertised base frequency (in Hz) x/
/*
* Now we must provide GLU member functions
* which will be called by TSP provider library in order
* to build TSP answers to TSP consumer requests
*/
stub GLU—>initialize = &STUB_ GLU init; /* initialize GLU member function pointer x/
stub_ GLU—>run = &simulation ; /* main loop GLU member function pointer x/
/* provides get Sample Symbol Info List GLU member functions =/
stub_ GLU—>get _ssi_list = &STUB_GLU _get_ssi_list;
/* provides get Sample Symbol Fztended Information from PGI member function pointer
* PGI = Provider Global Index
*/
stub_ GLU—>get ssei list fromPGl = &STUB GLU get ssei list fromPGI;
return stub_GLU;
}
int main(int argc, char xargv[])
{

int ret;
printf("#,Launching, <Sample server>\n");

/* Create our structured GLU callbacks +/
GLU handle t *GLU stub = GLU stub_create();

/* Initialize TSP Provider library and register OUR GLU object

¥ so that the TSP core knows it and is able

* to call appropriate callback GLU member functions.

*/

if (TSP_STATUS OK == TSP provider init(GLU_stub, &argc, &argv)) {

/* configure TSP request handling SIMPLE mode x/
unsigned int flags = TSP ASYNC REQUEST SIMPLE;

22

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

/* TSP Request Handler will loop forever when started x/
flags |= TSP_ASYNC REQUEST BLOCKING;

e

¥ Start TSP request handling loop

* In this case the function will not return
* until the program is interrupted (Ctrli—C).

*

* Provider run will:

* 1— Call GLU—>initialize ()

* 2— Start o thread running GLU—>run ()

* 38— Start TSP request handler

*

/

if (TSP_STATUS OK != TSP _ provider run(flags)) {
return —1;

}

/* Terminate TSP Provider library x/
TSP _provider end();

/* % % NO TSP zzz functions may be called after this call x x %/

}

return 0;

We will review the functions and their role one by one hereafter, nevertheless keep in mind that
the most up to date information is in the concerned headers sources files themselves. The TSP
headers are documented using doxygen® structured comments, so that complete and browsable API
documentation may be generated either in HTML format or CHM (Windows Help) format as illus-
trated at figure 4 on page 24. The TSP Windows help file is available through the TSP menu group.
The root HTML index document may be found in <TSP_INSTALL_DIR>/doc/api/html/index.html
and may be opened by any HTML Browser®.

Now let’s go further inside TSP provider APT role and features:

e TSP_provider_init(handle_t* theGLU, int* argc, charx* argv[])

Initialize the TSP provider library and register theGLU structured callback. argc and argv
are the classical arguments of a main program. If you don’t have them you should fake them
like this:

int argc = 1;
char*x argv

[

0;
argv = (char*x)calloc(argc+l, sizeof(charx));

argv[0] = strdup("MyOwnProvider");
argv[1] = NULL;

e TSP_provider_run(int spawn_mode)

Start TSP provider library. This will call the GLU->initialize() function and then launch
the TSP request handler (ONC RPC request handler in the default case). The spawn_mode
is a mask of OR-ed values:

‘http://www.doxygen.org
®You may find an online version of TSP API documentation at http://www.ts2p.org/tsp/APT_doc/html/index.
html

23

http://www.doxygen.org
http://www.ts2p.org/tsp/API_doc/html/index.html
http://www.ts2p.org/tsp/API_doc/html/index.html

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

S e =
P (] A =
b asquer Sarmmaire Anréter Actualizer Démarrage Imprimer Optionz

Sommaire llndex] Bechercher] Fagorisl

TSP: The Transport
Sample Protocol

= ([J) Modules
] m Tranzport Sample Protocol [TSP)
+ @ TSP Libraries
+ @ TSP Applications

[£] TSP Utilities » Main Page
+ @ BlackBoard [BE) » Modules
+ @ Data Shuctures « Data Structures
[£] Data Fislds » Related Pages

+ @ Related Pages

TSP Documentation
0.8.1
Intreduction

This is the Transport Sample Protocol (TSP) APl docurmentation. Yyou'll find hereafter
the documentation for the main modules of the TSP project.

Main TSP Module
The main TSP modules are:

e Transport Sample Protocol (TSP}
s BlackBoard (BB}

Installing and using TSP SDK v

Figure 4: Windows Help TSP API documentation

— the asynchronous request mode. This will tell TSP if several and dynamically registered
request handler should be used or not. For now only TSP_ASYNC_REQUEST_SIMPLE is
supported since TSP_ASYNC_REQUEST_DYNAMIC is not implemented yet.

— the blocking mode. This indicates if the call to TSP_provider_run should block or
not. When TSP_ASYNC_REQUEST_NON_BLOCKING mode is invoked a new thread is started

and function returns, whereas when TSP_ASYNC_REQUEST_BLOCKING mode is requested
function never return unless program receive a signal.

e TSP_provider_end()

Finalize the TSP provider library, i.e. shut down TSP. No TSP calls may done after this call,
not even to TSP_provider_init again.

Now we should have a look at the differents GLU mandatory member functions we have to
implement:

e GLU->initialize shown in listing 4 must define what T'SP symbols the providers will offer.
The GLU should define a list of symbols to provide. This list is a TSP_sample_symbol_info_list_t
structure containing TSP_sample_symbol_info_t elements. Those structures may be manip-
ulated with TSP_SSIList_xxx and TSP_SSI_xxx API defined in <tsp_common.h> . The
minimal information that should be provided for a TSP symbols is:

24

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

© 0 N O U R W N

W oW N NN NNNINNNLRN B B B os e e e e e
H O © 00 N 3 Uk WN O © 0N OO W NN = O

32
33
34
35
36
37

— its name, which is a human readable label associated to the data (its key),

— its provider global index, which a unique integer identifier used by TSP core to index the
provided symbol,

— its TSP type (DOUBLE, FLOAT, INT8/16/32..., browse TSP API documentation for
the complete enum TSP_datatype_t definition)

— its dimension, 1=scalar, >1 array of symbol. TSP only support rank 1 array.

— its period, which is how often the provider update the symbol value if unsure put 1 (see
[| for detail on this).

Listing 4: GLU initialization function

static TSP sample symbol info list t X SSI list;
int STUB GLU init(GLU handle t % this, int fallback argc,
char =fallback argv][])

{
int32_t size;
/* Initialize provided sample info list for 1 symbol «/
if (TSP_STATUS OK!=TSP SSIList initialize(&X SSI list,1)) {
return FALSE;
}
/%
* Initialize a TSP_sample symbol info t structure
* which will hold metadata for ’test wvariable’
*
/
TSP _ SSI initialize (TSP _SSIList getSSI(X SSI list,0),
"test_variable", /* name */
0, /* provider global index x*/
0,0, /x pgridz ,pgrank =/
TSP_TYPE DOUBLE, /% type */
1, /* dimension =/
0,0, /* offset, nelem x/
1, /* period x/
0); /* phase x/
/* compute symbol memory size x/
size =
X sample symbol info.dimension * tsp type size[X sample symbol info.type];
/* This is not really needed here for now,
* but let’s register the biggest size we’ll deal with
*
/
if (taille_max_ symbol < size) {
taille max symbol = size;
}
return TRUE;
}

e GLU->get_ssi_list shown in listing 5 should return the complete list of provided symbols.

© 00 N O U W N

=
o

We simply provides the value of our static variable X_SSI_list previously initialized by
GLU->initialize() .

Listing 5: GLU get Sample Symbol Information

int
STUB GLU get ssi list(GLU handle tx h glu, TSP sample symbol info list t* symbol list)

{

symbol list—>TSP sample symbol info list t len =
X SSI list. TSP _ sample symbol info list t len;
symbol _list =TSP _sample_symbol_info_list_t_val =
X SSI list. TSP sample symbol info list t wval;

return TRUE;

25

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

e GLU->run which is our application updated simulation and shown in listing 6. GLU->run
must be the main TSP provider update loop. It should feed the TSP datapool with sample
values at the chosen provider pace.

© 0 N O Ut R W N

@ O U Ut O O O U O O O OU A A R R A A R R A A WD W W W W W W W W WNNNNNNNNDRDNE B e e e e e e e
= O © 0N O A XN O 000N DR W= O ©00 N0 AE RO © 00O AWN RO ©ODNDOAWN - O

Listing 6: GLU run

void xsimulation (void xathis)

{

/* my test wvariable x/

double test variable;

/* a GLU datapool item x/

glu item t =xitem;

/* the athis is the pointer on the GLU object itself x/

GLU handle tx cthis = (GLU_ handle t*) athis;
int symbols nb, xptr index;

int temp;

item = calloc (1, sizeof(xitem));

assert (item);

/* Reserve enough memory for one symbol x/
item—>raw_ value=calloc (1,taille max symbol);
assert (item—>raw_value);

test variable = 0.0;
while (1) {

* Reverse list of wanted items index

* The TSP Prowvider library maintains the list of

* of all symbols that are requested by connected TSP consumers.

* This is handy way for a provider to only update a reduced set

* of provided symbol.

* Using this scheme a provider may potentially offer

* o huge number of symbols while only effectively providing a few.

*/
TSP datapool get reverse list(cthis—>datapool,&symbols nb, &ptr index);
item—>size = X sample symbol info.dimension % tsp_ type size[X sample symbol info.type

/* Ezport to the consumers at which _internal_ time, the data was sampled */
item—>time = my_time;

/% Assign the new wvalue to our wariable x/
*((doublex)item—>raw value) = test variable;

* Enqueue the wvariable wvalue, so that

* next commit will take into account the new value set
x separating PUSH from COMMIT (see later)

* ensure that TSP will provide a coherent set of sample
*

/

TSP _datapool push next item(cthis—>datapool, item);

/* Perform complez computations on our test wvariable #/
test wvariable++;

J*

* Commit ALL the wvariable’s new values

* to the data pool

* so that TSP Library may send the whole set to consumer.

*/

TSP datapool push commit(cthis—>datapool ,my time, GLU GET NEW ITEM);

/* Increase the simulation’s internal time reference #/
my time++;
tsp usleep (TSP_USLEEP PERIOD US);

return NULL;

26

e void TSP_datapool_get_reverse_list (TSP_datapool_t* datapool, int *nb, int **1list)

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

this function gets the symbol list of a given data pool. The data pool in question lies within the
TSP provider we are connected to. As expected, the list’s size and the list itself are returned
in the nb and list arguments of the function.

e int TSP_datapool_push_next_item (TSP_datapool_t* datapool, glu_item_t* item)

This function enqueues a glu_item, which is a TSP symbol value. Those value are kept in the
provider datapool until TSP_datapool_push_commit is called.

e int TSP_datapool_push_commit(TSP_datapool_t* datapool, time_stamp_t time_stamp,
GLU_get_state_t state)

The commit that we’ve just refered to above. This informs the underlying TSP core that new
data is ready to be sent to consumer side. The TSP core will then handle the delivery of the
actual data to the consumer.

Let’s summarize what we have done:
After writing our 3 GLU minimal member functions:

e GLU->initialize , see listing 4
e GLU->run , see listing 6
e GLU->get_ssi_list , see listing b

and the main program initializing TSP provider lib (see listing 3) we have a functionnally run-
ning TSP provider offering a single TSP Symbol. TSP provider side programming has many more
possibilities you may discover by reading more provider source code in tsp/src/providers/stub
and others tsp/src/providers/xxx .

Keep in mind that documentation is never as accurate as source code itself. That’s why TSP
APT documentation is extracted from directly from source code using Doxygen in order to make it
available as soon as code is updated.

Moreover TSP is an Open Source project so you should not hesitate to ask questions on the TSP
Development mailing list at http://lists.nongnu.org/mailman/listinfo/tsp-devel.

27

http://lists.nongnu.org/mailman/listinfo/tsp-devel

5 BUILDING A TSP CONSUMER

5 Building a TSP consumer

Now that we have handled the provider side aspect of TSP programming let’s continue on the TSP
Consumer side.

A TSP consumer is an application that wants to get TSP sample symbols informations and
evolving values of a subset of the provided symbols. As already shown on figure 1 on page 1 and then
more precisely on figure 2 on page 20 a TSP consumer negotiate with one or several TSP provider(s)
the sample symbols value he wants to receive.

The typical TSP consumer /TSP provider negotiation sequence shown on figure 2 is recalled here:

1. Open a TSP Session (mandatory).

Send the TSP_request_open the consumer will get a TSP session Id to be used in other TSP
request calls.

2. Get Sample Information (optional).

Using the previously obtained TSP session Id you may ask the provider for information regard-
ing the symbols he may provide you.

Send TSP_request_informations and/or TSP_request_filtered_informations . Using
those requests the TSP consumer may get a (filtered) list of available TSP Symbols.

3. Request for Sample (mandatory).
The TSP Consumer selects the list of TSP Sample Symbols he wants to get using their name,

sampling period and phase. The consumer sends one or several TSP_request_sample until he
gets an OK from the TSP provider. The provider may refuse the sample request for different
reason:

e one or several requested symbols are unknown,

e specified period may not be satisfied,

e number of active (i.e. sampling) TSP Session is exhausted,

e provider specific reason.

4. Request for Sample Initialization (mandatory).
When the last TSP_request_sample sent by the consumer is accepted by the provider, the
consumer may send TSP_request_sample_init which tells the provider to allocate a socket
for the consumer sampling session and be ready to send as soon as the consumer is connected.
The TSP_answer_sample_init tells the consumer how to connect (IP address and socket
port).

5. Read Sample (mandatory loop)
As soon as the consumer is connected he only have to loop on calling TSP_consumer_read_sample
for getting sample values.

6. Request for Sample Destroy (mandatory).

Tells the provider to stop sending sample and to close the socket.

7. Request Close (mandatory).

Tells the provider to close the TSP Session. No more TSP request may be sent using the
previously obtained session Id.

28

[S NI CR R

© 00 N OO R W N

e e e e
S © BN DU AW N RO

5.1 Writing a simple consumer 5 BUILDING A TSP CONSUMER

We will show in the following section how to program a simple TSP consumer. Now if you only
want to quickly get a consumer for testing your own TSP provider or to experiment with TSP you
may skipped directly to §5.2.

5.1 Writing a simple consumer

We will shown in this specific section how to program a simple TSP consumer in C. This consumer
will be able to ask for the first n sample symbols offered by any TSP provider. All example of code
below are taken from tsp/src/consumers/stdout TSP consumer. The program have been slightly
modified in order to ease understanding and presentation.

As usual the listing 7 shows the necessary headers you need for writing our TSP consumer
application.

Listing 7: Headers of the TSP consumer application

#include <tsp sys headers.h> /* platform independant data types definition =/
#include <tsp prjcfg.h> /* TSP project config header */
#include <tsp_consumer.h> /% TSP consumer API */

The TSP consumer library initialization and open session is shown at listing 8.

Listing 8: Initialize TSP consumer library and open TSP Session

TSP _provider_t provider;

J*

¥ Initialize TSP consumer library

*/

if (TSP_STATUS OK!=TSP consumer init(&argc, &argv)) {
retcode=1;
return retcode;

}
J/x
¥ Connect to the TSP provider request handler using
a TSP URL
*/
provider = TSP _consumer connect url(provider url);
/*
* Check if we really found a provider using the URL
*/
if (provider) {
const charx info = TSP consumer get connected name(provider) ;
printf("Found provider <¥s>",info);
else {
retcode = 3;
return retcode;
}
/*
* Now send the TSP Request Open
*/

if (TSP_STATUS OK!=TSP consumer request open(provider, 0, NULL)) {
return —1;
}

29

© 00 N O U R W N

W oW W W W W NNNNNNNNNE S R R e e e e e
O B W N FH O © 0O WN O © 0N OO W N O

© 00 N O U W N

e e s e
© 00 N O U R W N = O

5.1 Writing a simple consumer 5 BUILDING A TSP CONSUMER

Now we are ready for using our TSP Session. Listing 9 describe how to retrieve TSP Symbols
Information from our TSP Session.

Listing 9: Request for Information on TSP Symbols

TSP sample symbol info tx aSSI = NULL;

e

* Send TSP Request Information to the provider

* the TSP session is implicitly associated with the

* provider.

*

if (TSP_STATUS OK!=TSP consumer request information(provider)) {
return —1;

}

e

* Retrieve provider information from provider Session object
*/

information = TSP _consumer get information(provider);

e

* The return information object contain the list
* of available symbols, aka a Sample Symbol Info List = SSI List.
*/
printf("ProvideruisuofferinguZdusymbolsuonutheuprovider",
TSP SSIList getSize(information—>symbols));

e

*

Each element of the list is a SSI = Sample Symbol Info
which is a structure containing several information:

*

* name, dimension, type, minimal possitble period, provider global indezx
*x (consult API documentation to know more)
*/

for (i =0 ; i < TSP SSIList getSize(information—>symbols), ++i) {
aSSI = TSP _SSIList getSSI(information—>symbols,i);
printf("Symbolu<°/,s>_.has_.PGIu<°/,d>uand._.minimalupossible_.period_,<%d>\n"7
aSSI—>name, aSSI—>provider global index, aSSI—>period);

}

Note that if do not want to be flooded with a list of 1000000 symbols coming from provider on
may use the filtered request for information:

TSP_consumer_request_filtered_information(provider) .

See API documentation for the usage of the filtered request. Now that we have some information
about available symbols we may build a TSP Request Sample for getting the first n symbols. This
is shown by Listing 10.

Listing 10: Requesting selected symbols

/* declare the list of requested symbols =/

TSP sample symbol info list t requested symbols;

J*

* Request n symbols if n < number of available symbol

* FElse Request number of available symbol.

*/

int nb_symbols = n < TSP _SSIList_getSize(information—>symbols) 7
n : TSP SSIList getSize(information—>symbols);

/* Initialize requested symbols list #/
TSP SSIList initialize(&requested symbols ,nb symbols);

* Now for each requested symbol
* we have to tell
¥ — 4ls name
— the requested period of sampling

*/

30

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

© 00 N OO s W N

NN NN NN NN R e e e e e e e
® N OOt A WK HEO© KON O ®N RO

29
30
31
32
33
34
35
36

5.1 Writing a simple consumer 5 BUILDING A TSP CONSUMER

for (i =0 ; i < TSP _ SSIList getSize(requested symbols) ; ++i) {
TSP SSI initialize request minimal (TSP SSIList getSSI(requested symbols,i),
TSP SSIList getSSI(information—>symbols, i)—>name,
period);
printf("uuusymboly <¥d>Lis <Y%s>\n",i, TSP _SSIList getSSI(symbols,i)—>name);

}

/* Now send Request Sample %/

if (TSP_STATUS OK!=TSP consumer request sample(provider, &symbols)) {
return —1;

1

/x And finally ask for starting sampling process */

if (TSP_STATUS OK!=TSP consumer request sample init(provider, 0, 0)) {
return —1;

}

Note that each TSP_xxx function returns a TSP status which is TSP_STATUS_0K on success
and TSP_STATUS_ERROR_xxx on error. One should always check the returned code. For example a
Provider may return TSP_STATUS_ERROR_SYMBOLS to a TSP request sample, which means that the
request may not be satisfied because some sample symbol are unknown from provider. When this
occurs you should check the provider_global_index of each sample symbol in the symbols list
for a —1 value. Every symbol whose PGI is —1 is unknown from the provider, thus you may either
remove those symbols from your request and send the updated request or request user action (TSP
Consumer GUT). You may read the Ascii Writer code (located in tsp/src/consumers/ascii_writer
) which implements a kind of “ignore unknown” symbols feature.

Now we can enter the loop for sample read and terminate sampling when we have received p
samples. This is shown in Listing 11.

Listing 11: Consumer Sample loop

int new sample;

/* A TSP sample as returned by read sample x*/
TSP sample t sample;

/* The number of received sample set +/
int n received sample = 0;

do {
if (TSP_STATUS OK—TSP consumer read sample(provider ,&sample, &new sample)) {

/% We have some sample to process x/
if (new_sample) {
n_ received samplet+;
printf("%s=%f\n",
TSP SSIList getSSI(requested symbols,
sample . provider global index)—>name,
sample.uvalue.double value);

}
/*

¥ we have not received any sample yet,
* wait a little time in order to avoid busy loop
*/
else {
tsp_usleep (100%1000); /* gives time [10 Hz|] for sample to come in x/

else {
/% TSP sample read error %/
return —1;

}

} while (n received sample < p);

/* End Sampling Process #/
if (TSP_STATUS OK!=TSP consumer_ request sample destroy(provider)) {

31

37
38
39
40
41

00 N O O W N =

e
W N = O ©

5.2 Ready-to-use consumers 5 BUILDING A TSP CONSUMER

return —1;

}

/* Release memory #/
TSP _SSIList finalize(&requested symbols);

Now we terminate TSP session and finalize TSP consumer library as shown in listing 12

Listing 12: Terminate TSP consumer

J*

* Terminate TSP Session

*/

if (TSP_STATUS OK!=TSP consumer request close(provider)) {
return —1;

}

J*
* Disconnect from provider and End TSP consumer library.
*/

TSP consumer disconnect one(provider);

TSP _consumer end();

We have reviewed how to program a simple TSP consumer using the TSP Consumer library. We
have not handled some complex cases where symbols may be of differents types or how to request
array or array slice. The main thing to remember is that all information you need to know about
your sample symbol should be included in the updated list sample symbol information list you get
from:

TSP_consumer_request_sample (provider, &symbols)

The interested reader should now have sufficient knowledge to read more TSP consumer codes by
himself in the TSP source tsp/src/consumers/xxx in order to discover more complicated cases.

Again you should remember that TSP is an Open Source software with a living community living
at https://savannah.nongnu.org/projects/tsp/. Do not hesitate to ask your tricky question on
the developper mailing list: http://lists.nongnu.org/mailman/listinfo/tsp-devel.

5.2 Ready-to-use consumers

There is a growing numbers of ready-to-use TSP consumers, please check | , §11.2 TSP Con-
sumers| for more informations on using ready-to-use TSP consumers. You may check the platform
availabilty of each consumer first in table 1 on page 2 of this document. You may find information
on each TSP Consumers application online directly at http://www.ts2p.org/tsp/API_doc/html/
group__TSP__Consumers.html.

And again, you should ask for information on the mailing list: http://lists.nongnu.org/
mailman/listinfo/tsp-devel.

32

https://savannah.nongnu.org/projects/tsp/
http://lists.nongnu.org/mailman/listinfo/tsp-devel
http://www.ts2p.org/tsp/API_doc/html/group__TSP__Consumers.html
http://www.ts2p.org/tsp/API_doc/html/group__TSP__Consumers.html
http://lists.nongnu.org/mailman/listinfo/tsp-devel
http://lists.nongnu.org/mailman/listinfo/tsp-devel

A INSTALLING PREREQUISITE SOFTWARE

A Installing prerequisite software

A.1 CMake
CMake

Cross-platform Make

TSP uses cmake | | as build system, CMake is used by many important opensource projects
(KDE, MySQL, ...). This build system offers two crucial advantages regarding multi-platform build:

e CMake is multi-platform
e CMake supports various development environments
e CMake 2.4.x comes with two other very interesting tools

o CPack which is a package generator tools, still in beta but used by TSP for generating
Windows installer and Linux binary archive.

o CTest which may be used to drive testing (use by TSP is under examination).

On Windows CMake has a graphical frontend that can be used to define build configuring vari-
ables: are we doing a win32 build, which binaries do we want to build, etc...CMake will generate
the appropriate build files (Makefiles, Visual Studio project files, ...). On Linux there is a curse Ul
(ccmake) which offers the same functionnalities.

It is recommended to have a look at http://www.cmake.org/HTML/Documentation.html, to get
familiar with this powerful and versatile set of tools.

A.2 ACPLT-ONCRPC

The Win32 TSP port use a package called ACPLT ONCPRC, which is a win32 port of the original
Sun code. Since we had to recompile it with our target C compiler, the modified version of ACPLT
ONCRPC has been shipped along with the TSP source in tsp/external/ACPLT-0ONCRPC/ . The
TSP Team did send the patched source back to the original authors. The original project’s home
page is: http://www.plt.rwth-aachen.de/index.php?id=258

A.2.1 Verifying Portmap Service/Daemon

An RPC Server program should be able to register to the so-called RPC Portmapper. The RPC
portmapper is generally a daemon on Unix and this is a Windows Service on the Windows platform.
A TSP provider includes an RPC Server, so if you want your favorite TSP Provider to be able to
start you should have an RPC portmapper up and running. On Windows, you can check that the
RPC Portmapper is running by opening Control Panel/Administration Tools/Services in order to
check that everything is behaving as expected. On Linux the command service portmap status
(run as root) will show you the status of the RPC portmapper. For other platform please contact
your system administrator for help on this subject.

A.3 PthreadsWin32

PHireags

33

http://www.cmake.org/HTML/Documentation.html
http://www.plt.rwth-aachen.de/index.php?id=258

A.4 NullSoft Scriptable Install System REFERENCES

PthreadsWin32 is a software package developped and maintained by Red Hat Inc. Albeit it’s
thread implementation is not as fine grained that under Linux, unit tests showed a sufficient coverage
of TSP needs. The project’s home page is: http://sourceware.org/pthreads-win32/. In order to
ease TSP source usage, the TSP source tree ship a version of PthreadWin32 which has been tested
with TSP in tsp/external/PthreadWin32 .

A.4 NullSoft Scriptable Install System

The Win32 TSP port use NullSoft Scriptable Install System (NSIS) [NSI] in order to produce the
TSP for Windows Binary Installer. In fact we use CPack which has an NSIS Generator http:
//www.cmake.org/Wiki/CPack:Generator_Information. NSIS has an Open Source license and
may be downloaded here: http://nsis.sourceforge.net/.

References

[CMa|] CMake Homepage. https://www.cmake.org/.

[Dew06] Frederik Deweerdt. The blackboard: a debugging and reporting tool. Technical report,
TSP Team, 2006. In preparation.

[NSI] NSIS Homepage. http://nsis.sourceforge.net/.

[Tea06] The TSP Team. The TSP Design & Programming Guide. Technical Report Rev. 1.0 for
TSP v0.8.0, The TSP Team, 2006. Available at http://download.savannah.nongnu.org/
releases/tsp/tsp_programming_guide-1.0.pdf.

[TSP] TSP Homepage at Savannah. https://savannah.nongnu.org/projects/tsp.

34

http://sourceware.org/pthreads-win32/
http://www.cmake.org/Wiki/CPack:Generator_Information
http://www.cmake.org/Wiki/CPack:Generator_Information
http://nsis.sourceforge.net/
https://www.cmake.org/
http://nsis.sourceforge.net/
http://download.savannah.nongnu.org/releases/tsp/tsp_programming_guide-1.0.pdf
http://download.savannah.nongnu.org/releases/tsp/tsp_programming_guide-1.0.pdf
https://savannah.nongnu.org/projects/tsp

	TSP Programming Tutorial
	Contents
	List of Listings
	List of Figures
	List of Tables

	1 What is TSP?
	1.1 TSP principles
	1.2 The TSP tools
	1.3 Getting TSP

	2 Installing TSP
	2.1 Software Prerequisite
	2.2 TSP binary installation
	2.2.1 TSP binary installation for Windows
	2.2.2 TSP binary installation for Unix

	2.3 TSP source installation
	2.3.1 TSP source installation for Windows
	2.3.2 TSP source installation for Unix
	2.3.3 TSP Source tree primer

	3 Testing TSP installation
	3.1 Standalone TSP test (1 host)
	3.2 Networked TSP test (at least 2 machines)

	4 Building a TSP Provider
	4.1 The observed application
	4.2 Providerizing the program

	5 Building a TSP consumer
	5.1 Writing a simple consumer
	5.2 Ready-to-use consumers

	A Installing prerequisite software
	A.1 CMake
	A.2 ACPLT-ONCRPC
	A.2.1 Verifying Portmap Service/Daemon

	A.3 PthreadsWin32
	A.4 NullSoft Scriptable Install System

	References

